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Further Results on Testing a Poisson Hypothesis
Against Compound Poisson Alternatives*
By Prem S. Puri
Purdue University

The paper extends the author’s previous results for testing a Poisson hypothesis
against compound Poisson alternatives based on a sample X;, X5, ..., X, of i.i.d. random
variables to the case where the X;’s, although mutually independent, are not necessarily
identically distributed. In particular, we address ourselves to those situations where for
each compound Poisson point process {X;(t), t > 0} all we are able to observe is the
total number of events that have occurred by the end of a time period of length t;, and are
otherwise unable to monitor both the points and the sizes of various jumps of the process
over time. The approach adopted here is that of Bartoo-Puri (1967); this is an extension
of Neyman’s (1959} theory of C(a)-tests.

1. Introduction and Statement of the Problem.

This work is in continuation to the author’s recently appeared paper Puri (1985).
The problem considered there was to develop a suitable procedure for testing a Poisson
hypothesis against compound Poisson alternatives based on a sample X1,X2,..., X, of
independent and identically distributed (i.i.d.) nonnegative integer-valued random vari-
ables (r.v.’s). The common distribution of these r.v.’s was taken to be compound Poisson
with probability generating function (p.g.f.) given by

(1) G(s) = E(s*) = exp{-A(1 - h(s]€))}, |s| <1,

where A is a positive constant and for each ¢ > 0, h(s|¢) is a p.g.f. given by

(2) h(s|€) = D> R(k|&)sF,  |s|<1,
k=1
with -
h(0l¢) =0,  R(k|¢) >0, Y R(kl¢)=1.
k=1

Here ¢ is a nonnegative parameter and is such that for £ > 1,

(3) lm R(ElE) = 8w Jim h(s]6) = h(sl¢ =0) = s,
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where 6y is the Kronecker delta. With this the above mentioned hypothesis testing prob-
lem corresponds to testing Hp : ¢ = 0 against the alternative Hy : ¢ > 0 in the presence
of A as the nuisance parameter. The reader may refer to Puri (1985) for a detailed moti-
vation to the above formulation along with some applications. In Puri (1985), an optimal
C(a)-test was developed for the Poisson hypothesis Ho against H; based on Neyman’s
C'(c)-test theory (see Neyman (1959)).

Again in many practical situations the X;’s represent the number of events taking place
over possibly different lengths ¢; of time, based on independently conducted experiments.
In particular here (as well as in Puri (1985)) we are addressing ourselves to those situations
where we are unable to monitor both the jump points of a compound Poisson point process
over time and the sizes of the various jumps. All we are able to observe is the total number
of events that have occurred by the end of a time period of length t. The reader may refer
to the author’s joint work with Neyman in the area of radiation biology for precisely such
a situation arising in the case of UV -radiation (see Neyman and Puri (1976, 1981) and in
particular Puri (1982)).

Since typically different X;’s correspond to observations taken over different lengths
of time, we need to reconsider the original problem of testing our hypothesis Hy for the
case where the X;’s are independent, but not necessarily identically distributed. For this
we need to use the Bartoo-Puri generalization of Neyman’s C(a)-test theory which handles
precisely such situations (see Bartoo and Puri (1967)). A brief summary of this general-
ization is outlined in the next section. In the light of the above remarks, we provide a
reformulation of our problem where we allow not only the period of observation but also
the p.g.f. & of (2) to vary from observation to observation. Furthermore, it is assumed
that the p.g.f.’s h; otherwise depend not only on the same parameter ¢ under test but also
on the same nuisance parameter A. Thus we have X3, X;,...,X,, mutually independent
nonnegative integer-valued r.v.’s with the p.g.f. G; of X; given by

(4) Gi(s) = E(s) = exp{~Mi(1— hi(s|&,\)}, Js] <1,

i=1,2,...,n, with £ >0, A> 0,

(5) hi(s|€,2) = > Ri(k|¢, N)s", ls| <1,
i k=1
(6) Ri(k|€,2) >0; ) Ri(k|g,N) =1,
k=1

and forevery A >0,k >1and?=1,2,...,n,

(7) &ﬁI% Ri(k|€,A) = b1k, é%irr:(l) hi(s|€,A) = hi(s|€ =0,)) = s,

where the t;’s are the known lengths of the corresponding time intervals. Our object is
to develop an optimal C(a)-test based on X;, Xa,..., Xy, for testing Hy: £ = O against
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H;i: £ > 0. For this the needed generalization of Neyman’s C(a)-test theory is summarised
in the next section.

2. The Bartoo-Puri generalization of Neyman’s C (a)-test theory.

In (1959), Neyman developed his C(a)-test theory keeping in mind those situations
where the distributions of the observable random variables turn out to be highly non-
standard and often involve many nuisance parameters, 6y, ... 0., besides the parameter ¢
under test. Also, the estimators available for the nuisance parameters may not be too
good and in particular may be biased. Under these circumstances, for testing the hy-
pothesis, say Hp: ¢ = &y, against the alternative hypothesis, say, Hi: £ > & (in the
presence of nuisance parameters) Neyman developed tests that are locally asymptotically
most powerful in a class of so called C(a)-tests and are based on a sample of i.i.d. r.v.’s,
X1, X2,...,X,. Below we present a summary of the needed generalization of Neyman’s
theory where the observable random variables {X,x,k = 1,2,... ,n} are independently
but not necessarily identically distributed. The reader may find further details of these
and other generalizations of Neyman’s theory in Bartoo and Puri (1967), Biihler and Puri
(1966).

Let Xpk,k=1,2,...,n;n=1,2,..., be a double sequence of independent r.v.’s with
each X,,; having a probability density Pn,k(z; €,8) with respect to some o-finite measure
Ynk, Which is independent of the parameters ¢ and 8, where £¢[0,a) for some ¢ > 0 and
§ = (01,02,...,0,)eO, © being an open set in R". Also we assume that the support of
the distribution of each X, is independent of ¢ and §. For convenience we let the null
hypothesis be Ho: £ = 0, which is to be tested against Hj: € > 0, in the presence of the
nuisance parameters § = (01,0z,...,0,)e®. We impose the conditions (C;) — (C3) given
below on the sequence p, k(z; ¢,8) of density functions.

(C1) The derivatives

Oln py, x(z; €,0
(8) ‘pnk(j)(z;g) = d ,k( < ) ’ J=12, )
a6,
£=0
and
9ln pyx(z; €, 4

(9) Onk(e)(z;0) = 5 E( ) ,

€=0

exist for arbitrary e®, the derivative in (9) being the right hand derivative. If pnr = 0, we
define Prk() = Prk(;) = 0,7 =1,2,...,r. We assume that

(10) EO,Q [‘pik(f) (Xnk; Q)] ’ EO,Q [(pik(]) (Xnk; Q)] sy J=1,2,...,r1,

are finite for every n and k and for all §e®©, where the subscripts 0, under the ezpectation
sign indicate that the expectations are obtained under Hy.
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(C2) Under Ho, whatever be §e® and n and k, the quantities Onk(¢)(Xnk;8) and
Onk() (Xnk; 8),5 = 1,2,...,r, are linearly independent with positive probability.

Let a;,(9) = (a3,(8),...,a%,(9)) be a vector which minimizes the variance of

r

(11) ‘ Z ©Onk(e) (Xnr;0) —Z an;(8) Z ©Onk(5) (Xnk;8),
k=1 k=1

=1

under Hy for each n and fixed §. The symbol S}2(g) will denote this minimum variance.
Note that in view of the conditions (C;) — (C3) the values a;;(0) are always determined

and S;%(g) is always positive. We now add the condition (Cs).

C3) We assume that a°(9) = (a$,a3,...,a°) = lim,_,o, a%(0) exists and that the sequence
2 \Z 1) %2 r en\Z
{Pnk(z; €,8)} is regular enough for the sequence

r

(12) :k(xv Q) = Pnk(¢) (z; Q) - Z a;(Q) Pnk(j) (:l:; Q)a k= 1,2,...,n,
i=1

to form an expectation centered Cramér sequence. (See Neyman (1959) and in particular
Bartoo and Puri (1967) for their definition).

It may be remarked here that the “regularity conditions” assumed for the Cramér
sequences are similar to the ones imposed by Cramér (1946) in his treatment of consistency
of maximum likelihood estimates. Consequently following Neyman (1959), Bartoo and Puri
(1967) referred to these as Cramér sequences of functions. While avoiding the statement
of these conditions in detail here in defining these sequences, we refer the reader to Bartoo
and Puri (1967) for their definition. |

Let B(a) be an arbitrary measurable set on the real line whose indicator function is
continuous almost everywhere and is such that

(13) (2x)~1/2 / exp(—2?/2) dz = o.
B(a)
Let {frnk(z,8)} be an expectation centered Cramér sequence such that for j =1,2,...,r
n
(14) nli—{%o n~! Z Covo,e{fnk (Xnkag), Prk(s) (Xnk; Q)} =0.
k=1

Here again the subscripts 0,4 of Cov and of Var indicate that the covariances and the
variances respectively are obtained under Hy. A typical member of Neyman’s class of C (e)-
tests is now defined for each pair {f.r(z,8)}, an expectation centered Cramér sequence
and a set B(a), by rejecting Hy whenever

(15) Zn(@n)fB(a)’
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where

(16) Za(@n) = [52(8)] 3 FurXunsba),
k=1
(17) S2O) = 3 Varg glfus (K O},

and Qn = (9,,1,. ..,5,") is a locally 4/n consistent estimator for 0 defined by Neyman
(1959) to be such that for every j = 1,2,...,r, and for some constant A;, the quantities

(18) (Bnj — 0 — A€V
remain bounded in probability, as n — oo, for all (¢, §).

Using Neyman’s (1959) local asymptotic optimality criterion based on a class T of local
alternatives {¢,} such that \/n¢, remains bounded as n — oo, a test which is optimal in
the above class C(a) of tests corresponds to rejecting Ho: ¢ = 0 in favour of the alternative
hypothesis H;: ¢ > 0, whenever

(19) Z2@) = [5:00)] T Y Stk (ko) > 21
k=1

Furthermore for the local alternatives T' its asymptotic power is given by

where z;_, satisfies ®(2;_o) = 1 — ¢, and & is the cumulative distribution function of the
standard normal distribution. It may be remarked here that an asymptotically equivalent
optimal C(a) test results if the a?(9)’s are replaced by a;i(9),5 = 1,2,...,7. The test

function so obtained has the same asymptotic properties as those of Z* (65).

3. An Optimal C(a)-test for the Poisson Hypothesis.

We return to our problem introduced in section 1 and apply the C(a)-test theory of
the preceding section to arrive at a solution. For our random variables X; of (4) with
1=1,2,...,n, let

(21) pi(m|é,X) = P(X; =ml|¢,)), m=0,1,2,....

Then it can be easily seen (see Katti (1967)) that for every 7, these probabilities are
recursively related to each other and to the probabilities R;(k|¢, ) of (6) as follows:

pi(0[€,2) = exp(—At;) n
(22) pilm +1|6,2) = 25 3 (m—k+1) py(kl€,A) Ri(m — k +1]¢,)), m>0.
k=0
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Also in view of (7), we have for m >0

(At,‘)m

(23) sll_r% pi(m|€,X) = pi(m|0, ) = exp(—At;).

We add further conditions (A4;) —(As) on the probabilities R;(k|¢,)) and p;’s given below.

(A1) Fori=1,2,...,n, and k > 1, the probabilities R;(k|¢, A) are twice differentiable with
respect to £ for £ > 0 and also with respect to X for X > 0 (the derivatives with respect to ¢
at £ = 0 are to be considered as right hand dertvatives), and these differentiations are valid
under the summation sign of

(o]

(24) Y Ri(klg,N) =1

k=1
We denote these derivatives by R;e(k|€,A), Rix(k|€,Q), ete. It is assumed that for i =
o0
1,2,...,n and for all A >0, ) j Rit(j|0,]) is finite, with R;¢(1]0,A) < O. Furthermore
i=1

(25) Ria(jl0,A) =0, j=1,2,...,VA>0,
where
. BR, ] ,A ] aRz . , A
(26) R,;£ (] |0, A) = _M. , R (J |Oa A) = (.7 Ig )
¢ eco F)) eo

Remark 1. Note that in view of (6) and (7) it is easily seen that R;¢(1]0,)) < 0 and
R;¢(5]0,)) >0, for j > 2. Moreover the condition (A;) implies that

(27) —Ri(110,2) =) Rig(4l0,%), i=1,2,...,n,
j=2

holds with R;(1]0,)) < 0. Again the condition (25) holds for most of the standard cases.
For instance, in the case of the negative binomial distribution viewed as a compound
Poisson distribution, the corresponding probabilities R;(k|£,A) depend both on ¢ as well
as A and in particular they satisfy (25) (see concluding remarks in Puri (1985)). Basically
all that condition (25) requires is that for all § > 1 and X > 0, in (28)

(28) lim Jim Z2U16A+0) — Ei(5l¢, )
' §—0 6§—0 6

an interchange of the two limits be allowed. Finally it follows from (22) and the condition
(A;) that for every 1 = 1,2,...,n and m > 0, the probabilities p;(m|¢,A) are twice
differentiable with respect to £ > 0 and also for A > 0.
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(A2) It is assumed that the above differentiations of p;(m|¢,)) are permitted under the
summation sign of

(29) i pi(m]€,)) = 1.

- m=0

We define for : =1, 2,...,n,

d Ln pi(ml|&, A)
o¢

0 €n pi(m|E, A)
o

(30)  pig(m|)) = »  wa(m|d) =

¢=0

£€=0

(A3) We assume that the t;’s are bounded both from above as well as away from zero. In

n
particular n=! Y t; and
=1

o) Ly [ff i Rililo A)}

Jj=1

both converge as n — oco. Finally it is assumed that both {p;e(m|A),s = 1,2,...} and
{vir)(m|A),i = 1,2,...} form Cramér sequences (see Bartoo and Puri (1967) for their
definition), which implies that the limst

> Eop lpig(XV)]?

1=1

(32) lim 1

n—co N

exists and is strictly positive for all A > 0.

As in Puri (1985) standard calculations using (22) and (25) lead us to the following
lemma.

Lemma 1. Fori=1,2,...

(33) { pielmld) = 32 ey (367070 Rg(Gl0, ), m 21
ig(0]A) =0,
(34) pa(mh) = (T —t), m>0,

where we have adopted the convention that
R;¢(0]0, 1) = R;»(0]0,2) = 0.
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Remark 2. As was shown in Puri (1985), subject to (7) and from the condition (Ay) it
follows that for every ¢

(35) Eo, [pie(X:|N)]* > 0,

and that under the hypothesis Hy: ¢ = 0, the random quantities wie(X:[A) and ;) (X;]|A)
are linearly independent with a positive probability for every A > 0, a condition needed
for (C3) as part of the existence of an optimal C (c)-test for the present case.

The next lemma gives further expressions that are needed for the construction of the
optimal C(a)-test. The proof is omitted as it involves lengthy but routine calculations
using (33) and (34).

Lemma 2. Fori=1,2,..., we have

(36) Varo (go,')\ (X,I)\)) = ti/A;
(37) Covoa(pie(X:]|A), pir(XilA)) =t; i J Rie(5]0, A);

(38) an(A) = A (Zn:ti) Zn: t; [f: J Rig(J]0, A)} ;

=1 =0

(39) Varo,x (pig(Xi[A)) = Vi(At:);

where

(40) Vi(At:) = (At;)* kf; Rig (k[0,2) ef:l Ri¢(£[0, ) Be,k (M),
and ) )

(41) Bex(Mt:) =mi§k) (’:) (f) (") (M)~

On comparing the expression (40) with the corresponding one of Puri ((1985), equation
(31)) we note that a factor A? was inadvertently left out there. Finally, applying the C(a)-
test theory of section 2 (in particular (19) and (20) and lemmas 1 and 2), the following
theorem gives the desired optimal C(a)-test for our problem.
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Theorem 1. Subject to the assumptions (A1) — (As), an optimal C(a)-test for testing
Hy: £ =0 against Hy: € > 0, is to reject Hy whenever

(42) Zn(i) > 21—,

where

(43) Zn(3) = [én(:\)]_1 Z gni(Xi, ),
(44) gni(Xi, A) = 0ig(Xi|A) — ap (N pir (X:]N),

n

2

n o0

(45) SN =) Vi) - (Zt ) Dt Y 7 Ree(410,0)]
1=1 =1 j=0

and X stands for a locally \/n consistent estimator of the nuisance parameter .

Of particular importance is the special case when R;¢(5]0,A) = 0 for 5 > 3 and for
all + = 1,2,...,n. This condition is satisfied for several well known compound Poisson
alternatives arising in practice, such as negative binomial distributions, and Neyman type
A distributions, among others. Furthermore the test statistic (43) simplifies somewhat for
this case. The next theorem deals with this special case.

Theorem 2. In addition to the conditions of theorem 1, if Vi = 1,2, .. . Rig(7]0,X) =0
for j > 3, also holds, the test statistic (43) reduces to
(46)

Zuld) = [5.0)] {g[%—x Rie(200,3) — a2 Z:: <_ )}

with the asymptotic power of the optimal C(a)-test, for the local alternatives {£,}, given
by

(47) 1— ®(21-a — €n5n(N))

where

(48) al(A) = A [i t,;] i . lzn: t; Ri¢(2]0, A)] R

5200 =2 Y [Rieeo, N + 3 3 (a2, )

(49) - A [zn: ti:| i [zn: t; Rig (2]o, A)]

1=1

2
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Finally the next theorem further specializes the test to the case where the R;¢(2|0, ) are
all equal for 7 > 1.

Theorem 3. If, subject to the conditions of theorem 2, the R;£(2]|0,)) are all equal for
+ > 1, the test statistic (46) further reduces to

n

(50) Zn(8) = (20) 72 3 (Rt) 7 { (X — t)? — X}

t=1

Furthermore for the local alternatives {£,} the asymptotic power of the optimal C (o)-test
is given by (47) with

(51) S2()) = 2n[Re(2]0,A)]%.

4. Concluding Remarks

(a) For the case considered in theorem 3 it is interesting to note that the asymptotic
power for the local alternatives (as is exhibited through (51)) does not depend upon
the lengths ¢; of the various observation periods. This implies, under the assumption
of theorem 3, the following interesting observation regarding the design of our exper-

n
iments. For instance, if the total length of the periods }_ ¢; is fixed, it would be

i=1
advisable to take a larger n with smaller ¢;’s, for example by doubling the number

n of observations and at the same time cutting down the average period length per
observation to half that of the original one. Intuitively this sounds reasonable, since
for small ¢;’s most of the time the positive X;’s would constitute the results of sin-
gle jumps of the process, thereby enabling us to distinguish more effectively between
the two situations, namely the one where the jump sizes are unity (Poisson process
case) and the other where jump sizes are greater than one with a positive probability
(compound Poisson process case).

(b) Again for the same case of theorem 3, it is interesting to note that the optimal test
based on the test statistic (50) is independent of the common p.gf. h(s|¢,A). This
property has been referred to as the ‘robustness of optimality’ property by Neyman
(see Bartoo and Puri (1967) for more comments on this point).

(c) In the above tests one needs to have a locally /7 consistent estimator of the nuisance
parameter A. One possible way of constructing such an estimate for the most general
case of theorem 1 is by using the fact that P(X; = 0) = exp(—At), ¢ =1,2,...,n.
Let n; = 1 if X; = 0 and n; = 0 otherwise, 7 = 1,2,...,n. The likelihood function
based on 71,72,...,7y is then given by

(52)  L(Aln1,nz,---»mn) = exp(=A ) tim) J] {1— exp(—Ats)} ™.
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The desired estimate of A is now simply the maximum likelihood estimate based on
(52) and is given by the unique solution for A of the equation

(53) zn: ni i = Zn:(l — 7],;) t; [exp(/\t,') - 1]—1 .

We need hardly mention that other more involved estimates of A which use more
information about the X;’s are also possible.

(d) Finally the approach adopted here for the testing of the Poisson hypothesis falls within
the classical a-level hypothesis testing framework. The question of testing the Poisson
hypothesis is currently being studied in the present context from a decision-theoretic
as well as a Bayesian point of view. The results pertaining to these investigations will
be reported elsewhere.
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