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ABSTRACT. Time reversal of semimartingales defined on a Lévy
process framework is considered. Usually semimartingales cannot be
time reversed such that the reversed process is still a
semimartingale. An expansion of filtrations result for Lévy
processes is established and then it is used to give sufficient
conditions such that a semimartingale defined on a Lévy process can

be time reversed and still remain a semimartingale.
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1. Introduction.

Usually semimartingales, when reversed, are not
semimartingales, as J. Walsh (1982) has pointed out. Nevertheless
Since semimartingales are essentially the most generél possible
stochastic differentials, it is desirable to obtain sufficient
conditions such that they be reversible. This type of problem and
related questions have recently been considered by & number of
authors (e.g.: Follmer (1986), Lindquist and Picci (1985), Pardoux
(1985), Picard (1986), Protter (1986)).

Suppose we are given a complete probability space (Q.%, P)
with at least two filtrations F = (gt)te[o,ll and
g = (it)te[o,ll . Let Y be a process with paths that are right
continuous and have left limits (hereafter: cadlag), defined on

[0,1]. Ve associate to Y +the time-reversed process

¥ - (?t)te[o,ll (also denoted (YY) ) given by:

0] if t =0
(1.1) Yt = Y(l_t)_ - Yl_ if 0 <t <1
Yo - ¥, if ¢t =1

where Y,. denotes the left limit at u, O < u < 1.

(1.2) DEFINITION. Y is called an (F,H) reversible

senimartingale if

(1) Y 4is an F-semimartingale on [0,1]
(11) ¥ is a

I

-semimartingale on [0,1).
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Note that in the above definition ¥ need not be a semimartingale
on the closed interval [0,1]. By Stricker’'s theorem if Y 4is an
F-semimartingale it is also a semimartingale for its natural
filtration (i.e. the minimal filtration to which it is adapted), and

thus one can simply say Y 1s a reversible semimartingale if both

Y and Y are semimartingales with respect to their natural
filtrations.

¥e shall be primarily interested here in Lévy processes and we
make the convention that 2 will always denote a Lévy process. (A
Léevy process 2 on [0,1] is a process with stationary and
independent increments, and with 2, = 0 a.s..)

We let 2° denote the continuous local martingale part of 2
relative to 1ts natural filtration F. (We refer the reader to
Jacod (1979) or Dellacherie and Meyer (1982) for all unexplained
teams, notation, and "well known" results.) Then either 2° =0 or
2%/c 1is a standard Wiener process for some o > 0. Let F be the

natural filtration of 2.

(1.3) PROPOSITION. The Lévy process 2 is & reversible

semimartingale. Its continuous local martingale part 2° is an

(F,F) reversible semimartingale.

Proof. Z 4is clearly also a Lévy process, with the same law as -2;
thus it is a reversible semimartingale, since Lévy processes are
semimartingales (e.g. Jacod (1979), p. 63). It is well known that

&

for s < %, Zt - Zg is measurable with respect to the o-field

a(Zu—ZS; s <ug¢t). Thus (2°%° is again a Lévy process with



respect to F, and we deduce that 2° is an (F,F) reversible
semimartingale (indeed, it is a reversible martingale). Using that
¢(Z) = ¢(-2), where ¢(X) denotes the law of the process X on

[0,1], one could easily prove as well that (2%)” = (2)°. o

Next consider semimartingales of the form:

t

t
(1.4) X, = _f £(2g )4z, Y, = f £(z,_)az] ,
0 0

for a suitable (e.g. locally bounded) Borel function #£. These
semimartingales will not in general be (F,F) reversible since X
and ¥ are not even adapted to E. W¥e shall see later however that

they are adapted to the following filtrationm:

(1.5) G = cgt)te[o,ll denotes the smallest

complete (right continuous) filtration relative to which

Z is adapted and Z2, 1s ¢ -measurable.

Since 2 ZO_ZI— equals Z1 a.s8., this is clearly equivalent to

(1.6) is the smallest complete filtration relative to which

~

1 is @O—measurable.

D IR

is adapted and Z
For convenience we define as well:
1.7 G = (gt)te[o,ll denotes the smallest

complete (right continuous) filtration relative to which

Z 1is adapted and Z1 is go—measurable.



Our goal is to show that X and Y in (1.4) are (F,§)
reversible for as many functions f as possible. Clearly the first
step 1s to pfove that 2 itself is (F,G) - reversible. Since £Z
is also a Lévy process, by comparing (1.6) and (1.7), this amounts

to the following theorem, due to Tom Kurtz (1986).

(1.8) THEOREM (Rurtz). A Lévy process 2 is & G senmimartingale

on [0,1).

Actually it is possible to prove much more:

(1.9) THEOREM. Let Z be a Lévy process. Then every F

semimartingale is a G semimartingale on [0,1).

In the usual terminology (ec.f., e.g., Jeulin (1980)), the filtration
satisfies "Hypothesis (H')" on [0,1).

Returning to the processes X and Y of (1.4), we still need

an hypothesis on the function £:

(1.10) HYPOTHESIS. There is a right continuous function f of
finite variation on compacts such that the set

D={x: f(x) # £f(x)} 4is at most countable.

For ekample, every Borel function of finite variation on finite

intervals is of this description.



Our main results for Lévy processes are the following two
theorems. Our other primary result is Theorem (3.3) and 1its

consequences.

(1.11) THEOREM. Let 2 De a Lévy process and let f satisfy
t

(1.10). Then the process X, = f f(zs_)dzs is an (
0

)

=
[{ep]]

reversible semimartingale.

(1.12) THEOREM. Let 2 be & Lévy process, and let f satisfy

=
e

)

%
(1.10). Then the process Y, = I £(24_)dZg 4is an (
0

reversible semimartingale.

It is implicit in Theorem (1.12) that 2% is not identically =zero,
since otherwise the statement is void. Other results similar to
that of (1.11) where the process X is a stochastic integral with
respect to the jump measure of Z are given in paragraph four.

If elther of the semimartingales X or Y defined in (1.4)
are (g,g) reversible, then one can add a process A of finite
variation provided it is adapted to F, and also A is adapted to

Since we can consider the Lévy process Z as a Markov process,

[[epl}

ve shall see in paragraph three that the reversed process A of an

additive functional A of 2 is adapted to G§.
As a corollary of Theorem (1.11) and the above remark we then

obtain (for example):
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(1.13) COROLLARY. Let L be the local time at O of the Brownian

motion 2Z = W. Then the process

t t t
U, - f (W )aV + Ig(ws)dLs + Ih(Ws)ds
0 0 0

nen

is an (F,G) reversible semimartingale, for all Borel locally

bounded ¢ and h, and all functions f satisfying (1.10).

Corollary (1.13) is a special case of Theorem (6.2).

This paper is organized as follows. In paragraph two we prove
Theorems (1.8) and (1.9), and even slightly more. In paragraph
three we prove a general result (unrelated to Lévy processes) and
show how it yields simple proofs of Theorems (1.11) and (1.12) under
a supplementary hypothesis. Theorem (1.11) is proved in full
generality 1n paragraph four. In paragraph five we prove a theorem
that 1s useful for reversing purely discontinuous local martingales
with paths of infinite variation (Theorem (5.3)), and we then use it
to prove Theorem (1.12). In paragraph six we consider the Brownian
case and give proofs that are elementary in the sense that they do
not use Markov process theory or the results of Cinlar, Jacod,
Protter and Sharpe (1980). Our results are then used to give simple

interpretations of recent results of Haussmann, Pardoux, and Picard.



2. Expansion of Filtrations for Lévy Processes.

In this paragraph we establish results about the expansion of
filtrations that have an interest in their own right. All that is
needed for the time reversal results, however, is Theorem (1.8). A
simple proof of Theorem (1.8) alone is given following Comment
(2.18) for the convenience of the reader who is interested primarily
in time reversal.

For all facts about random measures and stochastic integrals
with respect to random measures we refer the reader to Jacod (1979).

Let p denote the jump measure of 2. That is:

(2.1) plo; dtxdx) = 2

€(s,AZ (Q))(dtxdx)
s>o,AZs(m)¢0 8

where AZs = Zs -2 the Jump of Z2 at time s. Since 2 is a

S_’
Lévy process, the F compensator of p is given by:
(2.2) v(w; dtxdx) = dteF(dx)

where F 1is a non-random measure on R which integrates the
function x k> min(xz,l). For every a > O we have a decomposition

for the Lévy process 2 as follows:

t

L = c -
(2.3) 2, bt + 2¢ + I I x(p - v)(dsxdx) + z AZSI{IAZS|>a}
0 Ix[<a - Deset

where ba e R, and the integral above is a stochastic integral.
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We introduce still another filtration, which is larger than G:

(2.4) H = (:th)tzo is the smallest complete filtration relative
to which Z 1s adapted, and Zg and
u(l0,11xA) = z lA(AZs) are ﬂo—measurable, for all

D«s1l
Borel sets A lying at at positive distance from O.

That H is larger than G (i.e., ¢, C #, for all t) is

easlly deduced from the following two facts:

(1) I n((0,11xdx)f(x) = z f(AZS) is # -measurable for all Borel
D«s(1l

functions £ vanishing on a neighborhood of O;

(ii) the integral on the right side of (2.3) is the limt in L2, as

n tends to «, of:

t

I j x(p - v)(dsxdx) = 2 Azsl } - tf xF(dx);

1
{=<]|AZ_]<a
o] %<|X|S& O«s(t n 8 %‘leﬁa

As a consequence Z1 is clearly ﬂo—measurable.

The main result of this paragraph is the following:

(2.5) THEOREM. Let 2 De a Lévy process. Then every

F
semimartingale is an H semimartinagale on [0,1), where H is as

defined in (2.4).

Since any H semimartingale which is adapted to G is also a

G semimartingale by Stricker'’'s theorem, this result yields Theorem
(1.9) and a fortiori Theorem (1.8).
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Ve begin with two preliminary results which have intrinsic
interest. The first one is due to Tom Kurtz (1986).

(2.86) THEOREM. Assume that the Lévy process 2 1is integrable

(i.e., E(IZtI) < o, for all t). Then

t
(2.7) M, =2, - I
0
and 2 is a G semimartingale on [0,1).

Z1 - Zs

—4—5 9s is a G martingale on [0,1),

Proof. Since 2 - M 1is of finite variation on every compact
subinterval of [0,1), the second claim follows from the first.
Let 0< s <t <1 Dbe rationals, with s = j/n and t = k/n.

Next set

The random variables Y, are i.i.d. and integrable. Therefore

E{Z, - zslz1 -2z} = Y

I
=
pural
&N
]
[
|

1}

|
B|K
It
[
N1
l-‘-'<
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_t -s

1 - s (Zl -2

)

S

The independence of the increments of Z yields E{Z, - Zslﬁs} -

. ' t -8
E{z, - 2|2, - 24}; thus E{2, - zsles} —s (%,

rationals 0 < s <« t ¢ 1. Since Zt - E(Zt) is an F martingale,

- Zs) for all

the random variables (Zt)ogt<1 are uniformly integrable, while the
paths of 2 are right continuous. We deduce that (2.8) holds for
all reals, O < s < %t ¢ 1.

Now fix s and t, 0< s <t < 1. Using first Fubini’'s

theorem for conditional expectations and second (2.8) yields:

t
- - - =1 -
E{M, - M [$ )} = E{z, 2|} I T - B2, - 2,[¢ )du
0
. _ t
_t -s _ _ 1 l -u _
1 -8 (zl Zs) I l1-ul--=s (Zl Zs)du
0
=0 . O

(2.9) THEOREM. Let 2 DYe a Lévy process.

(1) The process

t e _ 5o
(2.10) zg=zfc’—f L 8 gg
2 1-s

&

an H martingale on [0,1) with gquadratic variation

<ﬁc’éc> - 2% 2%,
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(11) The H compensator p of the jump measure p on [0,1) is

given by:

(2.11) p(u; dtxdx) = dt x u(w:l(f,%]xdx)

Proof. We indicate the dependence of the various fitrations on the

underlying process 2 by writing F(z), G(2), or H(2Z).

(1) sSince 2% is itself a Lévy process Theorem (2.6) implies that

z° is a G(z°) nartingale on [0,1). In this case G(z%) = m(z®),

and letting 2% c

=2 - 27 we have that H(Z) is the filtration
generated by H(z®) and H(z%). (That is, #(2), -

n#(z°%_ v #(2%)_.) Note that the filtrations H(z®) and u(z%)
s>t - -

are independent, whence 2° is also an H(Z) martingale on

[0,1)

(11) Let %o denote the class of Borel subsets of R 1lying at a

positive distance from 0. For A e ﬁo ve set:

N
I

g = #((0,t1 x &)

ds = u((0,t] x A) - p((0,%t) x A)

SE
>
"
X
ct >
|
Ot
ot
X
- fy
[
n| N
)

For all A e %, the processes (p((0,t] x A))0<t<1 are continuous
and adapted to H; thus the random measure p 1s H-predictable.

Therefore the statement (ii) is equivalent to the claim that for
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A

every A e #,, the process 2 is an H(Z) martingale on [0,1).

In other words, for all 0 < s <t < 1 1t suffices to prove that
(2.12) E((z} - 22UV} - o,

where U 1s bounded and y(z)s—measurable, and V 1s bounded and

B B,
1~ %5

Due to the independence of the increments of 2 the r.v. U

measurable with respect to a(Zg - Z:; p Be %o)
is independent of (Zé - z:)v, and thus it is enough to prove
(2.12) when U = 1. Further, by a monotone class argument it is

enough to consider V of the form:

n A A m B B
_ c _,C i_ i J _ J
VvV = f(Z1 Zs) |_| fi(Z1 ZS ) |_| gJ(Z1 ZS )
i=1 J=1
where £, £, gJ are all bounded Borel; where (Al’ oy An) is a
Borel partition of A; and where BJ € %o with BJ naAa=9.
B
Next observe that the processes z® and 2 J are independent
A Ay
of Z2° and 2 ~. Thus it is enough to prove (2.12) when U =1
and
n A A
v=TT¢£(2t-2h,
i*=1
i=1
n

with Ai as above. Since 2% = 2 Z ~, and since the processes

i=1
Ay
2 ‘are independent, we have in this case:
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cA A
E{(zt - zs)Uv}

n
~A ~A A A A A
- ) et -2 et -2 T we,d - 20
i=1 J#i’ISJSn
Finally, it suffices to show:
A A A A
o 1 o 1 i i
(2.13) E{(Zt - 24 )fi(z1 - 24 D} =0 .
Ay
At this stage we observe that 2 is an integrable Lévy process

(recall that A; 1lles away from 0), and hence by Theorem (2.6) we
have that 2 is a G(Z ™) martingale on [0,1). Since

Ay M Ay

1~ %4 1is ©(2 )s-measurable, (2.13) follows and the proof is

i

Z

complete. o

PROOF OF THEOREM (2.5). A is well known, it suffices to prove that
any square-integrable F-martingale M on [0,1) with ¥, =0,

and which is either continuous or purely discontinuous, is an
E-semimartingale on [0,1) (c.f. Dellacherie and Meyer (1982)).
Case (1): Let M be a continuous square-integrable F martingale

on [0,1] with Mo = 0. The representation theorem for martingales
t

of a Levy process implies that Mt = f Hsdzg for some predictable
2 .

process H such that
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1 1
(2.14) E{I H2d<Z°,Z°>S} - azE{I szs} < w
0
since <2%,2%, - 0%t for some o > 0 . But <2°,2% = 2% 2%,
t
and thus (2.14) yilelds that the stochastic integral Mt = I Hsdzg
' 0

is well-defined and is an H martingale on [0,1). Moreover if

¢ = 2% - 2%, then (2.10) together with (2.14) implies that the
t
Stieltjes integral Dt = I Hsts is well defined on [0,1).
0
It remains only to observe that

(2.18) M=M+D.

Equality (2.15) is clear if the paths of H are continuous, by

considering the Riemann-type approximations of the integrals

~

defining M, M, and D. To show (2.15) is general, note that we

can always find a sequence of continuous, adapted processes H®

~

converging to H in L2(0 x [0,1], P(de) ® o2dt). If M®, u®, DO
are defined analogously with H® instead of H, we have
¥® = ¥® + D®. But then a classical convergence theorem for

stochastic - as well as for Stieltjes - integrals implies that

, and D! 5 D all in Lz. Hence (2.15) holds

t £’
semimartingale on [0,1).

n “n -
Mt - Mt’ Mt - M

and M is an

= I~ 4

Case (11): Let M be a purely discontinuous square integrable F
martingale on [0,1) with M, = 0. Then there exists a predictable
function ¥ on 0 x [0,1) x R such that



1%

t
(2.16) M, - f f W(s,x)(n - v)(ds x dx)
R

where VW satisfies:
) 1

(2.17) E{I f W(s,x)%u(ds x dx)} = E{f I W(s,x)%dsF(dx)} < o ,
0 "R 0 'R

and where pu, v, and F are given in (2.1) and (2.2) (c.f. Jacod
(1979)).
Note that (2.17) implies that the following stochastic integral

is well-defined and gives and H martingale on [0,1):

t

M, - £ fmwcs.x)(u - p)(ds x ax) ,

wvhere p 1is as given in (2.11). For ne N we set:

t
M: = f { ¥V(s,x)(p - v)(ds x dx)
0 x|>%
R t
Mg = I { (s, x)(n - p)(ds x dx)
1
0 |x|>=

t
Ct = I { W(s,x)(p - v)(ds x dx)
0 |x

1
>3
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~

where M° = M° = ¢° = 0. These processes are all of finite

variation on [0,t], for all ¢ ¢ 1. Also M° = M® + cB; MNP

is
an F martingale on [0,1]; and M® is an H martingale on
[0,1). Furthermore a classical convergence theorem for random
measures implies that M: - Mt and ﬁ: - ﬁt in L2 as n tends

]

to ® . Therefore cg - C, in L®, vhere C, 4is defined to be

t

Mt - Mt‘ It remalns only to prove that C has paths of finite
variation on [0,t], all ¢t ¢« 1.
To this end, we observe that in view of (2.2) and (2.14), we

have
t
n n
2 - [ vas,
0

where

v2(0) ={ T ulos (5,1 x dx)W(o,s,x) -{ F(dx)W(o; §,%)
I 1
Xj> —

1
XI )E

et n > m > 0, and with the convention % = 40,

N:’m's(w) - 1T—5 {s<t}f f W(w,s,x)(u - v)(w; du x dx)

—(X(—
-m

Note that Ni'™'®(u) is the integral (with respect to p - ») of

the function:

n,m,s _ 1
(0,u,x) F> W (v,u,x) = T_:_§1{s<u}W(w s, x)l 1

|x|< }
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n,m,s

Therefore N is an F martingale, and

E{(v]° ™ 5)%)

1 .
E{f f(w“'m’s(u,x))zdupcdx)}
o R

- T—%—EE{I ¥(s,x)?F(ax)}
n m
By construction we also have N?,m,s = U: - Ug . Hence for ¢t < 1,
t t
E{I (o2 - vH%as) - f T—%§§E{f W(s,z)?F(ax)},
1 1
0 E‘lxléﬁ

which tends to O as n,m increase to «, by (2.17). We deduce

that U" converges to a limit U 4in L2(Q x [0,t], P(de) ® du),
t

and moreover obviously Ct = f Usds, which completes the proof. o
0

(2.18) COMMENT. Theorems (1.9) and (2.5) will not be used for the
time reversal results comprising the rest of this article. Theorem
(1.8), however, is fundamental. It is worth noting, therefore, that

it has a simple proof, based only on Theorem (2.6).

ELEMENTARY PROOF OF THEOREM (1.8). Let 2 be an arbitrary Lévy

1 .
process. Let Jt = 2 : Azsl{lAZ |>1}° the last term on the right
s

O¢s<t
side of (2.3) with a = 1. Set:
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Then Z' 1is an integrable Lévy process and hence is a G(Z')
semimartingale by Theorem (2.6). (Ve write G(Z') to indicate the
dependence of the filtration on the underlying process, as in the
proof of Theorem (2.9).) Moreover 2' and gl are independent,
hence G = G(2) 1is contained in the filtration K which is
generated by the two independent filtrations G(2') and g(al),
and it readily follows that 2' 1is a K semimartingale on [0,1).
It 1s therefore a G semimartingale on [0,1) as well, because of
Stricker’s theorem (c.f. e.g., Dellacherie and Meyer (1982), p.
248). Moreover since 2 has right continuous paths with left
limits we deduce that Jl has paths of finite variation on [O0,1]
and thus it is a G-semimartingale. Therefore 2Z = Z2' + Jl is a

G-semimartingale on [0,1]. x|

(2.19) COMMENT. In the case where the Lévy process is a Brownian
motion these results are not new. Theorem (1.8) for 2 & Brownian
motion is due to Its (1978) and of course holds on [0,1] and not
Just on [0,1). Theorem (1.9) for the Brownian case can be found

(along with many other interesting results) in Jeulin (1980) (p. 46
£f).

3. Reversal of Stochastic Integrals.

¥ith the notation of Definition (1.2), let Y be an (F,&)
reversible semimartingale. We also suppose given a process H with
cadlag paths such that:
(3.1) For all t, 0< t <1, H

is ¥, ang @t measurable;

t



el

(3.2) the quadratic covariation [H,Y] exists (as the limit in
probability of discrete approximations) and is of finite

variation.

(3.3) THEOREM. lLet H and Y be as given above with H

satisfying (3.1) and (3.2). Then the processes I[H,Y] and

t
X, = I H,_dY, are (F,G) reversible semimartingales. Moreover:
0
t
(3.4) £, + [E,Y]] - fnl_sd_ys
0
Proof. First note that the left continuous process Hy g 1s G
adapted by (3.1), and hence G predictable, so the stochastic
integral in (3.4) is well defined.
Fix ¢, 0 <t <1, and let T be a partition:
{1-t =85 < 8 < e+ <8 =1} of [1-t,1], chosen such that
AY, =0 a.s. for all 1 =1,2,-+-,n-1. (For a process V,
i
AV, = V,-V._ , the Jump at t.) Next we define
n-2
AT = H AY + H, (Y -Y_ ) + H (Y, -Y )
(1-t)-""1-¢ 12 Sy 784,71 84 Spo1 1 TS, 4
=0
n-1
(3.5) B' =-) H (Y -Y_ )
120 S1+1 Fi+1- Sy
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n-2
CT = AH, _AY. . + (H -H_ (Y ~Y_ )
1-%771-% 120 S1+41 S1° Sy41 T8y
+ (H, - H (Y, -X ).
1 Spq” 1 Spoq

By hypothesis (3.2) we have (limits are in probability):

lim  C" = [H,Y], - [H,Y] , + AH
mesh(r)-0

AY

1-t771-t

(3.6)

[B,¥1,_ - [H,Y) 0y 4y

-[H,Y];

By hypothesis (3.1) and the assumption that Y is (F.&)

reversible we know that C' is @t—measurable, hence [H,Y] is

[l

—-adapted. It is of finite variation by hypothesis. Therefore
[H,Y] is an (F.,G) reversible semimartingale.

To show X is also an (F,G) reversible semimartingale it
will suffice to show the validity of formula (3.4). To that end,

since H 1s cadlag we know that

~

T _ _ _ = —
(3.7) lim A7 = I By d¥ = X, - X¢q oy = K,

[1-%,1)

vhere the limit is in probability as mesh(r) tends to O.
Equation (3.7) is the Riemann approximation theorem for stochastic

integrals: (e.g. Dellacherie and Meyer (1982); alternatively it can



be shown directly by the dominated convergence theorem for
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stochastic integrals (cf. Jacod (1979), p. 5%7). Also, since

Y -Y - —(%,__ -%, ), analogously we have
B141- Si- 1-8; "1-8444
t
- .
(3.8) lim B" = I E,_af
0
From (3.5) we have that:
n-2
AT + BT + ¢ 2 H, _AY + Y H (Y -Y_ )
1-%771-% 1Zo Si141 Si41 B4

+ H, (Y, -Y ) - H (Y -Y )
1 1 S _ 2 (Si+1) Si_
n-2
= H, _AY. _ + H (AY -AY_ )
1-t""1-t 2 si+1 si+1 si
i=0
AH. (Y -Y ) — H.AY
1 sn_1 1 sn_1
However we chose T 80 that AYS =0 for 1 ¢ 1i ¢ n-1, and thus:
i
T T T
A" + B + C = (Hl—t - Hsl)AYl—t + AHI(st_l'- Yl_),

which clearly tends to 0O, since s

1 decreases to 1-t and s

n-1

increases to 1. Therefore formula (3.4) follows from (3.8), (3.7),

and (3.8).

o



24

(3.9) COMMENT. If ¥ is a G semimartingale on the closed

interval [0,1], the same proof shows that X is a

nex

semimartingale on [0,1].

(3.10) COMMENT. Let f be a @€ function, and suppose 2Z is a
Lévy process. If we take H = £(2), then Theorem (1.11) follows
trivially from Theorem (3.3); one need only check that (3.2) holds

which has been shown by Meyer (1976), p. 359. The same argument

establishes Theorem (1.12) whenever f is %1. In paragraph six we

apply Theorem (3.3) to stochastic differential equations.

4. Time Reversal and Additive Functionals.

In this paragraph we prove Theorem (1.11). It is convenient
(and involves no loss of generality) to use the Dynkin realization
for our Lévy process Z. That is, we take 2 to be the path space
Q = b([0,»),R); 2 +to be the canonical process Zt(“) = w(t) for

o € Q; F to be the canonical filtration; to be the

(64450
canonical shifts (so that Zt+s = Zt ° es); and we assume given a

family of measures (Px)xelR under which 2 1is a Levy process with

ZO = X, P* - a.s. Therefore E = (Q,yt;et.zt,Px) is a strong

Markov process. These are the standard notational conventions of

Blumenthal and Getoor (1968). Note that the measure P of Theorems

0

(1.11) and (1.12) is the measure P restricted to % in this

1l
context.

An adapted, cadlag process A 1is an additive functional (AF)

1]

of = 1if At+s_= At + As ° Bt a.s. all s,t > 0, where the null
set does not depend on s or t. ©Note that we drop the traditional

requirement that the paths of A be increasing.
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For a given process Y, let Y be as defined in (1.1), and
let G be as defined in (1.5).

(4.1) LEMMA. If A 1is an additive functional of =, then

>R
&

adapted to

1o

Proof. It suffices to prove that A is ¢, measurable. Since

-

A 1s additive we have Ap_ = A _©° 6, ,; also A is

-
g, _measurable, s0 it is enough to show that eiit(yt) C é.. Since

F was defined to be minimal, it is enough to show that

s ° 914 = 27 ¢4 18 ¢ -measurable for all s < t. But
2

Z
2y t+s = %(4-g)- * %9 — Zg» and also %5 =0, P-a.s. Since G is
p

-complete, we are done. o

PROOF OF THEOREM (1.11). First we observe that 2 - 2
t

and hence X, = f £(2y )42, (cf(1.4)) is also an AF of E. (See
0

Cinlar, Jacod, Protter and Sharpe (1980) for proofs of this and

0 is an AF,

related statements.)

Ve next recall that if 2 is a pure step process (that is, a
compound Poisson process) then its paths are of finite variation on
[0,1]. Therefore X and X are also of finite variation on [0,1]
and the results follows from Lemma (4.1). Therefore it remains to
consider the case where 2 is not a pure step process.

Let f be the right continuous function of finite variation on

t
compacts associated to £ in (1.10), and let X, = I f(ZS_)dZs .
0
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Ve will first prove that X is an (F,G) reversible
semimartingale. Note that E i1s the right derivative of a function
F which 1s the difference of two convex functions. Let 1 be the
Radon (signed) measure which is the derivative of %; taken in the
generalized functions sense.

Next we recall the construction of the local time L% of the

F senmimartingale 2 at a level a. (This is the gemimartingale

local time as introduced by Meyer (1976) p. 365; it is not the

Markov local time as found for example in Blumenthal and Getoor

(1968). The latter need not even exist.) Set:

-1 if x < O
sign |x| =
1l if x> 0O .
Then
t
a _
Ly = |zt—a| - IZO-aI - I sign(2,_-a)d(2-24)
0

- ) tlzgal-1z,_-a| - sign(z_-a)AzZ )
s<t

defines the local time. As is well known there exists a jointly
measurable version, and we use this one by convention. Since

a
IZt—aI - IZO—aI is an AF, L

is also an AF, which is indeed
continuous and nondecreasing in t. Then the Meyer-Tanaka-Ito

change of variables formula yields:
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(4.2) F(z,) - F(Z,) = X, + & f 120 (da)

+ Y (F(2)-F(2, )-2(Z )42 )
<t

Denote by St the second two terms on the right side of (4.2).
Then S, 1s an AF with paths of finite variation on [0,1]; thus
§ is a G semimartingale by Lemma (4.1). Moreover if we set

Ve = F(Zt)—F(ZO) for t € (0,1) we have
v, = F(Zey ¢y ) - F(2y ) = F(2,-2,) - F(-Z)) ,

P-a.s., since 25, =0 a.s. However by Theorem (1.8) we know that

semimartingale on [0,1). Therefore V 1is also a

[N
(/]
]

[opl

G semimartingale on [0,1) since F is the difference of convex

functions. Equation (4.2) then yields that X is a

[l

semimartingale on [0,1), and thus X is an (F,G) reversible

semimartingale.
In order to finish the proof of the theorem it is then enough

to show that X, = X, a.s. for all t € [0,1]. That is, letting

D={x: £f(x) # £(x)}, 1t is enough to prove that

t

(4.3) f 1,(2, )aZ_ = 0 a.s., 0t < 1.
0

Suppose first that:
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1
(2.4) f 1,(z)ds = 0 a.s.
0

Recalling (2.3), for every a > O the process 2 has the

decomposition:

a,

-1
(4.5) 2, = M’ + bat + Jt .

t t

. a _ . . a
wvhere: Jt = 2 Azsl{IAZ |>a} * ba € R; and M is a martingale
s .
s<t
such that (Ma,Ma‘)t - Kat for some constant Ka . Then (4.4)

implies:

t %
E{(I 1D(zs_)dM:)2} E{I 15(2 dau®, u% )
0 0

t
KaE{I 1,(2__)ds)
0

a a
Thus if Yt = Mt + bat we obtain

t
8
(4.6) f 15(2, )aY% =0 a.s., 0¢ %< 1.
0 .

Moreover, since 1lim J2 =0, O < t < 1, combining this with (4.6),
-0 .

and using the decomposition (4.5), yields (4.3).
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Therefore 1t remains only to prove (4.4). Let V denote the

l-potential of the Markov process E at x = 0. That is,
t
-8
va) - 2tf o781, (z)as).
0]

By hypothesis, D 4is at most countable, so (4.4) will follow from

the property:
(2.7) v({x}) = 0, all =x € R.

To prove (4.7) we will use a result of Kesten (1969) (see also
Bretagnolle (1971)). Let T, = inf{t > O : 2y = x} be the hitting
time of {x}, and let C = {x : P(Tx < ©) > 0}. Since by
hypothesis Z i1s not a compound Poisson process, the result of

Kesten states that we are in one of the following four cases:
(4.8) Either : C =¢; C =R ;

Applying the strong Markov property at time Tx , and using that

ZT =X on {'I'x <« w}, we have:

v({z}) - E°{f e™"1,,,(2)as)
Tx
o —Tx y -t
(2.9) - E%e f e %1, y(2, o 8y dat)
0 x
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T

- E%{e x}Ex{I et 114 (244t}
0

However the spatial homogeneity of the Lévy process 2 implies that

P*(2, - x € A) = P*(2, € A). Hence (4.9) yields:

=T
(4.10) v({x}) = E%{e *} v({o}).

Assuming that V({0}) > O, we have 0 € C and also V({x}) > O

for all x € C by (4.10) and because Eo{e_Tx} >» 0 for all x € C.
Then (4.8) implies that C 1s uncountable; +this in turn implies
the finite measure V has uncountably many atoms, which is
impossible. Thus we must have V({0}) = 0, and hence (4.7)

follows from (4.10) and the theorem is proved. O

(4.11) COMMENT. Let

iz

be the filtration associated to the Lévy
process %2 by (2.4). Due to Theorem (2.5), we can obtain more than
Theorem (1.11): namely that X is an (F,H)-reversible
semimargingale. Ve state this as a theorem in the next paragraph

(Theorem (5.16)).

5. Time Reversal and Enlargement of Filtratioms.
In this paragraph we prove Theorem (1.12). We begin however
with a theorem that has intrinsic interest.

We need an additional hypothesis.
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(5.1) HYPOTHESIS. For every t, O < t ¢ 1, the law of the random
variable Zt has a density Pt (with respect to Lebesgue measure).

Moreover sup pt(y) « o for all ne€N, e > O.
|yl<n, e<t<1

(5.2) COMMENT. If 2% 4is not identically zero then (5.1) holds.

(5.3) THEOREM. Assume Hypothesis (5.1) holds. Let k be a Borel
2

function on R

k(x,y)
(1) x 1is bounded and sup —T—TX— <« » for all n € N
|x|<n, |yl 1Y

(i1) for each y, |y| < 1, the function k(-,y) 4is either

such that:

right continuous or left continuous, and it admits a Radon

measure 7 as its generalized function sense derivative:

y
moreover there is a positive Radon measure = such that

Inyl < lyln, all |y| < 1, where |ny| denotes the

total variation measure of Ny Then the F martingale

t

(5.4) v, =I Jk(zs_,y)(u—v)(dedy)
0 R

is an (F,B3) reversible semimartingale.

Proof. (a) Let p denote the jump measure of the reversed

process Z. Since (%) = ¢(-2), the F-compensator (where F 1is

the natural filtration of Z) of pn is clearly
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(5.5) | 5(dtxdy) = dt ® F(dy)

where F is the symmetric analog of F given in (2.2). By virtue
of Hypothesis (5.1) and Jacod (1985), pp. 28-9, there is a
nonnegative g—predictable function U on Q x [0,1] x R such that

the G compensator of 5 is:

(5.6) T(w;dtxdy) = Uw,t,y)o(dtxdy) ,
and
t
(5.7) f f |UCo,8,5) - 1||y|5(dsxdy) < o
0 |yl<1

for all +t < 1, w € Q.

(b) Next we set for n € N:

(5.8) o= | E(Zg_,y) (u-v)(dsxdy)
0 |y|»1/n

This 1s an AF with paths of finite variation (cf ginlar, Jacod,
Protter and Sharpe (1980)), and thus it is an (F,G) reversible
semimartingale by Lemma (4.1). Also since 2Z is a Levy process

AZl = 0 a.s. and we have

t t

7 - f f k(Z(y_gy-»¥Iv(dsxdy) - f I k(Z2¢1_gy_»¥Iu(dsxdy)
0 |yl>1/n 0 "]y|>1l/n
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(5.9)

- f f K(Z,__.-y)5 (dsxdy) - f I K(Z,_ +y.-y)i(dsxdy)
0 |y|»1/n 0 |yl>1l/n

Since k is bounded, both V2 and V% have bounded Jumps; in

n

particular V¥~ is a special semimartingale, and its G-canonical

decomposition

t 3
- K(2Z,_+y,-y) (i-7) (dsxdy)
0 |y|>l/n
t
(5.10)  &D - f I (K2, _,-y)-k(Z,__+y,-y)U(s, ) }5 (dsxdy)
0 |yl>1l/n
= ﬁ: + 6:
where
t
-] xe_gv.-90-0y)15 @sxay)
0 " lyl>:
(5.11)
t
62 = I ds I {k(Zl_s’y) - k(2;_,-y,y)1F(dy)

0 lyl>1/n
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(c) The next step is to let n increase to w=. Using
hypothesis (1), a classical convergence theorem for stochastic

integrals with respect to random measures yields that V: -V in

t

-~

probability, uniformly in +t. Therefore we also have Vg - Vt

probability for all t, O ¢ t < 1. Analogously by the same theorem

in

ﬁg - ﬁt in probability, where
t
i, - - j [ (2, _+y,-y) (i-7) (dsxdy)
R

Using hypothesis (i) again together with (5.7) and (5.11) we have
ﬁ: » B, in probability, where
t

ﬁt ) f f k(zl—s+y"Y)[l—U(s.YDJE(dedy) ,
R .

which is a process with paths of finite variation. We can thus

% t " Mt - Bt' It

remalns only to prove that ét is a continuous process of finite

deduce that é: converges in probability to &, = ¥

variation, since that will imply that ¥V is a semimartingale.
(d) Actually we will show that:

(5.123) D, I ds f Ik(Zl_s'y) - k(Zl_s—y,y)lF(dy) « ©og.s.
0 lyl<1

If (5.12) holds we can use Lebesgue's dominated convergence theorem

to0 conclude
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t
ét - I ds I {x(2,_¢»¥) - k(2,_4-y,y)}F(ay) ,
0o R

and ¢ will have continuous paths of finite variation. To show

(5.12), define K = {|zs|gn, all s<l}. Then

t
0 lyl<1
t .
= I ds I F(dy) py_g(Wk(u,y) - k(u-y,y)|du
0 lyl<a |ul<n

wvhere p is the density defined in Hypothesis (5.1). Next we use
t

hypothesis (ii) of the theorem to obtain for lyl ¢ 1:

|k(u,y) - k(u-y,¥)]| ¢ I Iny|(dv) < lyl f n(dav)
|u-v|<y |u-v|[<y

and thus, if 12 =

% sup ps(y), it follows that:
|yl<n,sel1-t,1]

t
E[lp D] I ds I F(dy) { n(av) |y| I py_g(udds
o 0 ly|<1 v|<n+l |u-v|<y

IN

tL€+2n([n—1,n+1]) I F(ay)|yl? ¢« »
lyl<1

IN

Since U Kn = ), we have established (5.12), and thus the theorem
' n

as well. |
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(5.13) COMMENT. 1In (ii) of the previous theorem, the assumption
that k(-,y) is either right continuous or left continuous is
clearly too strong a requirement. 1Indeed the property that it
admits a Radon measure for its derivative implies that at each point
x it has a right and left limit, say k+(x,y) and k_(x,y); thus
it would be enough to assume only that k(x,y) 1lies in the interval

having k (x,y) and k_(x,y) as its endpoints.

(5.14) COMMENT. As in Comment (4.11), let g be the filtration
assocliated to the Lévy process Z by (2.4). Then V is an (F,#)
reversible semimartingale.

In fact, we could obtain this result directly by using the
method of paragraph two instead of the results of Jacod (1985).
More precisely let p be the H compensator of i on [0,1).

Then ve define H" and ¥ as above, using ;5 instead of +, 80

that #° and ¥ are H 1local martingales on [0,1). We still
have

¥t - ®® o+ AR,
and

A" - B 4+ &%,

with &% unchanged but with B given by (instead of (5.11):

%
ﬁ§ - f f 1k(zl_s + y,-y)(v - p)(ds x dy)
0 IYI’E
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t
=N =N
Thus Bt - I Usds, with
0 A
~N 1 -~
Us - f . T—:—gu((s,ll X dy)k(zl_s+y,—y) - f 1F(dy)k(zl_s+y,—y)
IYI’— |y|>—
n n

and, exactly as in the proof of (2.5), we deduce from assumption (i)

t
that ﬁg coverges to ﬁt = I ﬁsds in 1® for a suitable process
0]
Uy
The rest of the proof remains unchanged. Observe however that,
although we do not use the results of Jacod (1985) with this method,
we are unable to remove Hypothesis (5.1), which seems necessary to
obtain that GO converges to a process with paths of finite

variation.

PROOF OF THEOREM (1.12). Exactly as in the proof of Theorem (1.11),
t

it is enough to show that the process Y, = I f(Zs_)dzg is an
0

(E’

([l

) reversible semimartingale, where f is the function
associated to £ in (1.10). In other words we can and do assume

that f 41is a right continuous function of finite variation on

compacts. We let

t t -
. _ C
X, =f £(z, )aZg; Y, _f £(z, )z’
0 0

as in (1.4).



38

By Theorem (1.11) we know that X 4is an (F,G) reversible
semimartingale. Also since z® 1is not identically zero, by Comment
(5.2) we have that Hypothesis (5.1) holds.

Consider next the decomposition (4.85) of 2:

a

2, = M* + bt + Jy , with a = 1. The martingale M, can be

t t
written as:

1
t

t
1 c
My = 2 + I { y(u-v)(ds x dy).
0 [yl

1
£ = blt + Jt

(4.5)), we have:

Hence if A (the last two terms on the right side of

t t
(5.15) X - Y + f f £(2__)y(u-v)(dyxds) + I £z, )dA,
0 |yl«1 0
t
Then C, = I f(zs_)dAs is an AF of E with paths of finite
0

variation, and hence it is an (F,G) reversible semimartingale by
Lemma (4.1). It remains only to show that the middle term on the
right side of (5.15) is (F,G) reversible.

To this end we use Theorem (5.3), with k(x,y) = £f(x)y. Note
that such a k clearly satisfles the hypotheses (5.3) (1), (ii),

and the proof is complete. o
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Actually, due to Lemma (4.1) and Theorem (2.5), we can obtain
more than Theorems (1.11) and (1.12). Let H be the filtration

associated to the Lévy process Z by (2.4).

(5.16) THEOREM. let 2 Dbe a lLévy process and let f£f,g satsify

(1.10). Let A be an additive functional of 2. If

t t
c
U, - I f(Zs_)dZs + I g(Zs_)dZs + A,
0 0]

then U is an (F,H) reversible semimartingale.

Proof. By Lemma (4.1), we know that A 1is

nGx

-adapted, and it has
paths of finite variation. Since it 2 @t (as shown in the remark

following (2.4)), we have that & is an
t t
= = c
Letting X, = I £(24_ )4z, and Y, I g(Zs_)dZs as in (1.4), we
0 0
have by Theorems (1.11) and (1.12) that ¥ and ¥ are G

=11

semimartingale.

semimartingales. but then it follows from Theorem (2.5) that X

and ¥ are each semimartingales. Finally it suffices to note

~

that 0 =X + ¥ +

> i

to complete the proof.

o

6. The Brownian Case and Applications
In the Brownian case the situation is particularly simple,
since any additive functional A of a standard Brownian motion B

has a representation
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(6.1) A = I Lip(dx)
R

for some signed measure u, where L: is a (Jointly continuous)
version of the local times of B at levels x. The relation (6.1)
allows us to use only martingale stochastic integration theory, and
in particular we can avoid Lemma (4.1). In the Brownian case
Theorem (1.8) was first proved by Itse (1978) on [0,1]. Theorems

(1.11) and (1.12) become in this case:

(6.2) THEOREM. Let £ satisfy (1.10). Suppose

%
) X
v, - f £(By) dB, + f 15 (ax)
0 R

vhere p is a signed measure on R. Then V is an (F,

({9}
()

reversible semimartingale.

Proof. Although the proof is a corollary of Theorem (1.11) and
Lemma (4.1) (with 2 = B), we give an autonomous proof.

Let § and D be associated with £ as in (1.10). It is
well known that B spends &a.s. 3zero time in the at most countable

set D (one need not resort to Kesten’'s theorem here!). Therefore

t t
(| 1,8a8)?) - Bl] 1,8)as) - 0
0] o)
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t t

and so f f(Bs)st = I f(Bs)st a.s. Hence it is no restriction
0] o
to assume that f itself is right continuous and of finite

varliation on compacts.

Note that £ = Fl» the right derivative of & function F
which is the difference of two convex functions. Letting = be the
(generalized function sense) derivative of £, the Meyer-Tanaka-Ité

formula yields:

t
(6.3) F(B,) - F(By) = f £(Bg) dB + % I L:n(da)
0 R

Letting U, = F(Bt) - F(BO), an F semimartingale, we have

~

U= F(B(y_4y) - F(By) = F(B; - B)) - F(-B)),

and since B, - B, 1is a semimartingale by (1.8), we have that

e

t 1
¥ is one as well.

It remains to show that A, = I qu(dx) is (F, &
R

reversible. Since it has continuous paths of finite variation,

however, it suffices to show that At is @t - measurable. Ve do

this using local time theory instead of using Lemma (4.1).

First note that B, = B - B, is an

nt=de

t 1-% 1 - Brownian motion.
X

Let (, Dbe its (Jjointly continuous) local time. Then well known
results about Brownian local time (see, e.g., Yor (19v8) p. 32)

state:
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e-0

where the exceptional set

But then:

and:
X b4
Lig ~ Iy =

Combining this with (6.4)

>

t

0
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. ,
£ - lim = I 1[x,x+e](Bs) ds a.s.,

can be taken independent of x and t.

- A = I(Lf_t - LPu(ax);

1
1
iig T e I 1[x,x+e](Bs) ds
1-t
1
1
lin - = I lix-B ,x-B +e1(Bg ~ By) ds
e-0 1-t 1 1
t
1 ~
l1im - L f 1. o (B.) du
=50 € J [x Bl,x Bl+e] u
x-B
1
_Lt
yields:

x—B1
= - f ty Tn(dx);
R

Since (i are the local times of B, they are

thus A 1is § - adapted.

F - adapted, and
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Note that since one can take pn(dx) = g(x)e{o}(dx) + h(x) dx, where
€10} is point mass at o0, Corollary (1.12) is a special case of
Theorem (6.2).

An interesting application of these results is to stochastic
differential equations. Here our general result, Theorem (3.3), is
particularly useful. Let B be a Brownian motion and X the

solution of:

t t
(6.5) X, = X, + f o(s, ) dBy + f b(s, X)) ds .
: 0 )

The filtration F is that of B, and we define:

(6.6) d = (yt)te[o,ll denotes the smallest complete (right
continuous) filtration relative to which B is adapted

and X, is §0 - measurable.

It is a well known result in the theo:y of flows (see Kunita
(1984), p. 227) that 4f o and b 4in (6.5) are of class €° with
derivatives which are globally HSlder continuous (of any positive
index), then the flow x - ¢(s,t;X) of equation (6.5) is a
wl—diffeomorphism. (Here ¢(s,t;x) represents the value of X,
when xs =x and s ¢ t.) Moreover ¢(s,t;x) 4is measurable with
respect to a(Br—Bs; s {r<t). If furthermore X, has a density
with respect to Lebesgue measure for all t € [0,1], we deduce that

the conditional law of Xl = ¢(t,1;xt) with respect to
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o(B,-B, : t {r 1) = a(ﬁu; 0 < u¢ 1-t) also has a density. 1Imn
this case the results of Jacod (1985) imply that B is a J
semimartingale on [0,1), and therefore by Theorem (3.3) we have
that ¥ is a J semimartingale on [0,1). Haussmann and Pardoux
(1985) have studied this type of question for systems and they
obtained sufficient conditions for Xt , t € (0,1] to have a
density. (See also Pardoux (1985).).

By combining a Girsanov technique (as in Protter (1986)) with

the above, one can consider a more general stochastic differential

equation of the form:

t t
(6.7) Yt = YO + I h_ ds + f o(s, Ys) st
0] 0

where h 1s F - adapted and jointly measurable. If, for example,

h 1is bounded and o 1s bounded away from O, then the process

1
(6.8) Wt = Bt - J\ U_CS.—YS)hS ds

is an F - Brownian motion for a probability Q@ equivalent to P,

and the process Y of (6.7) is a solution of

t
Yt = YO + I o(s, Ys) dWs;
0

the preceding discussion shows that ¥ is then a reversible

1

semimartingale under Q, if o is at least <« with Holder

continuous derivatives and also if Yt has a density for all
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t € (0,1]1. Since Q 4is equivalent to P, ¥ is also a
P - semimartingale. Picard (1986) has used basically this approach
for the case of systems, which of course is technically more

complicated.
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