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ABSTRACT
This paper considers the estimation problem of ainormal variance 02

on the basis of a random sample XqsewesX under quadratic loss when the
mean £ is unknown. The best equivariant estimator Z(xj - I')Z/(n + 1)
is known to be inadmissible but the extent to which this inadmissibility
phenomenon 1is serioué has not previously been considered. Herein, the mean
square error of the minimax and admissfb]e estimator due to Brewster and
Zidek (1974) is evaluated and an explicit formula for that estimator is
given. It is shown that this risk function has maximum at & = 0 which
is the mode of the corresponding generalized prior density. Locally optimal
shrinkage scale-equivariant estimators are introduced and their risks are
calculated for several values of the sample size n. It is observed that
Brewster-Zidek estimator has risk function close to that of locally optimal
minimax shrinkage estimators, but that the latter cannot give more than 4%

relative improvement upon the traditional procedure.



1. Introduction

Let XpseeesXps n>2, be a random normal sample with unknown mean ¢ and
unknown variance 02. We consider here the estimation problem of the variance
02 under quadratic loss.

n

n
Let X =) xj/n and 52 - ) (Xj - X)2 be a version of the sufficient
1 1 '

statistic. The best unbiased estimator of 02 is §,,(X,S) = 52/(n - 1).

U
This estimator can be easily improved upon by 6O(X,S) = SZ/(n + 1), which

is optimal in the class of all procedures of the form c32 with some positive
c. Some other choices of the constant c¢ have been considered in the liter-

ature: Lindley (1953) suggested taking ¢ = 1/(n - 2), and Goodman (1960)

proposed ¢ = 1/(n - 0.5). Notice that the estimator &, is more optimistic

0

than 8, about the value of the unknown variance in the sense that 8y < SU.
The shrinkage estimators considered in this paper are even more optimistic
than 60.

The inadmissibility of &, has been established by Stein (1964), and a

0
considerable amount of research has been directed to related problems after
this discovery. Brown (1968) extended the inadmissibility result to more
general loss functions, Strawderman (1974) obtained a class of minimax
estimators some of which are generalized Bayes. Olkin and Selliah (1976)
prove the- admissibility of 8o within the class of all estimators whose
risk is a multiplicative or additive function of ¢ and . Cohen (1972)
obtained improved confidence intervals for oz,and Brewster and Zidek (1974)
derived a minimax estimator which is admissible within the class of all
scale-equivariant procedures. Proskin (1985) proved absolute admissibility

of Brewster-Zidek estimator by formalizing the heuristic argument in Brown

(1979).



In this paper we study the possible improvements over 60 in terms of
quadratic risk. In particular in Section 2 we evaluate the risk of the
Brewster-Zidek estimator. This risk function is shown to have a peculiar
form with surprising maximum at & = 0 (which is the mode of the correspond-
ing generalized prior density). In Section 3 the largest possible improve-
ment among all scale-equivariant minimax shrinkage estimators for small
samples is calculated as is shown to be no more than 4%. The estimator

attaining this improvement is explicitly given.

2. Brewster-Zidek Estimator

2

We consider here scale-equivariant shrinkage estimators of ¢“ of the form

2

§(X,8) = $7 (1 - ¢(U))/(n+ 1) | (2.1)

L
?) , and ¢ is a positive measurable

35 2, 2vh iy 0
where U = n?/X|(nX~ + S%) n?|X]/(}x
1
function.
The minimax estimator 81 obtained by Brewster and Zidek (1974) has

this form. It is generalized Bayes against the prior density

-1
2

AEs0) = [ exp -nte?/(269)1 7 (1 + )7 dt/o
0

with respect to the invariant measure d¢ do/o when scaled quadratic loss

(<S/o2 - 1)2 is used. We shall need the following representation of I



-n-3

o exp{[n(x - 5)2

+ 521/(26%)1 A(2,0) dedo

1(%:8) =
o " expiIn(x - £)2 + s21/(26%)} A(£,0) dedo

-3
-1 2
-n-3 +s21/(26%)1 (1 + t) % t dtdo

[ o exp{-[nx2(1 + t1)
0

-1

-3 -1
2 ¢ 2 dtdo

© o -1 .
é'é o N=5 exp{-[nx2(1 + t-l) + 52]/(202)} {1+ t)

$2 ? (1 - 42y (n-1)72
0

2 5 (n+1)/2
- S (1_U(1'U) )
n+1 u 5 (n+l)/2
(n+2) [(1L-v v
0
= s% (1 - ¢y (W)/(n+ 1), (2.2)

Formula (2.2) allows easy calculation of e Indeed if n=2p -1

where p is positive then

¢1 (u) = (1 - u



and for even values of the sample size n, n = 2p,

P+
o1 (u) = (1 - o)

+

T E (2p+1) ... (2p - 2k +

3) 2 P-k+%
Go o 2P . (2p -2k T 2) (1 -u%)

(2p+1) !l arcsin u
(2p) 1! u

These formulae are convenient for numerical evaluation of quadratic
risk of 84 for small sample sizes. 7

It is easy to see that the mean squared error of 61 as well as any
other estimator (2.1) depends only on n = n%lg[/a, and for any estimator §

of this form because of (4.3)

p(n) = EIS%/(n + 1) - 127 - [$°(1 - )/(n + 1) - 117

2
42 (n+1)72 (4

-1
n—2)

2)(n+1)/2

1
[é o(u) (1 - ¢(u)/2) (1 - u (un) du

"Tn+3

1 Y (n_l)/z
- (n+ 1) é ¢(u) (1 - u%) mep (un) dul,  (2.3)



where
® n -s2/2 (m-1)/2

d = s e ds = 2 r(0.5(m + 1))
0

and

2

m(u) = (2n) % {s"e® /2 cosh su ds. (2.4)
0
Notice that
) U d u 5 (n+1)/2
¢1 (U) = 1?r37?7' aa-]OQ é (1 -V ) dv

so that
200) = s 2 2
¢7(u) = —upi(u)/(n +2) + [n+2 - (n+ Nu”/(1 - u)]e;(u).

Integration by parts now gives

2
sn) =t e P+ )Emr2)N (@ )7

1
Lo u (1 - W22 e 1) s (un) - 0.5 (1 - W)nd o (un)ldu. (2.5)



It follows that A(0) = 0, i.e. at £ = 0 the risk of the Brewster-
Zidek estimator takes its largest value. This is to be contrasted with the
fact that-g = 0 is the mode of the generalized prior density.

Using formu]as‘for 41 and formulas (4.4) - (4.10) from the Appendix
one can evaluate the integral (2.5), for instancé; by Romberg adaptive
extrapolation rule. Notice that for odd sample sizes 91 is a rational
function so that (2.5) can be calculated in closed form.

Table 1 contains results of such numerical integration for the rela-

tive risk improvement A (n) = (n+1)a(n)/2 for 3 <n < 8 and

rel
0 <n < 3. These results show that 8, cannot give more than 3% relative
improvement over 60.

Asymptotical formula when n is large can be derived if one observes
that

L 2 u 2
(n +2) ¢1(u(n +1)7%) Ay e /2/ é e /2 g4t

and because of (4.11)

2
Breq (M) vne™ /2 (4 )7

© 2 v 2
x f w2 e™ sinh vn dv/ f et /2 g, (2.6)
0

Approximations for aA(n) when |n| is Targe can be obtained from (4.12).



There is asymptotical series for a in powers q

A a(n) = A" [T - (nw 2)/(202) + L] (2.7)

ret

where

A= 20872 p(nit) 1(0.5(m#2))/[r(0.5) 1(0.5(n1)) T(0.5(n+3))]

The formula (2.6) gives a good approximation for A el if n > 10,

and (2.7) provides an accurate answer if n > 6.

3. Locally Optimal Shrinkage Estimators
It follows from Section 2 that the Brewster-Zidek estimator does not

lead to substantial improvement over ¢ Here we address the question of

0
how much improvement can be made upon &

(2.1).

0 in the class of shrinkage estimators

Because of (2.3) the nonnegative function ¢ which minimizes A(no) has

the form

o(u) = max 10, 1 - (n+1) € (S/U)/E_ (s*/u))

0 0

max{0, 1-(n+1) . (ung)/[(1-u?)n_,o(ung) 1. (3.1)

where m is defined by (2.4).



For this ¢

2
ang) =2 e E (e 1) (d )7

u
2 (1) g ang) D= (g /O =P 5 (ung) 1P (3.2)
5 .
where Ug solves the equation
(n + 1) nn+](u0n0) = (1 - ug) 43 (Uono). (3.3)

For numerical calculation of A(no) put Vo = Ygp? so that

0 = g a9 I a(vg) = (n¥1)m o (v

This formula gives the value of “S as a function of Vo’ and

2 .
bre1(ng) = €2+ )7 (d )7

AY
0 2 /(372 5 2 2
é (ng - vg) [ng(mpez(v) = (nt1)m () = vom o ()17 dv/m a(v).



The function Are1(”0) is monotonically increasing in ng- When ny = 0

s(u) = max{0,1 - (n+1)/[(1-u)(n+2)13,

which corresponds to the original Stein's (1964) estimator. As is seen from
Table 2 where the function (3.2) is tabulated (see the column corresponding
to n = 0) its improvement over SQ is small. For 1arger values of ng one
obtains more noticeable 1mproveménts.

Unfortunately these improvements are unattainable in the class of
minimax estimators. In fact functions ¢(u) generate minimax estimators only
if n <n. This value n can be determined by the condition A(G) = 0, where
A corresponds to estimator (3.1) with ng = n. Thus these estimators have a
risk function similar in form to that of theBrewéter-Zidek estimator.

Table 3 provides values n at which the largest gain by a scale equi-
variant shrinkage estimator s is attained. The shifted estimator s(X+c,S) - c
gives the maximal improvement at n = ¢ + n. Therefore if prior information
about the ratio n = n%Ig[/c, say n ~ nys is available, then the best choice of
cis ¢ = g - 7. Notice that the estimator § cannot be improved upon in the
class of scale equivariant shrinkage estimators, but it is not smooth and
hence cannot be admissible. It appears that further scale equivariant improve-
ments are not possible and the risk of the alternative improvements will be a
complicated function of both n and o.

In Table 3 we give the values n, solutions u, of (3.3) and relative risk

0
improvements of the corresponding locally optimal shrinkage estimators for

n=3, ..., 8. It can be seen that these estimators give just slightly larger
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maximal improvement over 60 than the Brewster-Zidek estimator. Since there
is no improvement larger than 3.5% the answer, perhaps nonsurprisingly, to
the title question of this paper is "not much".

However this situation changes in the probiem of simulataneous estima-
tion of a number of unknown variances, of a covariance matrix or of a func-
tion of the latter. For instance, Lin and Perlman (1985) report significant
improvements upon traditional estimate of a covariance matrix. If this
matrix is known to be of a diagonal form, the methods of the present paper
are applicable and the corresponding vector estimators provide sizeable im-

provement upon the analogue of s In this situation the fact that shrink-

0
age scale-equivariant estimators cannot give substantial improvements for
small values of |g|/o, but do noticeably better for larger values of this

ratio, can be useful.

Appendix

We assemble here some results about the functions (2.4) which are
closely related to the functions of a parabolic cylinder. These results are
useful for practical evaluation of estimators and their risks in mahy other
estimation problems involving normal parameters (see for example Rukhin (1986)).

Let form > -1, u > 0,

2
=1 -
m(u) = (24)72 [ &S /2 s™ cosh su ds.

m

O+— 8

Then



1

o 2
' (u) = (2w)'1/2 [e™® /2 sm+1 sinh su ds
0

= [ p(u) = (m+ 1) m (u)]/u, (4.1)

ﬂ%(U) = wm+2(u). (4.2)

The importance of functions e is due to the fact that for any integrable

function ¢(U), U = n’ |X] (n X2 + 52)"

ot

,sand o > 1 -n

2,1 (n+a-3)/2 |
£ s% g(u) = 20T /2 Lot (1- u?) " e (um) du/d o (B3)
i
Here n = nZlg|/o.
Define the following polynomials in u2
P (u) = 5 (5P) (2p - 2k - )11 WPk, (4.4)
P k=0
B 2py 2p + ] 2k
Q,(u) = kzo (50) R+ (2p - 2k - 1)1 u (4.5)
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p-k+1
rE = ) |
j=0

2p—2j)(2p+2k) cos

+2k-2j+ ] .
2k-2 2k-1(2p 2k-2§*4) (2p-j+1) (2p-2k-2j+1)!!. (4.6).

Proposition. If m = 2p with integer p, then

2
n (u) = 0.5 e /2 P (), (4.7)
' (u) = 0.5 u e“2/2 Q. (u) (4.8)
: . p(u)- .
If m=2p + 1 with integer p, then
=1 u2/2 1
o (u) = (2m) 2 Rp(u) + 0.5 u Qp(u) e erf (u277?), (4.9)
(W) = (o) R ¢ uQ(a) ¢ 0.5 P (w) €% /2 erf (u2™®), (4.10)
malu) = (2n b u u Qp u) -5 Py u) e erf (u , .

where erf denotes the error function.
These formulae can be proved by induction if one uses recurrent formulas
(4.1) or (4.2) from the known representations for functions of a parabolic

cylinder, D_m(u). Indeed
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2
n (u) = 0.5 e¥ /4 r{m+ 1) [D_m_](u) +D_

et

-m 2
= 0.5-975 (eu /2) m - even
du
m 2
= 0.5 £i~m-[eu /2 erf (u2~%)] m - odd.
du

Asymptotical formulae can be obtained from Laplace's method which, for

instance, gives

wé(u(m.+ ])'%)f\,e'(m+2)/2 (m + 2)(m+])/2 7% sinhu, (4.11)

and asymptotical expansions for large u are also easily derived:

3
P
[
o
1

2w 2. - 2
) B 2 [ (t+u)"e /2 g+ [ (t-u)"et /2 gty
-u u

2
=05 /2 "1+ 0.5m(m - 1) w4 ... (4.12)
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Table 1.

The Relative Risk Improvements of Brewster-Zidek Estimator
(in Percents)

.1 .5 .75 1.00 1.50 .00 .50 .00
.01 .38 .70 1.15 2.04 .41 .84 .69
.01 .36 .78 1.25 2.20 .83 .99 A7
.01 .35 .59 1.26 2.22 .82 .94 .68
.01 .38 .65 1.20 2.13 W71 .82 .54
.01 .34 72 1.18 2.05 .60 .68 .38
01 .29 .69 1.11 1.98 .57 .52 .21



Table 2. The Largest Possible Improvements Within the Class of Shrinkage
Estimators (in Percents)

n n

.00 .5 1.0 2.0 3.0 4.0 6.0
3 1.79 1.80 2.07 4.30 6.78 8.68 10.95
4 1.83 1.84 2.18 4.61 7.60 10.23 13.24
5 1.76 1.79 2.09 4.53 7.85 10.78 14.66
6 1.67 1.68 2.05 4.42 7.80 11.11 15.32
7 1.57 1.57 2.01  4.30 7.75 12.07 15.91

8 1.47 1.47 1.96 4.27 7.69 10.59 16.50



Table 3. The Relative Risk Improvements of Locally Optimal Estimators
(in percents)

n n ug n

5 1.0 1.5 2.0 2.5 3.0
3 1.38 .68 .53 1.76 2.88 3.25 2.83 1.98
4 1.34 .63 .54 1.85 3.00 3.51 2.85 1.92¢
5 1.31 .59 .56 1.83 2.93 3.21 2.67 1.75
6 1.29 .56 .54 1.76 2.81 3.03 2.52 1.67
7 1.28 .53 .51 1.67 2.66 2.88 2.33 1.48

8 1.27 .51 .48 1.55 2.50 2.72 2.17 1.28



