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Abstract

A p-vector X = (Xl,...,Xp)t has a normal distribution with
unknown megn vector 8 = (el,...,ep)t and covariance matrix 021,
02 known. It is desired to estimate 6 under sum of squares error
loss, in the empirical or hierarchical Bayes scenario where 6 is
modelled as having a np(p,x-ll) distribution, XA and possibly u
unknown. When p is small or moderate, empirical Bayes estimates
of X can be quite inaccurate, and it can be very beneficial-to
élso utilize subjective knowledge concerning A. Empirical Bayes
estimators which allow incorporation of such knowledge are
developed, are shown to be minimax and are compared with more

commen empirical Bayes estimators.
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1. Introduction

Let X = (Xl,...,Xp)t have a p-variate normal distribution

with unknown mean vector 6 =”(61,...,6p)t and nonsingular known
covariance matrix f{. In estimating 6, a variety of shrinkage
estimators have been proposed from decision theoretic and Bayesian
perspectives. It has been argued (cf. Berger (1980, 1982, 1985))
that minimax €stimators developed in the decision theoretic
‘approach must usefully incorporate available prior information

to offer significant advantages. Often the most attractive manner
of doing this is to develop a Bayesian estimator which clearly
incorporates such information, and then to estavlish the minimaxity
of the estimator. In this paper we follow such a program for
several hierarchical Bayesian situations with informati?e second

stage prior distributions.

The -'sual hierarchical Bayes formulation for this problem
(see Linc :y and Smith (1972) or Berger (1985)) assumes that, given
the p-vector p and the p x p positive definite matrix A, the
unknown 6 has a n(p,A) (first stage) prior distribution. In
addition, however, p and A are considered unknown with a (second
stage) prior distribution w(u,A). One can then calculate that the

corresponding (hierarchical) Bayes estimator of 6 is
(1.1) ") = x - B0V () T x-w),

vhere n(p,A|x) is the posterior distribution of p and A given x
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(see Berger (1985) for formulas). Verification of the minimaxity

of such estimators has only been done for a few essentially
degenerate choices of w(p,A) (cf. Strawderman (1971) and Berger
(1980)), partly because of the difficulty of mathematically working
with n(u,A|lx). Somewhat more success has been achieved with the
empirical Bayes approximation to the above estimator; one determines
fi and A, the nfaximum likelihood estimates of p and A with respect

to the posterior distribution w(u,A|x), and then considers the
estimator in (1.1) with p and A replaced by {I and A. (Extensive
discussion of such approximations can be found in Lindley and Smith
(1972) and Berger (1985).) In proving minimaxity for such empirical
Bayes estimators, it is common to consider positive multiples of the

shrinkage term, leading to a final form of the estimator of

* " -— "~
(1.2) 85 (x) = x - ¢4 demy Lo,

t being a positive scalar.

The most extensively studied special case of this formulation

)t and A = A-le, Hy and A unknown,

is that in which p = po(l,...,l
being a model of the exchangeable scenario in which the 6; are i.i.d.
from an unknown distribution. If § = GZIP,”the estimates of { and
A are

.= Ao in L = 2_ 2 .
(1.3) fi f X, A = maltO,pZ(xi X)“ -0 }Ip,

the estimator in (1.2) then becomes
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X - ot(x=x1)(, ) if ) (x,-%)% < po®

: i=1 *t
*
¥ (x) =

2

x - —P9 _(x-X1) else.

P(x.-x)¢
i
with t = (p-3)/p, this can be recognized as a truncated version

of the usual James-Stein estimator which shrinks to a common mean,

as analyzed in, say, Efron and Morris (1973).

When p is small it was argued in Berger (1982) that it might

be preferable to use subjective estimates of U and A (or p and A

in general) leading to the minimax robust generalized Bayes estimator
in Berger (1980). The point is that the estimates in (1.3) will be
very inaccurate for small p, and the overall risk performance can be
substantially improved through use of subjective estimates of u and
A. (Note that all estimators here are minimax, so that the criterion

of interest would be some measure of overall average risk improvement.)

The natural Bayesian solution to the above dilemma is to give

g and A (or p and A in general) an informative (second stage)

prior distribution which incorporates the available subjective
information. This allows optimum estimation of Uy and A, and hence
optimum overall performance of the resulting estimator of 6. The
difficulty is that verification of minimaxity of the resulting
estimator of 6 can be very difficult especially since the resulting
empirical Bayes éstimators of Mo and A are only defined implicitely as solutions

of likelihood equations.



In this paper we make substantial progress on a special case

of the above problem. ‘he specific scenario considered is the

2 02 known, and A = A_llp. Thus we are

1

symmetric one where § = o¢“I

p’

assuming X -~ np(e,ozlp) and 6 -~ np(u,k_ I.). The scond stage prior

P
distribution for (p,A) is as follows:

(i) Either p is assumed to be known, or it is assumed to be of the
form p = By, where B is a given matrix of rank q, and y is unknown

with noninformative prior w(y) = 1;

(ii) The distribution of A is chosen to be Gamma (o,B/2) (independently

of u), where o and £ are subjectively specified constants with

B > (a—l)oz.

The gamma family of priors for A is sufficiently general to
allow reflection of most beliefs about A. Note that A_lvcan be thought
of as the common variance of the ei, and that
-1
]

E[X = B8/[2(a-1)].

A

Recall that we assume B > (a-l)cz; thus only those priors for which
E[A-l] > 02/2 are allowed. (This is a rather mild constraint, since
the variance of the ei will typically be larger than 02, the sample

varicance.) Also,

Var(x‘l) = 82/[4(a-1)2(a-2)]-

Thus one could subjectively specify E[}\—1

] (a "best guess' for the
variability of the ei), and Var(x_l) (say, the square of the estimated

accufacy of this "best quess'"), and solve for the corresponding a and B.
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One could similarly allow for a more general subjective prior on M, but
we do not do so for two reasons. First, it seems to be somewhat less
important than utilization of information about A_l. Mainly, however,
we were unable to handle the ensuing complexity; proof of minimaxity

of the resulting estimators is formidable.

2. Results When ¥ Is Known

When p is known, the joint density of X, 6, A is

m(x,0,x) « A exp{-f[—f(x—e)'(x-6)+x(6-u)'(6-u)+BA]}
o ,

and the marginal posterior density of A given X is

1
(2.1) T(A'x) « A

- 7 -
— _1)p/zexp{-%[(A Lio®y sy,
g tA

’)
where v = Hx—M)“ = (x-u)'(x-u).

From (2.1), it is easy to show that the MLE of A, X, satisfies

the equation 2(X) = 0, where

(2.2) 2(A) = (Boh)A® + (2802-2(a-1)0%)2?

+ (v-pol-4(a-1)c%+8)A - (p+2(a-1)).

Note that the coefficient of AZ in 2(A) is nonnegative (since
B > (a-l)oz), so that the equation 2(X) = 0 has a unique positive

solution. The hierarchical estimator (1.2) can then be written

' & 2
(2.3) 6100 = x - AL (x-p)
: (1+o°X)

(recall we are assuming here that p is known).
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Although % is quite complicated (being the solution to a cubic
equation), it is possible to verify minimakity of 61; that this can
be done for such complicated estimators is one of the main messages

of this paper.

Theorem 1. Under sum of squares error loss, the estimator 61 is

“minimax for

Z 4
(2.4) 0t <& gmET

where
(2.5) t* = max{p+2(a-1), p+4(a—1)-8/02}.

Proof. The familiar Stein identity (see Stein (1981)) shows that,

for any estimator
6(x) = x - ¢(x)

satisfying certain mild conditions (all of which are trivially

satisfied by the estimators in this paper),

(2.6) R(6,8) = E6|e-<s_(x)|2
| = po’+E [99 (x)],
where
(2.7) 96(x) = |¢(x)|2-202i§13—§—i¢i(x).
For 61, _
08(x) = -04(1E§ZX){zp+‘z‘x’fj§§§;)-(1:%}.
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Differentiating with respect to v in the equation &£(R) = 0 and

rearranging terms yields

2+

(2.8) ~R[380%82+4 (802 (a-1)0*) R+ (v-po?-4 (a-1)%+p) ]
4

]

g1s

-22[280 X3+2(602-(a—l)c4)22+(p+2(a—1))]-1

> 4X2(p+2(a—1))_1.

Also, from the equation Q(i) = 0 it follows that
A 2 2 ~
vi < (pc™+4(a-1)o“-B)A+(p+2(a-1)),

which implies that

(2.9) vl [ (po’+4(a-1)0%-8) R+ (pr2(a-1)) . 4
1+02X - 1 + OZX B
Hence
I\2 ”~
(2.10) 96 (x) < -04_%_{21”_ _ gzg—x ) %
- (1+6°X) (A+o"A") [p*2(a-1)] (1+0°X)
o th vi
= - {2 t]}
(1'*'025:) p (1+025\\) [p+2(a'1) ]
< 64ti {2p-t*[ 4 t1}
(1+5“}) p*2(a-1)

From (2.6) it is clear that 61 is minimax (and has risk less than
‘the minimax risk poz); if ®¢(x) < 0. Equation (2.10) assures that

9¢(x) < 0 when (2.4) is satisfied (note that A > 0). This completes

the proof. ///

. . . ; 1 .
There is no clearly optimal choice of t in § for this problem,

Certain asymptotic arguments suggest that the choice

R ACE)
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is attractive for larger p or larger 8/2(a-1), suggesting use of

P P __
(2.11) t mln{t* p+2 (a-1)° p+2(a-1)}'

Note that t* = p+2(a-1) if B > 2(0L—1)02 (which will occur when

the '"guess'" for the variance of the ei exceeds 02), so that

(2.12) % - mRlZ(p-Z):p) it 8 > 2(a-1)02,

*

3. Results When u Is Partially Unknown.

When p is known to be of the form p = By, where B is a given
matrix of rank q and y is unknown with noninformative prior w(y) = 1,

the joint (improper) density of X, A, y is

B _
£06,0,7) = (0227 Zexp (-3(% A7) "Hx-By) ' (x-By) )2 Lexp (-3E)

-B
2

« A% Lg% exp[-%—(ozﬂt-l)—l(x—Byx)'(x-BYX)-%‘-é
vexp[-3(o” A1) (y=y ) BUB(y-y )],
where
(3.1) vy, = (B'B)"B'x.

X

(Here D denotes the generalized inverse of D). It is clear that
the MLE of vy is Yx and the marginal posterior density of A given x

(with vy replaced by yx) is

1, 2

) 1

£ ]x) « 2% o eXP["%(02+A' )_1(x-BYX)'(x—BYX)‘%§J.

It follows as. before that the MLE, £, is the solution of the equation

zl(x) = 0, whére
(3.2) 2 () = (Bo")n+(280%-2(a-1)0h)2?
+(x'Mx- (p-q)o2-4(a-1)02+8) A ((p-q) +2 (a-1) )"

Q-



and
(3.3) M=1- B(B'B) B'.
Tlie hierarchical estimator (1.2) can be written in this case as

th

dz(x) = X- 02
(1+a°%)

(X-Byx).

' 2 . L.
Theorem 2. Under sum of squares error loss, §° is minimax for

2(p-q) _ 4
_(3'4) L CEN E I CR ok
where
(3.5) t** = max{p-q+2(a-1), p-q+4(a-l)-8/oz}-

Proof. Analogous to that of Theorem 1. ///

The suggested choice of t in 62 is

¥ _ s 2(p-q) 4 p-q }
[p-9t2(a-1)]" [p-q+2(a-1)]""

which for B > 2(a-1)“becomes

. min{2(P-9-2), p-q}
[p-q+2(a-1)] .

4. Comparisons and Conclusions.

+

Since all estimators considered in this paper are minimax,
the main question of interest is to investigate overall average

performance. - Since we are mainly considering application in

empirical Bayes or hierarchical Bayes scenarios, suppose that 6

actually has a np(u,Tzl) prior distribufion. We consider 02 =

--10--
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and the known u case for simplicity; the case of unknown p-yields

similar conclusions.

A convenient way to measure performance with respect to a
prior m is through the relative savings loss discussed by Efron

and Morris (1973); this is given by

RSL(6) = '-r(ﬂ,é())-r(ﬂ,an3r ’
r(m,8 )-r(w,s")

-

where éo(x) = X, 6" is the Bayes rule with respect to w, and
r(m,8) = E"R(6,6).

RSL measures the additional overall risk incurred by using 6 instead
of the optimal 8", scaled by the total possible improvement over
the standard estimator 60. Thus RSL near zero indicates optimal
Bayesian performance with respect to w, while RSL near one indicates

negligible overall improvement over 60.

The usual empirical Bayes estimator (for the known p case) is

(SJ-S(X) =-"‘x._min{1’ LEQ—?}(X‘]J) ,'
Xx-y|
the James-Stein positive part estimator. This assumes no knowledge

of TZ, and performs reasonably well for any TZ

J-S

The new estimator Gl(x) is similar to § , except that it is

= B/[2(a-1)].

Tables 1 and 2 indicate that this is indeed sq.for]argar;>orﬁnx_l].

designed to do particularly well for TZ near E[A_l]

(When p and E[A_;] are small, the behavior is somewhat different.) For table 1,

E[A"1] = 1 while 'for table 2, E[A~*

1 = 3. The choice of o = 3 merely implies that the
standard deviation of A—l equals the mean, corresponding to a situation of moderate

undertainty in the prior mean for A—l. In all cases, t was chosen using (2.12).
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Table 1. RSL for various P, 12, and 6775 and 61,
when a = 3.0 and B = 2(a-1).
P

3 6 10
RSL(875) RSL(61) RSL(6°75) RmsL(sl) RSL(s7S) RsL(s1)
.5393 .6331 2427 .3080 .1480 .2040
.5472 .5579 .2642 .2156 .1699 L1274
.5547 .4994 .2804 .1618 .1824 .0940
.5612 L4541 .2920 1335 .1892 .0845
.5669 .4188 .3003 .1217 .1931 .0875
.5718 .3914 .3064 .1202 .1954 . 0965
.5760¢ .3700 .3110 .1253 .1968 .1080
.5798 . .3535 .3145 .1344 .1978 .1201
.5832 .3408 .3173 .1459 .1984 - .1318
.5862 .3311 .3195 .1586 .1988 .1428
.5889 .3238 . 3213 .1719 .1991 .1529
.5913 .3185 .3227 .1854 .1993 .1619
.5935 .3148 . 3239 .1986 .1994 .1701
.5956 .3124 .3250 .2115 .1996 L1773
.5975 L3111 .3258 .2238 .1996 .1838
.5992 .3106 .3265 .2357 .1997 .1896
.6009 .3109 .3272 .2470 .1998 .1947
.6024 .3118 3277 .2577 .1998 .1993
.6038 .3132 .3282 .2678 .1998 .2034
.6051 . 3150 .3286 .2775 .1999 .2070

Table 2. RSL for various P, 12, and GJ 5 and 61,

when o = 3.0 and B = 6(a-1).
P

3 L 6 10
RSL(67%) msL(sl) RmsL(677S) msu(s!)  msL(s?7S) rsi(sD)
.5393 .7739 2427 .5124 .1480 .3922
« 5472 .7199 .2642 4200 .1699 .2964
+5547 .6736 .2804 ~.3499 .1824 .2306
5612 .6338 .2920 .2965 .1892 .1857
. 5669 .5994 . 3003 .2561 .1931 .1554
.5718 .5695 .3064 - .2254 v .1954 .1353
.5760 .5433 .3110 .2022 .1968 .1222
.5798 .5204 . 3145 .1849 .1978 11472
.5832 .5002 .3173 1722 .1984 .1097
.5862 .4824 .3195 .1630 .1988 1077
.5889 .4666 .3213 .1566 .1991 .1074
.5913 .4525 .3227 .1525 .1993 .1084
.5935 .4400 .3239 .1501 .1994 .1103
.5956 .4288 . 3250 .1492 .1996 L1127
.5975 .4188 .3258 .1493 .1996 .1155
.5992 .4099 .3265 .1504 .1997 .1185
.6009 .4019 .3272 .1522 .1998 .1218
.6024 .3947 .3277 .1545 .1998 .1250
.6038 .3883 .3282 .1573 .1998 .1283
.6051 . 3825 .3286 .1604 .1999 .1316

ovouTounmounovIounouvouvniouvouw
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Although the tables only deal with small and moderate T
it is interesting to note'that, as T2 +> o, RSL(Gl) > RSL(6%), where

(assuming B > 2(a-1)02 for convenience)

§*(x) = x - min{Z(p-Z),p}oz

2 (X-Ll).
| x-u]

The RSL of &% is véry similar to that of GJ—S, especially when
p is moderate or large. Thus, even if the prior information
concerning the variance of the ei is completely wrong and 12 is huge,
1 J-S

67 will be'comparable to ¢

We cannot give unqualified endorsement of 61 or 62 over the more

familiar James-Stein type estimators, or over, say, the robust
generalized Bayes estimators in Berger (1980), because there are too
many variables to study all possibilities. Furthermore, from a
practical perspective it may be questionable to demand complete
minimaxity. -

In any case, the results here are of theoretical intefest

because they

(i) Deal for the first time in the "Stein estimation'" literature
with estimators which combine empirical Bayes type exchange-

ability structure with subjective inputs;

(1i) Indicate that verification of minimaxity is possible even for
highly complicated estimators which cannot even be easily

written din closed form.
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