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1. Introduction

In multiparameter estimation problems,one addresses the problem of estimating
a. vector of. p parametersfg = (61, cens ep) under a certain loss L(g, ns a),
where n is some k-dimensional nuisance parameter. Since the pioneering work of
Stein (1955), researchers in this general area have proved the existence of the
Stein-effect in an incredible number of estimation problems. Typically, the
message of all such works is that if the number of dimensions p is sufficiently
large, then a classical estimator 8o is inadmissible and that there exists a
startingly large collection of dominating estimators; one then finds the need to
develop a systematic theory for selecting one (or more generally, a sub-class
of) estimator(s) for actual use in specific problems. The following restricted
risk Bayes problem suggests itself very naturally in this context.

Let ﬂ(g,g) denote a prior distributionon the unknown parameters of the
problem. Let also £L denote the class of estimators

8 = {s: R(gsn»8) = R(esmsdg) + e Vg, nls

where € is a non-negative (typically small) real number. Characterization of
estimators in é%ﬁis virtually impossible (even in special cases), but working with
simpler sub-classes of £L is tractable in quite a few problems. Let also r(m,s5)
denote the usual integrated Bayes risk of an estimator s with respect to the prior

m. The restricted risk Bayes estimator (if one exists) is defined as the



estimator g such that r‘(ﬂ,as'rr E:)=1'n1’ r(r,s). More generally, one may consider
Ts€ >
sede

the problem of minimizing the posterior expected loss conditioned on the data.
For a thorough discussion of how the restricted risk Bayes rules pertain to
robust Bayesian issues, see Berger (1982), Berger and DasGupta (1986), and
Larry Brown's discussion on Berger (1983).

Several authors have considered versions of this restricted risk Bayes
problem in special cases; see, for example, Hodges and‘Lehmann (1952), Efron and
Morris (1971), Bickel (1980), Casella and Strawderman (1981), Berger (1982),
DasGupta (1985), Marazzi (1985), Berger and DasGupta (1986). As is well-known,
as stated above, the restricted Bayes problem is exceedingly difficult and no
neat mathematical solution seems possible. For this reason, it makes sense to
solve a slightly simplified version of this problem (originally suggested in
Berger (1982)), a version that is not a sweeping simplification in any of the
problems we have thought of, yet is very nicely tractable in many cases. It is
well known that in a large number of simultaneous estimation problems, one can
find an unbiased estimator Ds(X) of a(g.y) = R(gsps6) - Rlg.g.84); clearly,

ﬁ:: = {8: Ds(X) <er¥ X} & 396 ; in specific problems, 39: may be a proper
subset of Se (see Hwang (1979) for an example). The modified restricted risk

Bayes problem is to find s* such that r(r,s* ) = inf . ¥(w,5). A good
Ta€ me Se®* )
: €

amount of evidence has accumulated by now that §* can be written down in a

closed form in quite a few problems, and that in all of these cases it is attrac-
tively simple; see Berger (1982), Berger and DasGupta (1986).. For reasons of
simplicity, we will consider ¢ = 0 which makes the estimator 6: . full minimax;

ordinarily, one would expect to trade off large sacrifices irt the overall.Bayes

risk in return for this full robustness. The beauty of the approach lies in the



fact that when p is reasonably large, the sacrifices are next to nothing, yet we
are assured of full minimaxity of the new estimator. At this stage, we would
1ike to remind the reader that minimizing the posterior expected loss for each X
is a more attractive problem, but in general presents new difficulties. This is
because the restricted risk Bayes actions a(§) for different x, when put together
to form a strategy a(X), may go outside of the class s: and thus the infimum
may not be attained in ﬁ;. Thus, roughly speaking, S; should be moderately
rich to start with, so this catastrophe does not occur. We will see in the
subsequent sections that the resultant estimator is within ﬁ: in our problems;
we can thus completely avoid the hard technical variational arguments, and yet
solve the more general posterior restricted risk Bayes problem.

We would consider the problem of estimating thé mean vector § of a p dimen-
sional muitivariate normal distribution with common unknown variance 02; We
would consider the normalized quadratic loss

o - all®

L(g:070a) = —pr— . (1.1)
(¢}

The classical estimator 60(5) = X has constant risk p and is known to be inad-
missible for p > 3. We would assume that the unknown variance 02 is estimated
on the basis of W, where (m+2)W ~ czxz(m) for some m > 1, and is distributed
independently of the Xi's (the multiplier (m+2) upfront makes some calculations
a little easier).

It was proved in Strawderman (1973) (also see Baranchik (1970) and Efron and

Morris (1976)), that if

s(xM) =(1 - {E=2)elBl) ) Ly (1.2)



beTongs to % = {5: 0 <1 <2, t(F,W¢ in W for each fixed F,

(F,W)4+ in F for each fixed W} ,

then R(g,cz,s) < R(Q,OZ,X) =p V‘g,czg in the above, F = — . When

(F) = =(F,W) does not involve W (i.e., & is orthogonally invariant),the condi-
tions on t(F) can be somewhat relaxed (one does not need full monotonicity of

" ¢(F)); see Efron and Morris (1976). For certain kinds of priors w(g,cz), the
Bayes estimator of,@ is orthogonally invariant (so that the corresponding
Tﬂ(F,W) is free of W); it will be clear from the proof that the restricted risk
Bayes estimate for such priors is the same no matter whether we seek a solution
of the problem within the Sa defined above or within the enlarged class of Efron
and Morris (1976). One nice thing about this is that their enlarged class is
the class of all orthogonally invariant estimators such that an appropriate
unbiased estimator of the risk difference is uniformly < 0. When TW(F,W) is
allowed to depend on both F and W, the class 8§ is not necessarily the class

of all estimators of the form (1.2) that uniformly dominate X. Thus, we have
really granted ourselves one more simplification of Berger's (1982) modified
version of the problem; in return, we can handle priors which do not produce
orthogonally invarianthayes estimators. Note also that the classical multiple
regression problem is a special case of the set up described above, once one
recalls that the least squares estimate é and the error sum of squares 52 form

a sufficient statistic in this problem and a linear transformation on é makes
its dispersion matrix proportiona] to the identity matrix I. Below we provide

a very simple example to give the reader an idea of how the proof will go in

all cases considered.



Example.
Let X~ N (8,0°1),
(m2)W v o2x%(m).

Suppose conditionally given 02, ei's are i.i.d. N(O,cz), and 02 has some prior

density wo(cz). It is easy to see that under the Tloss (1.1), the Bayes estimate

of ei is
%
E( [XW)
8- L (X,W) = -g = _1, (1.3)
Te'l E(l?lx’w) 2 .
o

X
X) =5 if F < 4(p-2)

= (1 - B2y L e F o> g(p-2). (1.4)

It is clear that &* e@o ; also, because of the nature of the loss function,
6; 0 would minimize the posterior expectedloss for all X,W if

IIG; 0" GWII2 < ||s - Gﬂll2 for all Geﬁa.(a formal proof is postponed ti11 the

hext section). Now notice that

6% o = 6. 112 =0 < [ls =5 |12 if F < 4(p-2); for F > 4(p-2),
2
8% o = 6,112 = (& - 222" L 1y )2
2 2
- (p-2) F 2
7 G -2 -
2 2
5-(p;§) (2(5-2) - o(FH) - |1y
2 (1.5)



The first equality follows from definition of 6?_0; the second line 1is straight

algebra; the inequality is due to the fact that for all §e ¥ » T(F,W) < 2 and that

2(p-2) > 2 for F > 4(p-2); the last equality again follows from definition of

s(X,W).

In more general cases, almost all the effort goes in showing that the restricted
risk Bayes rule belongs to 8% ; the proof of the fact that it minimizes the
conditional expected loss is no more difficult. The rest of the paper emphasizes
technical arguments to show what more general priors can be handled. In the
last section, we provide analytical formulas for Bayes risks {and the usual RSL's)
of the restricted risk Bayes rules; a concrete example is fully worked out and it
is shown that when enough degrees of freedom are available to estimate 02, the
restricted risk Bayes rule does practically as good as the unconstrained Bayes

rule,.

2..50me_background-machinery

In this section, we will prove some technical lemmas which would Tater be
used to generalize the results of the example above for much more general priors.
Our target will be to show that for a given prior w(g,cz), the estimator that

minimizes the posterior expected loss for each fixed X,W" is of the form

§* (X, W)

me0*~

(1 - 7 (FH)) - X if Fr (F.W0) < 2(p-2)

= (1 - 2&2%214 . X if Fr_(FW) > 2(p-2) .

Note that s* , coincides with the unconstrained Bayes rule for Frﬁ(F,W)_g 2(p-2).

L)

The proof will include the following. two steps:



*

. . 2 2
(1) Showing that ||§:30 -8 117 < [1s-6 |17V X,W; Vée 8,

e 82

(ii) Showing that s * 5
"M

0

Proving (i) is always easy; in order to prove (ii), it would be necessary to prove

F’l‘, (st) .
that T (F,W) = _3%5:?7—_ satisfies the monotonicity restrictions needed for

uniform domination. Typically, the monotone decreasing nature as a function of W
for each fixed F causes no problem for the priors we would consider. It is the
monotone increasing behavior as a function of F that needs non-trivial proofs.
We would assume that the conditional density of g given 02 is spherically symmetric
and that the density of 02 is of the form
a
i

no(oz) = e <12> ! ,a>0, (2.1)

a

Restriction to such priors séems necessary for the Bayes estimate to be of the
form (1.2). We remark that (2.1) includes the family of conjugate priors on 02
as also Jeffrey's non—informative prior. We also remark that the priors on
(9,02) are hierarchical in nature and it is a very common practice to put a

-~

conjugate or a non-informative prior at the second stage in hierarchical Bayes

problems.
202
Lemma 1 Let g( G; )'c_p denote the conditional density of g given 02 and Tet

ﬂo(cz) given by (2.1) above be the marginal density of 02,

For s > 0, define



S
kx(s) = e Zgls)
K(s) = Kx(s) - 5 [ K*(t)dt (2.2)
S
O2 6.2
|<
zssz e (02 ) N
Let f](——é—') = f Op - Y,
g
B
: - i 10,2
. e © ~k*(——%—) do (2.3)
xi% - i
and f2( 5 )= f 5

Then the Bayes estimate of 0. is given by
dﬂ’i(X’w) = (-l - Tﬂ(st)) * Xi s
where

z yA 2a
- 2.2 (Y
e ¢ P f](z)z“'3dz

NN

- _.Z_(n-{-‘g.i)
S e ¢F W 1"2(2)20L-3 dz (2.4)

oc=p'£—m+s,andn

m+ 2,

2
|le-all
2 )

(¢}

Proof: Since L(g,oz,a) =






10

2 -
[ P, (w2 a
2 X3 2 2
j‘ e 2c f] (__%)e 20 o (1—2)a-1d0'2
_ o g
= X 1 - — .
- Efi_ 2 - (m2)W _a_
2 X 2
20 ] 20 a” (1 ya=1, 2
I [ e fo(—5)e ()" do
o [o} .
£
which reduces to (2.4) on substituting ——% =z
8]
Lemma 2
. b2 p-2
4 4
f (z) = kyz I vzs)s 7 k(s)ds,
(2) = &, [ Pé—z( s * k(s)
_p-2 | p-2
and fole) =gz 4 1, (29)s Y (s)ds, (2.5)
2

) 1 ut 2\v-%
where k] is some absolute constant and Iv(u) = k2-u {e (1-t%)" % dt is the

Bessel function of order v.

Proof: We will prove the first formula. The second one follows similarly.

By definition,

TO.Y s X
2y _ N I = J
f1(zyj) [ e k(zej)dg, where y; = ==
Transforming to Polar coordinates nq, NgsseeaNp_ s I where n; 1is the angle
between g and y, and r = |18l], one has,
[1yllr cos n _ -
f1(2y§) = kq [fe ™ ](sin n])p 2dn]rp ]k(rz)dr. (2.6)

Letting llxll2 = z, substituting cos n; =t and rZ = s, the result now follows

by straight algebra.
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Lemma 3

f.(z)
?JYES' is monotone non-increasing if g is log-convex and monotone
2

non-decreasing if g is log-concave.

Proof: Clearly, in view of Lemma 2, the result would follow if we can show

k . . . .
that kisl is monotone non-increasing for log-convex g, monotone non-decreasing

p-2
for log-concave g, and that p(s|z) = IE:E (Vzs)s 4 k*(s) is an MLR family of
2
measures (note p(s|z) is not a probability measure; the corresponding

normalized measures are also MLR if p(s|z) is MLR). We first show

%é%%y-is monotone non-increasing if g is log-convex. First note that,

£
o [e ?g(t)dt
k(s) _ 1s
sy - ! T2 _ s (2.7)
e 2 g(s)
Next, integrating by parts,
w - L _ S w - L
%—f e 2 g(t)dt = e 2 g(s) + [ e 2 g'(t)dt
S S
w - L
: - %-.( ) [ e 2 g'(t)dt
1_ e g(s S
=>2 m__f; +°°__§ . (2.8)
[e 2g(t)dt [e 2 g(t)dt
S s

Substituting into (2.7) yields
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o - L 1
: g
[ e g'(t)dt
Eé%%y -1-5]3- i 3 : (2.9)
[e 2 g(t)dt
S

"(t) .. . S . '(T) .
Note now %IE3-1S increasing if g is log-convex, and EE%(TT_ T > s] is

therefore increasing in s (whatever be the distribution of T). (2.9) now

gives that %é%%y is decreasing for log-convex g. The same argument also shows
that it is increasing for log-concave g. In order to show p(s|z) has the

MLR property, it will be necessary to show that

IR
{ e (1-t%) dt
R(s) = — is increasing in s for z, > z, > O.
1 oapst LB 2
{ e (1-t%) dt
Now by straightforward computation,
-3 p-3
1 vz,st p=2 1 vz st
[e &7 ¢(1-t%) 2 dt [e UV t(1-t?) % dt
-] -1
R'(s) > 0 e vz, > Vzq -
B 21 st B3 T st 2 52
{ e (1-t%) dt [ e t(1-t)°) dt
- -1
1 Vzpst 2E§§
It's clear that { te (1-t%) dt > 0 Vs, z, > 0 (2.10)
Hence (2.10) will follow if
1 /z st p23 1 st 5 B%§
[ e t(1-t2) 2 dt { e t(1-t%) ¢ dt
-1
1 /Egst pé S /z st p23
[ e t(1-t dt 4 e t(1-t ) dt
-1

which is an immediate consequence of the MLR property of the family of densities
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p-=3
e/Zét (]_tZ) 2 .

Lemma 4. rﬁ(F,W) is decreasing in F for each fixed W if g is log-convex

and increasing in F for each fixed W if g is Tog-concave.

Proof: Follows from Lemma 3 and the fact that (2.4) implies that

f.(2)
Ef?iriT] with respect to an MLR family of densities.

T“(FQW)

Lemma 5. Tﬂ(F,W) is decreasing in W for each fixed F if g is log-convex

or if a = 0 in (2.1).

Proof: Again follows from (2.4) and Lemma 3 using MLR arguments. For

a=0, Tﬂ(F,W) is independent of W for any g. At this stage we present a

brief discussion of what the preceding lemmas tell us. They show that for
log-concave g and a = 0, Tn(F) may not be positive but if it is then

FTN(F) will be monotone increasing in F as TW(F) jtself is so. Thus for
log-concave g, the effort would be directed towards showing that TW(F) > 0 (note
that TH(F) > 0-is required for uniform domination by 6:’0). On the other hand, for
log-convex g, which are often decreasing, whatever be a, TW(F,W) is

guaranteed positive but is monotone decreasing in F, so that the effort

will be directed towards showing that FTH(F,W) is monotone increasing in F.

For a general log-convex g, it seems extremely difficult to exactly specify

some easily verifiable conditions on g for FTﬂ(F,w) to be monotone increasing
(one needs more than mere log-convexity for this to happen, because FTW(F,N)

is not monotone increasing in F even for all finite scale mixtures of

€.€ , which are all log-convex. We will

normal priors, i.e., g(s) = ;

n M?T'
—

i
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next show that monotonicity of FTﬂ(F,W) generally causes no problem if the
ci's and ei's are not too different; we will also prove a parallel monotonicity

result for certain continuous scale-mixtures

S

2
2 2y, 2
g(s) = f e T p(t")dz".
The technicalities are easier to handle for continuous mixtures than for
discrete mixtures. We will then prove similar monotonicity results for
certain log-convex ¢ which are not scale mixtures of normals and exhibit

a class of log-concave priors for which Tﬂ(F) > 0 for every F.

3. Priors which are scale-mixtures of normals

Lemma 6
C.
RS2
Let g(s) = 1Z1€1 c; e , where 0 < e, <1, e, = 1, ¢; > 0. Then
R+'|
Zeia§ (n+a1F + 2%02'“ ]
Tﬂ(F,W) = b (3.1)
2 2a,\2-a
Te s (n+a.F + W
¢
where a. = ]+Ci.
5 -3 (%))
Proof: Note that k*(s) = Le;C5 e
%6 .X. 592
e 32.] k*(—-%)
by straight algebra, f,(u) = [ —2 5 9 ds
(e}
B U
5 2(1 a.)

(3.2)

{
™~
m

s
o3
1)



Therefore, using (2.4), the denominator of Tﬂ(F,W)

2a
n+ — a
R
= ze.a; fe
P
= T(a-2)(2F)%"2 z€ia§ (n+ 2—3 + aiF)Z—“.

Using the definition of k(s), it follows as in (3.2) that

15

(3.3)

g-+] %—(1-a1)
f](u) = Ze.a; e , and hence the numerator of (2.4) is equal to
. E.+]
P(a-Z)(ZF)a-Z z€1a§ (n+ g%—+a1F)2'“

(2.4) now gives the result.

(3.4)

Lemma 7. For g(s) as in Lemma 6, Fr_(F,W) is increasing in F for each fixed

Wif
a
(a-2) (37> - 1) < 1,
min
where a = max a. and a_._ = min a..

max min 1

1<i<k 1<i<k

. 9
Proof: ¢ FTﬂ(F,W)

_ 2
= ¢ (FM) + Feop 1 (F.W)

to

+1

— N

2a)2-a

Te.a (n+a1F+ W

oo

2ay\2-o
Zsia.(n+a1F+-W~)

-l



Py
251a§ (n+aF+ %EJ]'a
+ F(2-a) D
2 2a\2-a
Lea; (n+aiF+ W
R .|.'| R .|.'|
2 2ay2-a 2 2ay1-a
) Le;aj (n+aiF+ W_) Le.as (n+aiF+ W_)
% 2a\2-02
ay2-a
(ZEiai (n+aiF+ W—) )
5 41 2820 3 2a\2-q
® Ie.al (nt+a.F + W—) Ze;as (nt+a,F+ W")
(24 B
+ (a-2)F z€ia§ (n+a.F+ %9)2 “28135 (n+a F+-%§

—7 = §..
2a i
n+a1F+ '

Then (3.6) reduces to

zdi e, + (a-z){zdi £C;6.

. rvd.§. - . .S,
Now ZC1 X 161 Zd1 2c161

C.

- Zd151 Zci} > 0.

d.
3

< {(max a%)(max E_) - 1}Zd1 HLP

1

.i

16

(3.7)

(3.8)
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d.

max i_
< (E;;; -1)zd1 Ic, as E;—- a; and 85 < 1. (3.9)

(3.8) now gives the result.

(3.5) is fairly restrictive; however, it is a general sufficient condition
for arbitrary k and mixing constants {Ei}‘ In specific cases, one will
almost invariably be able to accommodate a much larger spectrum of ci's in
the definition of g(s). The following Lemma for a mixture of 2 normals gives
evidence for this.

C

PR R N
Lemma 8. Let g(s) = 5 c? e 27,

eI

i=1
C.
Let a; = 1+; » 1 =1,2. Then FTN(F,W) is increasing in F for every
i
fixed W if
a a
(a-2)2(12% )% < qp(10%)3, (3.10)

min min

Proof: Multiplying throughout by Fp+] and setting aiF = Xs» (3.6) becomes

5+ 2a\2-0. 3 22,2
ay2-o ay2-o
IX; (n+x1+ W—) TEXS (n+x1+ W—)

E.{.] .p.+'|
- 2a.1-
+ (a-2) {Zx§ (n+x1+ %2-2 o‘zx? (n+xi+ Wg) @

E+2

P
2 2a\T-a_ 2 2ay2-a
- IX] (n+x1+ W—) IXG (n+x1+ m ) } > 0. (3.11)

The quantity within { } in (3.11) is
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b
= -(nt+ ﬁ )x % xg(n+x]+ %3)1 0‘(n+x2 e )2 (3.12)

Thus (3.11) implies that it suffices to show

pp
+ + - 2 2ay2-
? ](n+X1+ %§)4 20, + p 1(n+X2 63)4 20 + X] g(n+x]+ “E) -a

pp
- 2
(mix,+ 28270 (o) - (0-2) (nt B8 xB(mxy+ B2)1 7 (et 521y -x,)
(3.13)

2a)2 o

(n+x1+ %3)2 *(n X+ ﬁa)a-Z +

)2
(3.14)

+ (Xq+%,) - (a-2)(n+ 7=
1 72 W 2a 2a
(n+x1+ 7 )(n+x2+ i £9)

=A+B+C-D (say). (3.15)
. A+B 1 1 - /—‘—
By the concavity of logz on (0,x), 1og( —) > §-1ogA + 5-1098 Togvx

= A+B 3_2/x1x2. So is C.
(3.16)

Hence A + B + C 3_4/x1x2.
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On the other hand, assuming without loss of generality that ap = A 2 i, T A,
a a
23 2 2 (_max _1)2 (-max _1)2
(nt 57 (X9-%,) 2 . :
W 172 min < x min (3.17)
(n+x,+ gg-)(n+x + gg) T (ntxqt gg) -2 %max ' .
1 W 2 W 1 W ——
%min

The Temma now follows from (3.16) and (3.17).

It's clear that Lemma 8 is much stronger than Lemma 7 in the special case

treated in Lemma 8. For example, with p = 5, m = 5, a non-informative prior on
a
max

o° (i.e., B = 2), Lemma 7 only allows < 1.2 whereas Lemma 8 allows
min

a

amax < 3.1.

< It's not clear to us right now, however, if Lemma 8 can be
min
generalized to an arbitrary finite mixture with k > 2. The next Lemma proves

monotonicity of FTﬂ(F,W) in F when g is a continuous scale-mixture of normals.

Lemma 9

S

2
Let g(s) = fe A p(TZ)de. Let also f(a) denote the density of z = !

1+¢
.. S . e zf'(2) . L
Then FTW(F,W) is increasing in F (for fixed W) if —?127—-15 decreasing in z.

5

Proof: As in (2.11), it follows that

R+]

.
fz2 (n+zF+ %g)z_af(z)dz
_0
. (FH) = B (3.18)
fz2 (n+zF+ %g)z'af(z)dz
0

Let 0 < F] < F2 < », We need to show
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124 124
ézz (n+zF2+ %ﬂ)z “f(z)dz f22 (n+zF]+ %ﬁ)z'af(z)dz
F2 . > F-I . O
15 23,2 1% 23,2
éz (n+zF,+ WQ) “%f(z)dz éz (n+zF + WQ) ~%f(z)dz
11 5% 2a\2-a 24,2~
@ {) é (Fx) (Fay) (e 5) 7% (ntFpy+ 49)°7°
b b +1
- (F0f(F)?  (neFpxe B2 (nef yw £3)27 15 (x) F(y) dxdy 2 0
11
e [ [ h(Fox, Fy)f(x)f(y)dxdy > 0,
00
P
where h(x,y) = (x-y)(xy)? (nex+ f,—a)z'“(n+y+ %)2'“.
Fa Fy
o [ [ h(xy)f(E)F()dxdy > 0. (3.19)
00 Fol hy

It's clear that h{x,y) = -h(y,x) and h(x,y) > 0 for x > y. Consequently (3.19)

will follow if we can show that

F

P
[ [h(x,y)f(
0 0

'T'I!><

)f({-)dxdy > 0
1

2
which in turn will follow if it can be proved that the density at (x,y) is
greater than the density at (y,x) whenever x > y. This is what we prove

below. Clearly, it needs to be shown that

Q>FPx>y=f@?ﬁ%Jzﬂ%ﬁ@4

62 .1 (3.20)
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For fixed x, y (x > y), define p(a) = Flay> @ > 0.

xf'(ax) _ yf'(ay)f(ax)

Clearly, p'(a) =

f(a,Y) fz(ay)
- __El-— {axf' (ax)f(ay)-ayf(ax)f'(ay)}
“af(ay)

_ _f(ax) {axf'(ax) _ ayf'(ay)}
af(ay) = f(ax) f(ay)

< 0 since Z;zé§)-is v in z.

Hence i(g§ decreasing in a if x > y, which proves (3.20). This proves the

femma.

We now give examples of a few mixture distributions which satisfy the

sufficient condition of Lemma 9.

Example 1

2
Let p(<?) = /T (:2)17B, 85 2, o > g-1. Then

oz

f(z) = e 1-z (1-2)1_828'3. By direct computation,

zf'(z) _ _ _oz (g=-1)z
f(z) (1_2)2 1-z

Note that the family of mixing distributions p(rz) generate the spherically

+ (g-3), which is decreasing in z for o > g-1.

symmetric t and Cauchy priors.

Example 2. Let p(c2) = ()71 (142) (M0
Then f(z) = zm—1(1_z)n_1.

Again, by direct computation, Z;ié§l-= (m-1) - (n;lgz’ which is decreasing

inz forn>1,
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Again, note that these are the scale mixtures which generate Proper Bayes
minimax estimates for the multivariate normal mean with a common unknown variance
(see Strawderman (1973)).

In the nexf section, we will treat certain other priors which cannot be
written as scale mixtures of normals. Before proceeding to the next section,
we formally state a theorem below which has essentially been proved already.

202

Theorem 1. Let the condtional density of @ given 02 be of the form g(——%) and
g

let o2 have a prior of the form given by (2.1). If g is a finite scale mixture
of normals satsifying the conditions of either Lemma 7 or Lemma 8, or if g is a
continuous scale-mixture satisfying the hypothesis of Lemma 9, then 6; 0 defined

2

as

5% (W) = (1-c (FW))-X  if Fr (F,W) < 2(p-2)

(1 - 2(F-2)).% otherwise

minimizes for every % and W the posterior expected loss within the class NB.
Proof: Follows from Lemmas 5, 6, 7, 8, and 9.

4. Priors which are not scale mixtures of normals

It was proved in Berger (1975) that if g(g) is a spherically symmetric

1 2
IR

prior of the form g(zeg) = [e 20 dF(oZ), then g is completely monotonic

n d"

ie., (-1)" —
(i.e., ( )dsn

some scale mixture of normals as above. Relatively simple examples of functions

g(s) > 0 ¥s), and conversely a completely monotonic prior is

which are not completely monotonic are g(s) = sne—s/Z’ n £ 0. Note that g is log-convex

and- decreasing if n < 0 and 1og—c6ncave if n > 0. In view of the discussion following
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Lemma 5, we should try to prove that rﬁ(F,W) > 0 for n > 0 and that
FT“(F,W) is increasing for n < 0. It turns out that one needs conditions
on n in both cases. First we derive an alternative expression for TF(F,W)

which comes very handy later on.

1 —x )2
ng e- 202 Z(ej Xj) zeg
Lemma 10. Define m(——%) = 5 g %)dg where g is arbitrary
o [¢] g

subject to existence of all integrals and derivatives considered below. Then

TH(F,W) can also be expressed as

z 2a
- 5 L(m+2)+ =

Zm'(zF)e 22734z
T“(F,W) = -2 2 o . (4.1)
Tm(zF)e- E»[(m+2)+ W za_3dz

0

Proof: Familiar calculations and arguments similar to those of Lemma 1 give (4.1).

S
Lemma 11. Let g(s) = s'e 2, where 0 < n < Let also a = 0 in (2.1). Then,

o

t (F) > 0 for all F.

ki

Tﬂ(F,W)

Proof: 1In view of Lemma 4, if there exists F0 such that Tﬂ(FO) < 0, then

Tim sup © (F) < 0. We will show that for n_i-%, 1im = (F) exists and is > O.
-0 " F+0 "

Using the arguments of Lemma 2, one has, for any z > 0,

z
m(z) = e 2-<1>(z), where
p-3 p-2
o(z) = constant x | {e/git(l—tz) 2 dt s 2 e Sds
0 -

A 4
Lm(z)=-ge Zo(z)ve Zo'(a). (4.2)
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We would prove that Tim ¢'(z) = @'(0) (say) exists and that ¢'(0) - l-<I>(O) < 0,

2
z>0
which in view of (4.1) and an application of the Dominated Convergence Theorem

would then imply that 1im rﬂ(F) > 0. For purposes of showing that

0'(0) - %—@(0) < 0, we would ignore the constant in the definition of

p;?’ e B2

8(z). Clearly, o Y(1- ) 2 4t s 2 o7S4s.

w 1
ff(e/s—zt -/“zt
00

By the Dominated Convergence Theorem,

9(0) = Tim o(z) - B(z» 251 - T(n+ §). (4.3)
Z->

Again, by the Dominated Convergence Theorem,

=12 2p§_3 -7 ™3
Tim e'(z) = [ [ t°(1-t dte “s ds
z~>0 00 '
1.3, Bl p
=5+ B(5, 5) T(n+ 5 +1) (4.4)

p-1 Ty (p=]

) ]T(z)r( 2 ) 1 F(—)F( )

g 7, T 41) -5 i(%) 2-r(n+ ) <0
iff n<b.

Theorem 2. 6; 0(,)S,W) defined as before is the restricted risk Bayes rule

within ﬁa if the conditional density of gvgiven 02 is

1 16t

g(——ﬁJ = (——é)n e 20 with 0 < n 5_%—and o2 has density given by (2.1)

=
-
+
=
o]
1]
(]

Proof: Follows from Lemmas 4, 5, and 11.
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S
We now prove that priors of the form g(s) = sne- E-for n < 0 can also be handled
if n is sufficiently close to zero. The arguments used below do not exactly say
how close to zero n has to be, but we think it is possible to specify such a Tower
bound on n. Also, simply for convenience, we have taken a = 0 (in the prior for
02) in the following Lemma, although a > O can also be handled using essentially

the same arguments. Also recall that the definition of 6: 0 really needs
monotonicity of FTﬂ(F,W) only in the region FTW(F,W) < 2(p-2).
Lemma 12.
-5
Let g(s) = s"e 2, where n < 0. Also let a = 0 in (2.1). Then there

exists an Ng > 0 such that for n > - Ng» FTW(F) is increasing in F for

Fr_(F) < 2(p-2).

Proof: Define for n < 0,

h(n,F) = (FTﬂ(F))' = Tﬂ(F) + FT%(F).

Let C = {F: Fr_(F) < 2(p-2)}.
We need to show that &nj 2 n > -ny = h(n,F) > 0 VF ¢ C .

We would prove this as follows. If the above assertion is false, then we can
find a sequence (n,Fn) with n >~ 0 and Fn £ Cn such that h(n,Fn) < 0 for every n.
We would prove that F_ (or a subsequence thereof) necessarily converges to

FO’ where F0 may be zero. If Fy >0, by the joint continuity of h{(n,F) in n
and F at n = 0 and al1 F > 0, we would have a contradiction because

h(0,F) =-% YF > 0. We would also show that 1im h(n,F) exists and is also
n,F~0

%—so that we would arrive at the same contradiction even if F0 were to be zero.

We now prove these things one at a time.
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In order to prove that Fn has a convergent subsequence, we would prove that
Cn g;CO (vn < 0) and hence Fn € CO.Vn. Since COU{O} is a compact set, Fn has
a subsequence converging to some F0 € CO.

Using (4.1), ¥n < 0,

V4
-7 (m+2) a-3

| fmﬁ(zF)e 2" Ydz
T“(F) = =2 7 s (4.5)
B §(m+2) a~3
fmn(zF)e z “dz
1 2
h (ng) tands for [ 2 2t ey 2y
where m_ 2 stands for | 3 e g(z03)dg.
L en)? s
1 2 n 2
m (Z) J'_p e o s e df%
ow n _~=_29 (4.6)
mA(2)
0 - ) -x.)2 S
5 e e g
i
where s = -
o
m (z)

. n .
By using the arguments of Lemmas 2 and 3, 66(27 can be expressed as

E(sn), where s (given z) has the density

p-2
p(slz) = 1), (/52)s 4 oS,
2

It was proved in Lemma 3 that p(s|z) is MLR in z;(fgrthermore, s" is monotone
m (z
. . . . . n . . .
decreasing in s, Vn < 0, which now implies that is decreasing in z;
m0(25



=« (F) >3 W (using (4.5)).
FecC =5 < Fr (F) < 2(p-2) = F e Co-

This proves that Cn c C0 , Vn < 0.

It now only remains to show that the joint 1imit Tim h{n,F) exists and

n,F~0

(4.7)

is equal to h(0,0) = %u Towards this end, recall that h(n,F) = TH(F) + Fr%(F)

and hence it suffices to show that 1im TW(F) and Tlim T%(F) both exist and

n,F=0 n,F 0
equal %-and 0 respectively.
By definition,
_ (m+2)z
fmﬁ(zF)e 2 973y
T, (F) = -2 AR
Jm (zF)e 2 073g,
_(m+2)£
") me(zF)e 2,024,
' (F) = -
' -(m2)5 3
Jm (zF)e 2% dz
-(m+2)5 -(m+2)%
) fmh(zF)e 2z“'?’dzj'mr'](zF)e 2,024,
~(m+2)%
(fm (zF)e 2,973dz)?

It suffices to show that each of the following four integrals

_( +2)£
I](n,F) = fmn(zF)e " 2,2-34,

(4.8)

(4.9)
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~(m+2)

z
I,(n,F) = [m'(zF)e 2,0-3

dz

-(m+2) %
ZZa-Z

I,(n,F) = me(zF)e dz

3

Z
-(m+2) 2 a-2
V4

I,(n,F) = fma(zF)e dz (4.10)

4

are jointly continuous inn and F at (0,0). We would prove this only for
11(n,F). The proof runs along the same lines for the other integrals. We

need to show that 0 < F < 60 and -n < ¢ =

mn(zF) < M(z) such that

[l

-(m+2)
M(z)e

N

27347 < w. (4.11)

The Dominated Convergence Theorem would then imply that I](n,F) is jointly

continuous at (n,F) = (0,0). Assume without loss 8y <1lande < 1. By (4.2),

1 vszFt , -vVszF t 2 pé3 -S n+ o
[(e +e )(1-t%)
0

-Z
2

mn(zF) = C xe e ’s 2 ds

O 8

E_3_ n+.L2
(1-t2) 2 e/EZ e'(1'6)se'655 2 4s (4.12)

<2Ce

Z
2

O— —

oO— 8

(where 0 < ¢ 5_1-15 a fixed number)

2
S Z 1 p=3
<2re ° i e/gz'(]'s)zds, since f(]-tz) 2 4t is an absolute
0 0
ss M E%g
constant and e °Ss is uniformly bounded in s and n by an absolute

constant. (4.13)
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Completing squares, (4.13) gives

A

Z RY
-5 =(1-8)[Vs - 1
mn(ZF).i oC*e 2 é o 2(1-35) ds><e4<]'55

2§72 28 | (4.14)

(4.14) clearly implies (4.11).
The joint continuity of I,, I3, and I, uses similar bounds but mﬁ(zF) and
mH(zF) need to be handled now. No problems arise and we omit the details. This

proves the lemma.

Theorem 3. There exists a small enough ng > 0 such that if the conditional

262.

density of § given 02 is g(s) = s"e with s = ——%—and 0 < -n < ngs and if

c

no|wn

02 has density given by (2.1) with a = 0, then 6? 0 is the Restricted Risk

Bayes rule within ﬁa.

Proof: Follows from Lemmas 5 and 12,

5. Bayes risks, RSL's, and an example.

In this section we explicitly implement the analysis for a N(Q, I) prior
at the first stage and an inverted Gamma prior as in (2.1) at the second stage.
It is customary to judge the amount of gains in subjective Bayes risk one has
to sacrifice in exchange for Bayesian robustness in terms of the Relative
Savings Loss (RSL) of Efron and Morris (1971), defined as,

r(“’6:,0) - P(ﬂ,&ﬂ)
0) - T(ﬂ,ﬁo) - T(ﬂ,@ﬂ)

RSL(&*
Ty
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See Efron and Morris (1971), Berger (1982), or Berger and DasGupta (1986)
for discussions and conditional versions of the RSL. We would develop
upper bounds on the RSL for a general spherically symmetric prior at the
first stage (recall that Tow values of the RSL are desirable) and work out
these bounds in the normal case (the bounds have been obtained such that

the RSL 1is exactly equal to the upper bound in the special normal case).

Lemma 13. For any 6(%,W),

r(n,8) - r(m,s ) = Em{lld-aﬂHzoE(]—z X3,

g
where Em denotes expectation with respect to the marginal distribution of

X and W.
ny
Proof: Follows from definition of L(g,oz,a).

Lemma 14. The joint density of % and W is given as

m
2 e S )
f(X,W) = constant x=——= [ m(z)e dz,
(WF)*™> 0
ol D
where F = W n= m+2, and a = 5+t 5+ 8.
Proof: By definition,
2
%6
+2 )W a
R T s L RO SR
f(,)\(J,W) = J’f —p e g g e o (—2') e o (—2) d{%do
g 9] (e} g
2
Moy 2 -~ [(m2)+ g o
=W fn(—de % (15)**do



m
5 - z 2a 2
o - £ (nt 52 X
. W oF (M) g . ZX
= constant x m(z)e z~ 'dz (substitute z = —2).
(Fw)oc-3 O 2
o

Lemma 15. The marginal density of F and W is given by

P,.,m P _
2272 e - 3¢ (m+ &2 o-4
f(F,W) = constant x : )a_3 [ m(z)e z7 dz.
FW 0

Proof: Transforming to Polar coordinates gives the marginal density of

U and W, where U = [|x[|. Now make another transformation to

2
(F,W) = (%—, W) and the result follows.

Lemma 16.
z 23
AL
] fm(z)e 2 ¥
E(;ﬁW%,N) = constant R
FiWfm(z)e F W 'a-4y,
Proof: By definition,
X2 " ~ﬂ? (n+ %ﬂ)
J 2 1 ya-1,2
] fm(—e (+5)*"do
- o g
B KW = W Za ’
o 2 - —5 (n+ o)
2/¢ 2
(o ag
i
from which the result follows on substituting —5 =z
(¢}

Lemma 17. Assume sup m(z) . -M < 0. Then

7 m(z5

o p

m
21233810 1 (g-3) fm(2)2% dz,

2
r(m,85) = r(m,s ) > KxdM"- (= L 0
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where n = m+2, and K is a suitable absolute constant.

Proof: From Lemma 13,

r(n.8g) - r(mss ) = E {ro(F W)+ ][] Z-E(l—zm,m}

o JZ_ oy 22 o
(ém'(z)e oF (Mg )Zu-3 2

= 4xconstant [ - 5s . = 55

(Ofom(Z)e- o C
0

2-g 2

x W™ °F

(using Lemmas 15 and 16)

2- 5 -Bw - %= )
4MPxconstant ffwz'BF 2 (fm(z)e 2F W7 20"347) dFau
0

|v

m P
5 +8-3 3-8 ®

constantX4M2-F(%-+s-3)-22 LZE%F——--B(%3 e-3)jm(z)22dz

ﬁi °

(integrating first with respect to F and W)

m . P
= constantX4M2-(%)2-a3'8-r%-F(B-3)fm(z)22dz.
0

Lemma 18. Assume g(s) is such that FTﬂ(F,W) is increasing in F and decreasing

in W (for fixed W and fixed F respectively). Then
T(W,S:,O) - r(w,&ﬂ)

w =T 1o (m p-2 2 _nz
5_4KP(6-3)a3'B( fo £ 2 ,é (m'(z)+ ml(:Z)m(z)) o T84 r

p(0)

where ¢{0) = inf sup{F: Frﬂ(F,w).i 2(p-2)1.
W
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Proof: Using Lemmas 13, 15, and 16, P(w,dz O) - P(n,éﬂ)

4( _Z)T st) 2 - Z_ .gg
=JI Ti(F’w) = Fﬂ( ¥ 4(p;§) (Jm(z)e 2F (M )z“'3dz)
o I _
X NZ-BF 2 BI (5.2)

Fr_(F,W) > 2(p-2)dFdu’

Define now, for each W > 0, ¢(W) = sup{F: FT“(F,W) < 2(p-2)}. We claim that
(W) is non-decreasing in W. If not, 3 0 < Wy < Wy <o such that
v(Wy) > y(W,). By definition of w(W;), & Fy > w(Wy) 3 Fyr (Fy.Hq) < 2(p-2)

= FOTﬂ(FO,wz) 5_Forﬁ(F0,w]) < 2(p-2), which contradicts the definition of
(k).
Hence, letting v(0) = inf (W), one has, from (5.2) and Lemma 10,
W>0
P(ﬂ,éi’o) - T(ﬂ,@ﬂ)
z 2a y4 2a
w - 55 (n+ 5) ® - Selnt 5)
o Frgege T W 3,2 - fmi(z)e 20 W7 je-3y,
8(p-2) O
<Kf [ {4 +
— 2a F Z 2a
09(0) =  -Z= (mD) R (- RO
(Im(Z)e 2F W u-3dz)2 Im(Z)e 2F W [0 3dZ
0 0
2a m
2 | ) 2- 5 -8
+ M) Him(z)e B W BB 2 dRa
F 0
(5.3)
yA 2a yA 2a
-2 (m 29 o - Z(ne 29y
2F N Za—3d2)'+8(g—2)(fml(2)e 2F W ZG 3dZ
0

2 = oL (2 2- 0 -
+ A2 (rp(z)e F N z“'3dz)§F 2 T2 Bgrdu (5.4)
0

(use Schwartz's inequality on the first term)
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_ 3.5 % 832 383 ()12 | 8(p-2) 4(p-2)*
= K.r'(g-3)a w{O)F ’ (mmgi) (p m'(z)+ _—EEE__ m(z)
_hnz
2F,o=3¥3-B 4, dF
(integrating out W)
0 =T e (m'(2)+ BB m(2))® - 32
_ 3-8 2 2F_a-B
= 4KT(8-3)a LP{O)F (é m(z) z% Pdz)dF (5.5)

The following corollaries give expression for r(w,ao) - T(ﬂ,ﬁﬂ) and
r(n,G: 0) - r(w,dﬂ) in the special case when conditional on 02,

2
g Np(Q’G 1).

S
Corollary 1. Let g(s) = e 2 Then
p m
r(ms8g)-r(m,8 ) = K42 (2)%3 8 r(g-3)r(5 +1).
0 2 2
_Z
Proof: Follows from Lemma 17 on observing that m(z) = e 4. Note that all

upper bounds used in Lemma 17 are equalities in the normal case.

S
Corollary 2. Let g(s) = e 2,
Then P(H,G:’O) - P(F,SH)
m
12,022 3-8, 1 ppgm 25 (2 41, My _a(p- pom
= K-4 (n) a r(g-3) 2 T(2 * 5 +1)x[n Bx(z +1, 2) 4(p Z)an(Z’ 5 +1)]
+ 4(p-2)%8, (2 -1, § +2),
s-1 . 2(p-2)

1 r-1
where B_(r,s) = [t~ (1-t)
X X
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z
Proof: In (5.5), using m(z) = e 4, and using the facts that
R+m+] E+m+]
T L T B Tt
[ e z" Pdz = = ., that ¢(0) = 4(p-2)
0 J%+§+1
(F+2n)
S b s
"2 * - F2
for g(s) = e ©, and that for 5 > 0, f - dF
4(p-2) %»+ > 1
(F+2n)
_m o
= (2n) 2 Bx(g-—s+1, M +s), one gets the result. Again note that all

lower bounds used in Lemma 18 are exact equalities.

Theorem 4. Let Qlc " Np(O,oZI), and let 02 have density given by (2.1).

Then the Relative Savings Loss of the restricted risk Bayes rule is given by

2n (B m pm
RSL(a; [n BX(2 +1, 2)-4(p-2)nB ( 5 +1)

) = )
,0 nzB(E-+1 m) X2
where n = m+2.

Proof: Follows from Corollaries 1 and 2.

It's interesting that for each p and m, the RSL's are independent of
the hyperparameters of the prior on az. The RSL's are monotone decreasing in
m and p, and for large m, decreases to zero at an exponential rate. This is

the assertion of the following proposition.

Proposition. If ] and 02 have prior distributions as in Theorem 4 then
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i = - _ 4( _2)
1im RSL(s% g) = T=vpp(2(p-2)) + = =25ty (2(p-2))-y_o(2(p-2))1,
where wp(z) = pIx%(p) < zl.
Proof: First note that for s > 0,
B.(E +1-s, T 49)
R(m,s) = XL = ppx > 522, (5.6)
B(5 +1-s, 5 +s)
m %—+s X
where X ~ Beta(%—+1-s, §-+s). Using the fact that if————--T:igm F(p+2-2s, m+2s),
5 +1-s
one has, from (5.6),
m
_ 2 2(p-2)
R(m,s) PLF z n (p-2)+4-25:| (5.7)
2

£ yP(pr2-2s)
Asm-wo , F= 275 Therefore, by Stutsky's Theorem,

R(m,s) - P[xz(p+2-25) > 2(p-2)] = 1-wp+2_25(2(p—2)). The result now follows

’ B(%-+1-s, %—+s) P(%
from Theorem 4 using the fact that =

B +1, ) 15+ 1(3)

+1-s)r(% +s)

Theorem 4 is a little surprising; it enables us to calculate the RSL's in

the special normal case in closed analytical forms. In what follows, we

have provided a table for RSL's of the restricted risk Bayes rule. Non-normal
priors are also perfectly manageable because of Lemmas 17 and 18; however,
one possibly has to resort to numerical integration in such cases, and the
theory of this section gives only upper bounds for the RSL's when the prior is

non-normal and not exact RSL's. Finally, we remark that a normal prior at
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the first stage should not be a cause of concern from robust Bayesian
viewpoints, because 6*,0 is full minimax to start with and this has the
ultimate robustness built-in in it. However, one should perhaps also try

t, Cauchy, and double-exponential first stage priors; work in this direction

is currently under progress.

Table 1: RSL(s% 1) when ] (0,0°1)

N 3 4 5 6 10 12 15

4| .50000  .36000  .29289  .25364  .18614  .17129  .15718
8| .41377  .26030  .19065  .15171  .08926  .07656  .06494
12| .37858  .22138  .15225  .11470  .05744  .4652  .03687
20 | .34756  .18814  .12047  .08496  .03424  .02545  .01810
30| .33101  .17089  .10443  .07037  .02402  .01660  .01071
50 | .31724  .15681  .09163  .05899  .01680  .01064  .00607
| .20567  .13534  .07269  .04275  .00804  .00400  .00159

The numbers indicate that if one has roughly 20 to 30 degrees of freedom for
estimating 02, then for p > 6 the sacrifices in the subjective Bayes risk are
nominal, yet we are assured of full robustness via minimaxity. Note however
that the rate of decrease to the 1imiting value for each fixed p is going to
be small and it would take quite a large sample for estimating 02 before the
RLS's are practically the same as the limiting values. Also, interestingly,
for each p, the Timiting RSL's are the same as the RSL's of the restricted
risk Bayes rules for the known variance case (see Berger (1982)). In short,
the moral of this paper is that striVing for Bayesian robustness, contrary to
popular opinion, is not a wild goose chase; at least in most normal problems,

it's something that can be achieved in small enough dimensions without any
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perceivable dent on the subjective Bayes risks. An even more conservative
formulation of the problem (now under study) would be to try to limit the
RSL's simultaneously under a class of priors and a class of losses. Of
substantial practical interest is also the problem when the variances are

different. Of necessity, the technicalities are more involved.
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