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1. INTRODUCTION

A p-dimensional (p > 3) random column vector X = (z,...,%,)’ is observed, where X
has a multivariate normal distribution with mean vector u and positive definite covariance
matrix Y. Also observed is the p X p random matrix W = ((w;;)), which is statistically
independent of X and has a Wishart distribution with n degrees of freedom (n>p+1)
and expected value E(W) = nX. It is desired to estimate y by an estimator § = 6(X, W)
under the quadratic loss.

L(8; 1, D) = [x(QE)] (6 — )/ Q(6 — ), (L1)

where @ is a known positive-definite matrix and tr(A) stands for the trace of the matrix
A.

The above problem is the canonical form of the situation (see, for example, Anderson
1984, Chapter 3) where i.i.d. observations Y;,Y3,...Yn are taken from a p-dimensional
normal population with mean vector 4 and covariance matrix 1, and the data are reduced

N N

by sufficiency to X = N~ Y V;, W =N~ ¥ (V; — X)(Y; — X)'. Here, & = N~1¢,
=~ :

n=N-1.

1= =1

Regardless of whether or not X is known, and for any Q, the estimator X is minimax
for p. However, beginning with the landmark paper of Stein (1956), a large body of
research has been devoted to establishing broad classes of estimators which dominate X
in risk, often substantially. For the most part, such research has concentrated upon cases
where ¥ is known (in which case W is not needed), or known up to a positive scalar
multiple o2.

The case of completely unknown ¥ is more complex, and thus has been more resistant
to solution. Berger et al (1977), Gleser (1979) and Berger and Haff (1983) have succeeded
in developing estimators which dominate X in risk. However, only Berger and Haff (1983)
have been able to provide a completely analytic proof, and this only for a subset of the
class of estimators which they considered.

In Gleser (1986), a new method is given which yields (for the first time in the unknown-
¥ context) an unbiased estimator of risk for certain classes of estimators. The present
companion paper applies this method to construct two fairly broad classes of estimator
which dominate X in risk. In both cases, completely analytic proofs of risk dominance
against the estimator X are obtained.



In Section 2 the results in Gleser (1986) are briefly described. Section 3 gives risk-
domination results (versus X) for a class of estimators closely related to the estimators
considered by Berger and Haff (1983). Section 4 gives risk-domination results for a class
of estimators motivated by estimators constructed by Berger (1976) in the known-X case.

2. UNBIASED ESTIMATOR OF RISK

To reduce notational complexity, in the remainder of this paper it is assumed that
Q=1I, (2.1)

where I, is the p-dimensional identity matrix. Estimators for the general Q case can be
obtained from estimators for the case (2.1) as follows:

§*(X,W) = (T")~! §(T'X, T'WT) (2.2)

where T is any solution of @ = T'T”. An estimator §(X, W) dominates X in risk in the case
(2.1) if and only if 6*(X, W) defined by (2.2) dominates X in risk when the loss function
(1.1) is defined by general Q.

Let
R(X,W) = (h1(X, W), he(X,W),... v hp (X, W))

be a p-dimensional vector-valued function of X and W. Let

Vh(X,W) = ((%;;_W)> ) (2.3)

and let r(X,W) = (r1(X,W),...,r,(X,W))’ be defined by

a(W h(X’ W))t + lz a(W h(X’ W)).‘I

(X, W) =
r (X ) a‘w,',' 2 aw.-,-

i=1,2,...,p. (2.4)

?

J#i

It is assumed that h(X, W) is sufficiently regular as a function of X and W that the partial
derivatives in (2.3) and (2.4) exist almost everywhere (in the product space of X and
W), and further that h(X,W) permits certain integration-by-parts identities for expected
values over X and W to hold (see Gleser (1986) for further details).

THEOREM 1. Let

HX, W) = h(X, W) + n—_i—_l- r(X,W). (2.5)

Then if 6(X,W) = X — t(X,W) has finite risk,
tr(S)[R(6: 1 5) — B(X; 4, D)) = E[M(X, W)
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where .

M(X,W) = (X, W)t(X,W) — — >

——— tr(W Vh(X,W)), 2.6
o (¥ VR(X, 7)) (29)
and R(6;u,%) = E[L(6(X,W); u, T)| s the risk function for the estimator § = §(X,W).

Theorem 1 is proven in Gleser (1986). Note that the unbiased estimator M (X, W)
of risk difference obtained in Theorem 1 is for the estimator X — ¢(X, W) rather than for
X — h(X,W). Use of Theorem 1 thus yields risk dominance proofs for modifications of
an estimator X — h(X,W), rather than the estimator itself. As will be seen in Section 3,
this is not a severe handicap. Indeed, the modifications made to an estimator often are
intuitively reasonable (and can even be thought of as improvements).

3. A CLASS OF MODIFIED ESTIMATORS
Berger and Haff (1983) consider estimators for x of the form

§(X,W)=X—ca(W) s(XW XWX, (3.1)

where ¢ > 0, the scalar function s(-) maps [0, 00) into [0,00) and is continuous and piece-
wise differentiable (with derivative s(!)(z) = ds(z)/dz), and the scalar function a(W) is
everywhere nonnegative, continuous, and differentiable (with respect to the elements of
W). The results given in this section concern modifications of this class of estimators.

Note: In comparing the results of the present paper with those of Berger and Haff
(1983), note that here it is assumed that @ = I, so that the transformation (2.2) is needed

to transform (3.1) into the general-Q estimators of Berger and Haff. Further, our s(-) is
their h(-). '

For notational convenience let
v=XWlX,

Let
h(X,W) =c a(W)s(X'WIX)W1X = ¢ a(W)s(v)W ' X.
Then
tr(WVR(X,W)) = ¢ a(W)[2vs™) (v) + ps(v)]. (3.3)

Recall that |

ab . . . - . .
Gw® _ { —wPwI® — Wi, §#£j,

3’w,;_7' i

. 3.4
—ww ’ t=17, ( )

where W—1 = ((w?)). Using (2.4), (3.3), the chain rule and straightforward algebra,

r(X,W) = (ri(X,W),...,rp (X, W))
= ca(W)[s(v)U(X)X — vsMD ()W 1 X], (3.5)
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where

9_!9%@, i=j,
UW) = (s W), W)= oo > 1= (3.6)
2T ow; 1 £ 7.

It thus follows from (2.5) and (3.5) that

HX, W) = ca(W)[(s(v) n_—z_—Ivs(l)(v))W_lX+ #s(v)U(W)X}. (3.7)

LEMMA 1. For any two p-dimensional column vectors z, y(z # 0) and any two scalars
C1,C2, '

y\ 3]
(e1z + c2y)’ (c1z + cay) < 17'3{|01| + |ez| (%) } :

Proof. See Gleser (1986). m|
LEMMA 2. Assume that

U'(WYUW) <W~2, (3.8)
in the sense of the ordering of semi-definiteness for matrices. Assume also that
Amin (W)
w)y< am: - 3.9
a(W) < JHLEL, (39)
where A . (A) denotes the smallest characteristic root of a symmetric matrix A. Then

c2a(W)

#(X, W)X, W) < (m> v {|s(v) - n—_f)—_—lvs(l)(bﬂ + n_-,zTIs(”)}z'

Proof. Tt follows from (3.8) that X'U'(W)U(W)X < X'W~2X. Also note that for
any X '
X'w-lx

Amin (W)
From these two facts, (3.7), (3.9), and Lemma 1 (with z = W~1X,y = U(W)X), the
assertion of Lemma 2 follows. O

If the risk of §(X,W) = X — t(X,W) is finite, it follows from Theorem 1 that

X'w-2ix <

M(X,W) = (X, W)t(X, W) — n—_i___l (W Vh(X,W))

is an unbiased estimator of the weighted risk difference
tr(2)[R(6; 1, B) — R(X; u, T)].
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Consequently, for §(X,W) to dominate X in risk it is sufficient that M(X,W) < 0. How-
ever, it follows from (3.3) and Lemma 2 that

mixw) < (20 ) g0, (3.10)
where
g(v) = evf|s(v) - — 08V (0)] + ———s(v))?
- 2[2vs(1)(v) + ps(v)]. (3.11)

THEOREM 2. If §(X,W) = X —t(X,W) has finite risk, the assumptions (3.8), (3.9)
hold, and further :
g(v) <0, all v>0,

then §(X,W) dominates X in risk.

Proof. Since it is given that ¢ > 0,a(W) > 0, and n — p — 1 > 0, the assertion of
Theorem 2 is a direct consequence of Theorem 1 and (3.10). O

COROLLARY 1. Suppose that (W) satisfies (3.8), (3.9) and that s(v) satisfies “Con-
dition h” of Berger and Haff (1983); that is, s(v) is continuous and piecewise differentiable
and for all v,

0<uws(v) <1, (3.12q)
s(v) + vsD(v) > 0, (3.12b)
sWw) <o, (3.12¢).
Then 6(X,W) dominates X in risk if §(X, W) has finite risk and
0<c<2(p—2) [’—'L_lr
n—p+3

Proof. It follows from (3.11) and (3.12c¢) that

g(v) = pyzl(n =P+ 1)s(v) - 205 (v)]? ~ 2[205() (v) + ps(v)].

(n—p—
However, (3.12b) implies that

v n— sv—'vs(l)vz— — 4)8S(V
S mopo )z TP H 1)s(v) — 208 (0)]" - 2(p — 2)s(v)

-0 {25 o2 ()] -0}

5

g9(v) <




Next, apply (3.12a) to obtain

9(v) < s(v) {(— [(n—p+ 1) -2 [(()g)]] i 2(p - z)} .

n—p—1)2
However
: 2vs(1)(v) 2 2 vs(V)(v) vs(1(v) 2
[(n—-p-i—l— W] =m—p+1)2—4(n—p+1) ) 14 [ ) ]
S(r-p+1)2+4(n—p+1)+4
= (n —D + 3)21
since by (3.12b) and (3.12c),
—psD;
o<
Thus ( )2
cin—p+3
< L 9(p—2)}.
o(6) < s(o) { TZLED 2 9)]
The conclusion of Corollary 1 is now an immediate consequence of Theorem 2. O

Remark 1. The function s(v) = v™! satisfies the conditions of Corollary 1. This
special case is also treated in Gleser {1986, Section 3].

Remark 2. Condition (3.9) on (W) in this paper is identical to (i) of Berger and
Haff’s (1983) “Condition o”. It is not clear how (3.8) in this paper relates to (ii) and (iv)
of “Condition «” in Berger and Haff (1983); however, the examples

1 1

W)= o= mn), o) = oy

of possible choices for o(W) mentioned in Berger and Haff (1983) satisfy (3.8) and (3.9)
and also “Condition o”.

The main results of Berger and Haff (1983) and Theorem 2 and Corollary 1 of this
paper are each concerned with finding bounds on a constant ¢ which allow estimators of the
form X — ¢f(X,W) to dominate X in risk. However, the classes of estimators considered
are not the same. In Berger and Haff (1983), f(X,W) has the form

(X, W) = a(W)s(X'W1X)W1X, (3.13)

while in the present paper this function is modified as follows:

2

F(X,W) = a(W)[s(X"W1X) - m(X'W—IX)s(I)(X'W-IX)]W—IX
2 har—1
+ ma(W)s(X W-lX)U(W)X, (3.14)



where U(W) is defined from (W) by (3.6).

Nevertheless, these two classes are closely related. This is perhaps most easily seen
by considering the special case a(W) = (n — p— 1) 71A ;- (W), s(v) = v~1. Here, (3.13)
becomes

’\min(W) -1
RS/ PP -~

while (3.14) is

nopt1) _ gin() L2\ 1,

where g, is the normalized characteristic vector of W corresponding to Amin(W). I
MW)>...>x,W) = Amin (W) are the ordered characteristic roots of W, and g¢5,.. ., gp
the corresponding characteristic vectors, then '

1N~
W —Z A,(W) gtgn

=1

while

2 1 Lt | n—p+3\ 1
w4 9p9; = ——g'g£+< ) 9p9p-
n—p—1A. (W) P Z:l x(w) 7 n—p+1/) A, (W) “P7P

Thus, the estimators (3.15) and (3.16) are nearly the same, particularly if n — p is large.

Therefore, a comparison of the maximum values of ¢ permitting §(X,W) to dominate
X in risk given respectively by Corollary 1 of this section and Tables 1 and 2 of Berger
and Haff (1983) can be informative. Berger and Haff actually give three different bounds
for ¢: '

(1) A general analytic bound Cn,p 8iven in Table 2 and Equation (1.3) in Berger and
Haff (1983). This bound holds for all (W), s(v) respectively satisfying “Condi-
tion o” and “Condition h” in their paper.

(2) A bound cs;];% given by Corollary 3(a) and columns marked G in Table 1 of Berger
and Haff (1983). This bound applies only to the case where a(W) =
(n —p—1)"1A;n (W) and is the mazimum of bounds obtained by Monte Carlo
simulation in Gleser (1979) and Berger and Haff (1983). (Standard errors for
the simulated bounds are given by Berger and Haff (1983).) As Berger and Haff

(1983) note, the bounds cSJ,Z, are typically considerably larger than the bounds

cn,p'

(3) A bound 653 given by Corollary 3(b) and columns marked B in Table 1 of Berger

and Haff (1983). These bounds are further specialized over the bounds c,(zl,;, in
that they apply only to the case s(v) = v—!. Again, these bounds are obtained
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by simulation and are the maxima of bounds obtained by Berger et al (1977),
Gleser (1979) and Berger and Haff (1983).

Table 1 compares the bounds c;, ,,, cS,l,g,, cgﬂ, to the bound ¢ = 2(p—2)[(n—p—1)/(n—

p+ 3)]? obtained from Corollary 1 of this paper. The bound & applies to all of the contexts
used above [except that, as noted earlier, conditions (3.8) and (3.9) of this paper may not
be as general as “Condition o in Berger and Haff’s (1983) paper].

Table 1 reveals that the general analytic bounds ¢ of this paper are uniformly larger
than the general analytic bounds Cn,p in Berger and Haff (1983), suggesting that the
analytic methods in Gleser (1986) may be more sensitive than those of Berger and Haff
(1983). [Note: A blank entry in Table 1 indicates that the corresponding bound is not

positive, and thus useless.] Further, ¢ is larger than the more specialized bound CS",];;)

when n — p is either small or very large. However, the bound c$,2,2, is generally larger
than ¢. These observations indicate that the Monte Carlo simulation approach has an
advantage over the purely analytic methods of this paper and of Berger and Haff (1983),
particularly for finding maximal allowable “shrinkage” for narrowly specified classes of
estimators (e.g., when a(W) and s(v) are specified). This, of course, is not surprising
since analytic arguments of necessity (because of their generality) must use fairly crude
inequalities. (See, for example, the proof of Corollary 1 in this section.) Perhaps, the real
surprise is that the analytic arguments in this paper do so well!

4. A NEW CLASS OF ESTIMATORS

For the case where X is known, Berger (1976) considered a class of estimators of u
which take the form (when Q = I,):

_u(X'E2X)

X X'£2X

> 1x, u(-) maps [0, c0) to [0, c0).

He shows that certain members of this class both dominate X in risk, and are themselves
admissible. Consider the simplest member of the above class (where u(-) = ¢, a constant),
and substitute an estimator for X of the form a(W)W, where a(W) is a nonnegative scalar
function of W, for X. This yields an estimator of the form:

ca(W) -1
Let ")
| ea 1
h(X,W) = [——X’W“zX] WX,
and apply the theory of Section 2.
Thus,
ca(W)(p—2
(W Vh(X,W)) = —%. (4.2)



Table 1. Maximum Values of ¢

n
16 18 20
P | & chp chdoehh | & ch, oBh B | & e, ) D)
3 [ 113 - 058 1.06 [ 1.21 - 075 1.20 | 1.28 - 0.87 1.34
4 | 215 - 1.79 248 | 234 - 202 265 | 249 025 225 285
5 | 306 - 278 3.80 | 3.38 0.37 3.17 405 | 3.63 0.98 3.63 4.35
6 | 3.83 - 347 4.81 | 430 0.82 4.17 533 | 4.68 174 4.87 5.3
7 | 444 - 393 578 | 5.0 1.04 505 642 | 563 2.18 596 6.99
8 | 486 - 4.19 6.57 | 575 0.60 512 7.64 | 6.45 2.43 6.81 8.19
9 | 504 - 386 702 | 622 - 556 840 | 7.14 2.21 7.38 9.22
10 | 494 - 366 679 | 648 - 517 890 | 7.67 1.78 8.80 10.25
11 | 450 - 128 578 | 648 - 5.8 9.15 | 8.00 0.70 7.10 10.84
12 | 367 - - 273 | 617 - 421 842 | 810 - 652 11.10°
13 | 244 - - - 550 - 094 711 | 792 - 6.25 11.09
14 [ 006 - - - 441 - - 243 | 741 - 458 9.79
15 - - - - 280 - - - 650 - - 793
16 - - - - 112 - - - 514 - - 226
17 - - - - - - - - 333 - - -
18 - - - - - - - - 128 - - -
19 - - - - - - - - - - - -
20 - - - - - - - - - - - -
n
25 30

p | & e, bbb} E ¢, chp o)

3 141 - 120 151 1.50 -  1.27 1.59

4 2.78 0.61 2.78 3.09 2.97 120 298 3.33

5 4.09 1.60 4.28 4.79 441 241 471 5.09

6 536 2.56 5.85 6.43 581 3.60 6.38 6.80

7 6.55 3.51 7.29 7.93 7.16 4.69 8.00 8.47

8 7.68 4.26 8.58 9.26 8.47 5.88 9.60 10.15

9 8.73 5.08 9.76 10.60 9.72 7.09 11.28 11.80

10 9.68 5.73 10.92 11.98 | 10.92 8.16 12.62 13.37

11 | 10.53 6.04 11.85 13.14 | 12.05 9.04 14.10 14.74

12 | 11.25 6.47 12.66 14.20 | 13.11 9.79 15.35 16.06

13 | 11.83 6.34 12.66 15.48 | 14.08 10.45 16.40 17.36

14 | 12.24 5.87 12.41 15.74 | 14.96 11.00 17.53 18.72

15 | 12.46 4.92 11.77 16.61 | 15.73 11.44 18.57 19.90

16 | 12.44 2.80 10.91 16.67 | 16.37 11.60 18.78 20.62

17 | 12.15 1.24 1045 16.67 | 16.88 11.60 19.00 21.56

18 | 1152 - 930 16.3¢ | 17.21 10.52 18.11 22.38

19 | 1049 - - - 17.35 9.20 14.84 22.83

20 9.00 - - - 17.25 8.32 14.52 23.47




Also, from (2.4),

_ co(W)X'W-lx . ca(W)
(X W) = hXW) + W X+ g U X,
where U(W) is defined by (3.6). It then follows from (2.5) that
| _ (n—-p+1 a(W) -1
t(X,W)-c(n_p_1> TWIX WX +
2 xXw-ix .,
(n—p+1) [X'W—2XW X+U(W)X] } (4.3)

By Theorem 1 and (4.2), the unbiased estimator of the weighted risk difference
(tr(Z))[R(6; #, Z) — R(X; 1, T)]
between
§(X,W) =X —t(X,W) (4.4)
and X is

M(X,W) = t!(X,W)t(X, W) — (n _2:_ 1) ( Xf;f,vfg X) (p—2).  (43)

THEOREM 3. Let a(W) be a nonnegative, continuous and differentiable function of
W which satisfies

U'(W)YUW) < 4W 2, | (4.6)
a(W) < [Apin(W)/Amax (W)]%, (4.7)
where Amax (W), Ayi (W) respectively are the largest and smallest characteristic roots of

W, and U(W) is defined from a(W) by (3.6). Then, §(X,W) defined by (4.3) and (4.4)
dominates X in risk if

0<e<2(p— 2)%71))5. (4.8)
Proof. Note that
2 2
(X, W)t(X, W) - ¢ (Z — ﬁ“_“ ;) X‘j‘wf‘ffz)xﬂ(x, W), (4.9)
where .
4 (X'W-LX)2(X'W—4X) (X'W—3X)(X'W~1X)
HX,W) =1+ (n—p+1)2 { (X'W-2X)3 (X'W—2X)? (n=p+1)
XUWIX | XWX e
o, (X'W LX) (X'W 2U (W) X)
(X'W-2X)? '
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By the Cauchy-Schwarz inequality, .
X'WUW)X < (X'W -2 xX)V2(X'U' (W)U (W) X)'/?
for a =1,2,.... Further, since a(W) satisfies (4.5),
X'U'(W)UW)X <4X'W2X.

Hence,
2
n—p+5 4
HXW)< | —— —={A xX,w
( )_<n—p+1) (n—p+1)2{ 124(X, W)
+ A1,2,3(X,W)(n —p+1) + 447, (X, W)},
where x ) )k ( _ ) _
X'WrX)—I(X'W—rX)—*
Aij k(X W) = (XW 3 X)F ,
and ¢ < 5 < k are nonnegative integers.
Let N W)
max
YT=1W)= 177"
) Amin(W)

Then, Marshall and Olkin (1964) have shown that
' k—i k=i, j—i =(=9) / k—i — (k=)
7 -1 Y -1 Tt -1
. < | L - - .
Az,J,k(XaW)b— < k—1 ) ( j—1 > ( k—1 )

(v+1)? 4 (Y2+q+1)°
’ A1,2,4(X’W) S ﬁ'—w,

Hence,

Ay 23(X, W) <

and since vy > 1,

n—p+5\2 4 (v+1)? 4 (y*+++1)°2
weow) < (3557) 1 )2{("_”+1)T+EW

2 2
n—p+5 4~
< — 1 1+ 4}.
_(n—p—1> +(n—p+1)2{(n pHI+1+4)

It now follows from (4.5), (4.7), (4.9), the definition of v = (W), and the fact that
~(W) > 1, that '

M(x,w) < 2W)_ {ca(W) [(n_‘l’_”)2+ 4’72(n—P+6)J _2(r—2) }

n—p-—1 (n—p—1)2 n—p—1
< ca(W) . n—p+17 2_ 2(p—2)
- X'W-2X n—p—1 n—p—1]["
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The assertion of Theorem 3 now immediately follows. O
To show that there exist functions a(W) for which both (4.6) and (4.7) hold, note
that for a(W) = y~2(W), which trivially satisfies (4.7),

1 1

vW) =2 (577 9080~ Ty 9154

where g1,g, are the normed characteristic vectors of W corresponding to Amax (w),
Amin (W), respectively. Thus,

1 1
UW)UW) =4 | ——— g.0" + —— g14/
W)U (W) [/\Izn ) 9905 + 53— 9191]

< 4W2,

so that (4.6) is satisfied.

Note that 4(W) is the condition number of W. Since the condition number of a matrix
is related to the numerical stability of W~ (or W—2), it is not unreasonable to find (W)
appearing in the assumptions (and proof) of Theorem 3.

The analysis and form of the estimators in this section illustrate a major drawback
to use of Theorem 1. In order to obtain an unbiased estimator of risk, it was necessary
to switch from the estimator (4.1) to the considerably more complicated estimator X —
t(X,W). It would thus be highly desirable to obtain a refinement of Theorem 1 that does
not require this switch. Some comments on this problem appear in Gleser (1986).

5. CONCLUSION

Two new classes of estimators which dominate X in risk have been given in this paper.
Although the estimators, and method of analysis, are still somewhat crude, the results are
still a great improvement over previous work, and suggest that Theorem 1 can play a useful
role in developing applicable minimax estimators for u.
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