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A Bayesian Approach to Ranking and Selection of
Related Means with Alternatives to AOV Methodology

Abstract

A set of unknown normal means (treatment effects, say) {01,02,...,0x} is to be in-
vestigated. Two common questions in AOV and ranking and selection are (1) What is the
strength of evidence against the hypothesis Hy of equality of means? (2) If Hy is false,
which mean is the largest (or smallest)? A Bayesian approach to the problem is taken,
leading to calculation of the posterior probability of Hy and the posterior probabilities
that each mean is the largest, conditional on Hy being false. A variety of exchangeable,
nonexchangeable, informative, and noninformative prior assumptions are considered. Cal-
culations involve, at worst, only low dimensional numerical integration, in spite of the fact
that the dimension k£ can be arbitrarily large.

As an example, Table 1 in the introduction presents, for each baseball team in the
National league in 1984, the highest batting average obtained by any player on the team
with at least 150 at bats. The observed batting averages are treated as sample proportions
from binomial distributions with parameters 8; = “true probability of getting a hit for the
given player”, and it is desired to select the best hitter from the group, namely the player
with the largest 0;.

Calculated, using a Bayesian model of exchangeability for the 8;, are quantities such as
the posterior probabilities that each 0; is the largest. Such posterior probabilities give very
easy to understand and useful measures to assist in selection and ranking. Of substantial
interest is that, in unbalanced examples such as the baseball example (the players all had
different numbers of “at bats”, and hence different variances), it need not be the case that
the treatment with the largest sample mean is judged to have the largest true mean. Thus
Player 1’s observed batting average was higher than that of Player 2, but Player 2 had a
substantially smaller variance and was determined (by the hierarchical Bayes method) to
have a larger probability of being the best true hitter.

An interesting sidelight to the development is the presentation of a closed form solution
for testing Hop: 61 =02 vs. Hy : 601 < 05 vs. Hy: 60; > 03, when the treatments are
judged to be apriori exchangeable.

1. Introduction

Selection and ranking procedures have been developed in modern statistical method-
ology over the past 30 years with fundamental papers beginning with Bechhofer (1954) and
Gupta (1956). A discussion of their respective differences and the various modifications
that have taken place since then can be found in many places, e.g., Gibbons et al (1977),
Gupta and Panchapakesan (1979), Dudewicz and Koo (1982).

Even though various problems and models amenable to ranking and selection tech-
niques have been discussed in the literature, the methods are less frequently used than
is classical AOV and related methodology. Probably due to historical reasons, the AOV
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model has become the “standard approach”. In fact it is often used without much consid-
eration given to the basic problem which most experimenters ultimately face when using
AOV; namely, after significant effects are indicated, which combination of the various fac-
tors is the most significant, i.e., “best”. Ad hoc procedures which answer this question
and which are compatible with the AOV model have found great acceptance; hence the
development and application of multiple comparisons and simultaneous confidence inter-
vals (cf. Miller (1977)). In fact, the properties of the procedures are not well known and
various attempts to justify specific procedures have appeared only recently, e.g., Morely
(1982), Keselman et al (1978), Hsu(1982).

A third general approach to these problems has been the Bayesian approach. To see
some of the advantages of this approach, consider the specific situation in which a set of
unknown means {6;,02,...,0;} is to be investigated. Independent normal experiments
are conducted for each mean, yielding sample means X; ~ N(f;,02). The following two
questions are often considered in AOV and ranking and selection:

(1) What is the strength of evidence against the hypothesis Hyp: 0; =0, = ... = 0;?

(2) If Hy is false, which mean is the largest? (Of course, one could similarly deal
with the question of which mean is the smallest.)

Because of conditionality concerns with inference after testing, it is difficult for fre-
quentist methods to simultaneously answer both questions, but Bayesian methods en-
counter no difficulties. In answer to (1), one calculates the posterior probability of Ho
(or Bayes factor against Hp); in answer to (2), one can calculate p;, the posterior proba-
bility that 6; is the largest mean, for j = 1,...,%, conditional on Hp being false. Other
advantages that can accrue from a Bayesian approach are:

(i) The vector (py,...,Ppk) gives a relatively complete and easily interpretable answer
to the selection of largest mean problem;

(ii) The Bayesian measures of evidence concerning Hy are much easier to interpret;
Berger and Sellke (1987) argue that P-values for precise hypotheses such as Hy
can be very misleading if interpreted quantitatively.

(iii) Unbalanced cases (i.e., cases where not all 02 are equal) can be handled with only
slight additional difficulty.

(iv) Relationships among the 6;, such as an apriori belief in exchangeability of the 6;,
can be incorporated into the analysis.

In elaboration of the importance of this last point, consider the data given in Table
1. Listed, for each baseball team in the National League in 1984, is the highest batting
average (z;) obtained by any player on the team with at least 150 at bats. (For convenience,
the z; have been ordered.) We will treat these z; as sample proportions from binomial
distributions with parameters 6; = “true probability of getting a hit for the given player”
and n; = “number of at bats”. All n; are large enough for the usual normal approximation
to hold; the o7 are thus calculated as z;(1 — z;)/n;. (Ignore the p; rows for now.)
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Table 1. Observed Batting Averages

) 1 2 3 4 5 6
T 362 351 351 .346 324 321
ng 185 606 342 214 262 474
1000 x af 1.25 0.38 0.67 1.06 0.84 0.46
Pi .159 222 .165 125 077 .061
i 7 8 9 10 11 12
T 314 312 311 303 298 290
ng 636 600 550 535 181 607
1000 X o2 0.34 0.36 0.39 0.39 1.16 0.34
Di .038 .035 .036 .024 .048 .010

It is desired, based on this data, to select the best hitter from the group, namely the
player with the largest true 8;. A rather naive approach to this would be to simply select
the player with the largest z;, in this case Player 1. But consider Player 2; zo = .351
is close to z; = .362, and the variance of X, is much smaller than that of X; (due to
the many more at bats of Player 2). Many peoples’ intuition would suggest choosing
Player 2 over Player 1, because of this difference in variance. The basis of such intuition
is perhaps a belief that the 8; are apriori exchangeable, so that a large z; associated with
a large o2 is likely to have arisen from a substantially smaller §;. To put this another
way, large X; which have large o? should be “shrunk” towards a central average. The
most effective way of modelling exchangeability and effecting such a shrinkage pattern
is through Bayesian analysis. Indeed, without modelling the 8;, classical methods have
a very difficult time with examples such as this. For instance, no matter how different
the variances are, classical procedures which select according to the largest sample mean
usually satisfy classical optimality criteria. (Several qualifications concerning the above
example should be mentioned. We have ignored the fact that each of the z; is the largest
average on their team; through hierarchical modelling of all players, this information could
be utilized. Also, the number of at bats is also relevant information — good players usually
bat more — and more complicated Bayesian modelling would take this into account. Both
of these additional inputs would only cause more “order reversal” of the means, however,
and will be ignored for simplicity of exposition.)

The Bayesian analysis we consider is based on modelling exchangeability among the 8;
through use of a hierarchical Bayesian analysis. The option of testing Hg is made possible
by specification of v, the prior probability of Ho. (Specification of 7 is not necessary
for those who place no credence in such tests; the ranking probabilities turn out to be
independent of 4.) Among the many Bayesian papers dealing with AOV or hierarchical
priors are Hill (1965), Box and Tiao (1968), Lindley and Smith (1972), and Ghosh and
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Meeden (1984). (Further references can be found in Berger (1985).) Goel and Rubin
(1977) actually give calculations similar to some of ours for a decision theoretic approach
to these questions. Gupta and Yang (1985) consider a Bayesian selection problem but with
a non-hierarchical prior.

We actually consider a substantially more general situation than that indicated above.
The AOV type hypothesis can be of the form Hp: § = y B + d, where y is a matrix of
covariates, § is arbitrary and d a vector of constants. (The hypothesis Hp: 0; =0, = ... =
0 is of this form with y = (1,...,1)%, B an unknown constant and d the zero vector.) The
probability calculations considered are for quite arbitrary quadrants and a rich class of
hierarchical models.

The major impetus for this development was the realization that implementation of the -
Bayesian procedures requires only low dimensional numerical integration. What would at
first sight appear to require at least & dimensional integration, can in most cases be reduced
to just 3 dimensional integration. “Balanced” or “exchangeable” cases can be reduced to
2 dimensional integration. The case of k = 2 can be reduced to a one dimensional integral,
and in special cases can actually be carried out in closed form. The k = 2 situation is
of considerable interest in its own right, since it will be seen to correspond to testing
Hp: 01 = 02 versus H; :0; > 03 versus Ha: 6; < 02 (or generalizations thereof) under a
rich class of dependent prior distributions for (6y,05).

Section 2 develops the notation used, formally presents the problems to be addressed,
and gives the class of prior distributions that will be considered. Important special cases
are given for illustrative purposes, including cases of noninformative second stage priors
(which yield automatic procedures not requiring subjective input of the user). Section
3 presents the most general results. Section 4 specializes these results to the balanced,
exchangeable case, and Section 5 considers the situation for £ = 2. Section 6 discusses the
calculation of the required integrals, and presents some conclusions.

Section 2 - Notation and the Prior Distribution

As mentioned in the introduction, we assume X; ~ N (0,-,0?), independently for 7 =
1,...,k. The variances o2 are assumed to be known and to incorporate the sample size
effect. (Typically X; will be the sample mean from n; observations on population 7, and
o2 will be the variance of the sample mean.) Comments about unknown o? are given at

i
the end of the paper.

2.1 Basic Selection Problem

To measure the evidence againsf Hy: 61 =05 =...= 0 we will calculate
po = Posterior probability of Hy . (2.1)
This will, of course, depend on
~ = Prior probability of Hy,
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which some may find troublesome. It is common, therefore, to consider instead the Bayes
factor against Hg, namely

_ __Po C(1=9)
(1~ po) v
This is the ratio of posterior odds to prior odds, and can often be interpreted as the “odds
for Hy provided by the data” (see Berger (1985)).

(2.2)

Also of interest, for 7+ = 1,...,k, is the posterior probability
p; = Pr(0; is the largest mean | data, Hy is false). (2.3)

It is important to note that this will not depend on ~. The vector (po, p1,-...,pk) (or the
vector (B, p1,...,pr)) provides a simple yet fairly complete answer to the questions posed
in the introduction. Of course, other quantities can also be of interest such as estimates
for the 0;, together with standard errors. For our scenario, such estimates and standard
errors are given in Berger (1985), and will not be repeated here.

2.2 General Selection Problem

We will actually formulate the problems of interest somewhat more generally. The
AOV type hypothesis being tested will be generalized to (writing § = (61,0s,...,0k)?)

Ho: 0=yﬂ+d (24)

where y is a (k x £) matrix of known covariates, d = (dy,...,d;)? is a fixed vector, and
B is unknown. The t* row of y will be denoted y; = (¥i15---,Yie), and consists of the
covariates corresponding to the i** population (or 6;). The unknown 8 = (Bi,...,080)"
could be constrained, but will usually be unconstrained.

Particularly interesting is the case £ = 1 and S completely unconstrained, for then we
can write y = (y1,-..,¥%)’ and (2.4) can be rewritten (assuming all y; are nonzero)

bi—di_ 0—dy  G—dy

Hy .
U1 Y2 Yk

(2.5)

Of interest then are the probabilities (which again do not depend on the prior probability
of H, 0)

Yy Yi
We will still use pg and B to denote the posterior probability of Ho and the Bayes factor,

respectively. Note that (2.5) and (2.6) reduce to (2.1) and (2.3) respectively when all y;
equal 1 and all d; equal 0.

pj =Pr <0j —d > b: — di for all ¢ | data, Hp is false) . (2.6)

Flexibility in choices for y and d also permit various contrasts amongst the components
of 8 to be tested, namely those that can be expressed as

0N ={0: a; 0, +b; <0, foralli#j}.
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(Setting b; = —oo for some 7 will remove that 6; from the specification.) Our results
k k
do not apply to general contrasts such as Y, a; 6; < 3 b; 0;, in the sense that there
1=1 =1
is not necessarily any reduction in the dimensionality of the integral that must then be
calculated.

2.3 The Prior Distribution

A quite general form for the prior distribution is given below. Various special cases
are given following the general description, and indicate the flexibility allowed. Note that
noninformative choices are given, to allow for automatic Bayesian procedures which do not
require specific prior inputs.

The prescription for the prior distribution on 6 = (0,,6,.. ., 0x)? will follow the
hierarchical approach as given in Berger (1985) (Sections 3.6 and 4.6) and thus consists
of two stages: a distribution of 8 given ‘hyperparameters’ (8,02) and a distribution for
(8,02), written m1(0|8,02) and m2(8,02), respectively. Specifically, it will be assumed

that 71(0|8,02) is Nk(y B8 + d,021I) and that

2(8,0%) = m3,1(8) - m2,2(02), (2.7)
where 73,1 (8) is No(8°, A) (or m2,1(8) = 1, corresponding to 4 = o0),
72,2(07) = 103 (02) + (1 — 4)75 5(02) (2.8)

and 73 ,(02) is arbitrary (though specific noninformative choices will be suggested). The
known y and d and unknown 8 have already been described. The f-vector 8°, the (£ x¢)
positive definite matrix A, and «y are all subjectively chosen constants, and I {0} (02) denotes
the degenerate distribution which gives unit mass to the point 02 = 0. The motivation
and interpretation of this prior can best be seen by looking at special cases.

Case 1. Exchangeable Means
Set £=1,y = (1,...,1)%, and d = 0. Then 7(0|8,02) specifies that, given (8,02),

T
the 0; are i.i.d. N(8,02). The hyperparameters (B8,02) are given second stage prior my;
it is easy to see that the marginal prior of 4 is then exchangeable. Noninformative and

informative choices of 73 are discussed in Cases 4 and 5.

Case 2. Means Following a Regression Structure

Suppose that, for population ¢, there is available a vector of known covariates y; =
(¥:15---,Yie), and that 6; is assumed to be related to the covariates by the linear model

0; =y; B +ei,

where f is an unknown vector of regression coefficients and the ¢; are i. i. d. N(0,02). As
an example, suppose §; is the mean of a process at time ¢;, and it is believed that

0; = B1+tifa + &
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(SO £=2,y; = (l,ti)aﬁ = (,Blaﬂ2)t7 and d = 0)-

Case 3. Testing Hy: 0 =v 8+ d

The prior parameter -y in (2.8) can be interpreted as the prior probability that § =
y B + d (for some B), since v is the probability that 02 = 0 and hence the probability
that 7;(8]8,02) is degenerate at y 8 + d. The most common use for this option will be in
allowing for a test of Ho: 0; =0, = ... = 6}, (corresponding to £=1, y = (1,...,1)%, and
d = 0), though the generalization in (2.5) may sometimes be of interest.

This option may not be desired. In other words, there may be no real belief that the
means could be equal (or at least approximately equal). Our analysis still applies in this
case, since the p; do not depend on +. If one does want to provide the evidence against
this hypothesis, yet is concerned with making a subjective choice of v, two options are
available. The first is to make the “noninformative” choice v = % The second, which |
we shall follow, is to report the Bayes factor, since this does not depend on 4 and is a

reflection of the evidence provided by the data.

Note that our prior assumption, that either § = y 8+d or that the §; vary continuously
over R¥, is not completely natural from a Bayesian perspective. More natural would be a
prior which allowed various subsets of the 0; to (say) be equal with positive probabilities.
While appealing, this would considerably complicate the issue, and would leave us with
something far more than a Bayesian analogue of AOV and ranking and selection.

Case 4. Noninformative Second Stage

For either Case 1 or Case 2, one could make a noninformative choice of the second
stage prior 72 in (2.7). The noninformative choice for 72 1(8) is traditionally

T2, (B) = 1. (2.9)

There is less consensus on a noninformative choice for 73 5(c2). Some (e.g. Morris (1983)
and Berger (1985)) recommend also

w3 2(02) = 1. (2.10)

Another possible choice, which has advantages for small & is

k
1

¥ o(02) = || —_— 2.11

7T2,2(‘71r) 11 (0% + o2)1/% (2-11)

When the o2 equal a common value o2, this reduces to

2y 1

= 2.12
o?+o2’ (2-12)
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a common noninformative prior for variance component problems. Again, the noninfor-
mative choice for 4 would traditionally be v = %

Some might be leery of noninformative priors, especially since their definition here is
clearly somewhat arbitrary. Our view is indeed that subjective proper priors are generally
preferable, but that

(i) If there is sufficient data for it to be possible to claim that objective answers
are attainable, then any sensible noninformative prior will typically yield such
answers;

(ii) The Bayesian answers with any of these noninformative priors will tend to be
much more sensible than classical answers.

For testing Ho: § =y f# + d, improper noninformative priors for 02 cannot be used.
A partly subjective analysis is thus really necessary. To avoid the misleading answers that
can result from a classical analysis (see Berger and Sellke (1987)), it is often argued (cf.
Jeffreys (1961) and Zellner and Siow (1980)) that in situations where a subjective analysis
cannot be performed, analysis with “conventional” proper priors should be undertaken.
(Conventional priors are generally selected from a given family using such notions as overall
invariance to the scale of the problem.) Conventional proper versions of (2.11) and (2.12)
are

k

X 3/(2k)
”;,2(‘71%)': [H m] (2.13)

1=1

(K being the normalizing constant) and

(2.14)
We shall use these for hypothesis testing.

Case 5. Informative Second Stage

The general prior allows for the informative choice of a Ng(B°, A) prior as the second
stage prior w2 for 8. Thus 8° can be considered to be a “best guess” for B, and A the
covariance matrix for this guess. In the exchangeable Case 1 scenario, 8 would be the
common prior mean for the 6;, so that 8° would be a guess for this common mean, with
A being the variance of this guess. The assumed normal form for this density is actually
needed only in certain special cases (essentially cases involving exchangeability or (2.6) and
o2 = o2 for all ¢). In these specific cases the integral over 8 can be carried out in closed
form; for the general case, any density for 8 could be used, since numerical integration is

required.

For 7r§,2 (02), any density can be used, since numerical integration is required (except
when k = 2 and 0 = 62). A commonly used class of priors for a variance is the gamma
class, any proper member of which could be used for T3 9. For variance components,
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however, decreasing densities are often plausible; a useful class of such priors, generalizing
the noninformative prior in (2.12), is given (for m > 1 and C > 0) by

(m-1)C

73,2(0%) = A+Cot)™ (2.15)

A simple calculation shows that the c.d.f. corresponding to this prior is
F(t) =1—(1+cCt)~(m-1),
so that the median, p 5, is given by
ps= (@YD 1) o1,
and the third quaitile, p.75, 18
pas = (4/(m=1) 1) c—1,
Thus one could subjectively select p 5 and p:75, and use (solving for m and C),

_ Ppas—2p5 log 2
log ([P.75 - P.5]/P.5)

(It is assumed that the elicited quartiles satisfy p.5 < p.75/2; if not, a different functional
form should be used.)

An interesting special case of this prior, for the situation where 02 =02 =... = a,% =

o2, arises from the choice C = 1/0%. Then

_ (m-1
o%(1 + oZ/oT)m ’

73,2(07) (2.16)

and the noninformative prior in (2.12) is the renormalized limit of these as m — 1. Also,
the “conventional” prior in (2.14) is of this form with m = 3/2. To determine an element
of this class, one need only specify p5 (or equivalently the median of the variance ratio
02 /o?), and choose

log 2
-1 . 2.17
™=t e+ 2] (2.17)

Section 3 - General Results

3.1 Basic Formulas

We shall here develop formulas for the calculation, with general prior as in Section
2.3, of the conditional posterior probability of any region of the form

0= {0: 0_7'6.[]', and v,-(BJ-) < 0.,; < w,-(HJ-) for all ¢ 7& _’]}, (3.1)1
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where 7 is given, vi(-) and w;(-) are arbitrary (possibly infinite) functions, and I; is a
specified interval. The choice I; = (—o0, 00), v;(8;) = —oco and

wi(0;) = (vi/y;)(0; — d;) + d;

yields the general selection probability in (2.6). The formula for the posterior probability
of (3.1) is ’

p* = Pr (01| data, Hj is false)

I L 0 T () - ()
x w5 (0;) 73,1 (B) 73,2 (07|2)dd; dB do?, (3.2)

where @ is the standard normal c.d.f.;

0'-2 0'.2 0'2

Pt U PO S0 . . — Tt VT,
'U'z xz (0_12 + 0_12r) [xl (y‘l ﬂ + d‘l)], Vv‘l, (0_1'2 + 0'12,-) ]

77 (05) is a N(uj,V;) density ;
73.1(8) is a Ny(u*,V*) density, where
W= [I+AW'Wy)™ (8- 8°),
Vi=[AT (W)Y A= (WY)W (z - d),
and W = diag.{(¢? +02)71,---, (0% +02)71}; and
m3,2(0x|z) = K1 L(07) 73,5(07), where
exp {1 [llo— (B + )12 +115 - 6I12.] }
(det W)—1/2[det(yiWy + A—1)]2
llz— @B+ )| = [z — (WB + )} W[z - (B +d)],
18 = B°I1%. = (B - B (ly'Wy] ™" + 4)~ (B - 8°),

and K = fooo L(o%) 73 2(02)do2. Note that (3.2) does not involve v, the prior probability
of H 0-

L{oz) =

Testing Hq for the General Prior

The null hypothesis Hy: 8§ = y8 + d has posterior probability
po = Pr (Hp| data)

_ (i-9 K17
= [1+ S L(O)] ) (3.3)
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and the Bayes factor is :
B = L(0)/ K. (3.4)

Note that specification of ~, the prior probability that o2 = 0 (and hence that Hy holds),
is needed only in the testing situation.

Noninformative Second Stage Prior

For the noninformative second stage prior defined by (2.9) and (2.11), the formulas
are as above, with the changes

u* = f = (yWy) W (z —d), V*=(y'Wy),

7l';,2(0'12|.|$) H (0_ +0-2)1/k’ (35)
Lo2) = P —g[z—(yﬂ+d)]tW[z—§y +al}

(det W)~1[det(ytWy)]z
where K is the appropriate normalizing constant.

For testing, it turns out to be impossible to be completely noninformative. One can
choose v = %, although use of the Bayes factor obviates the necessity for choosing . And
one can use the noninformative (2.9) for 8, essentially arguing by sending A4 in 72 1(8) to
infinity. But a noninformative choice for m22(c2) cannot be made. Use of (2.15), with
specified median and third quartile, or some other proper =3 2, is necessary. An alternative
to subjective specification, is to use the “conventional” prior in (2.13) or (2.14).

Dimensionality Reduction

The dimensionality of the integral in (3.2) can be reduced to two dimensions in the
special case in which all 02 = 62, £ =1, and  can be written (for given j)

Q={0: a; <(0; - cy{lﬂ,-) < b; for all z # j},

where ¢ # 0, the y; # 0, and a; < b; for all 4. (Infinite a; and b; are allowed.) Then

o)<

1#£]
where Z is a standard normal random variable and

vV |4
P = £{(y:,' — c)u* + c_ly,-d,- — d,;} 4+ -a—\/z_(c_lyixj — :l:,;)

o2
1/2
o?(y; —¢)® / .
(lyl2 + (62 +02)A7Y) |

}]w;,z(aﬁlz)doﬁ, @9)

+ Z|e™ yi [1 +
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here V = 0202 /(02 + 02),

=p (02+072f) 3 ] 3 — |oyl— : (s ,
P oy A A @ A=l X vl — )

3.2 Generalized Selection Problem

For the generahzed selection problem specified by (2.4) and (2.6), and when 0% =
ol=...= = o2, the dimensionality reduction of (3.6) can be applied to yield

0: —d: i d.

pj = Pr ( i3 > b: — d: for all ¢ # j| data, Hy is false)
yj Y

- / EZ [I] 8(:(2,02))]n}4(02|2)do?, (3.7)

i#]
where Z is a standard normal random variable and

(7 62} = 99 (¥ g g+ L (Yg, - %
’(ﬁt(Z,O'ﬂ.)— (0’2—{—0'72‘_)1/2 {0’12|. (yJ dJ dz) +0.2 <y_$] $1>}+Z

Yj

J

Section 4 Exchangeable Case

Cons1der Case 1 of Subsectmn 2.3, where £=1,y=(1,-- l)t Assume, in addition,
that 01 = a% = = ak = 02. Then Hy becomes Ho: §; = 0, = = 0. Also

pj = Pr (0; is the largest mean | data, Hy being false)

=/0 EZ[H ‘I’(\/%( Tj — z) + z)] 73 4 (02|z) doZ,

i#]

where @ is the standard normal c.d.f.; Z is N(0,1); and

732(02]z) = K~ L(o%)m} ,(02), where

s? k(z—p°)*
exp{ [(0'2+a'2) + (a2+02+kA)]}
- (02 + 012r)(k 1)/2(02 + 012r + kA)1/2A—1/2 ’

S? =Y (z;— %)%, and K is the appropriate normalizing constant. The relevant formulas
1=1

for hypothesis testing are given by (3.3) and (3.4).

12



Noninformative Second Stage

For the noninformative second stage prior defined by (2.9) and (2.12) the above for-
mulas hold with the change

73,2(0%]2) = K~ L(07)/(0* + o7), (4.1)

exp {~5%/[2(o + o7)]}
(02 + 02)==1)/2

T

L(o2) =
If testing is to be done, one would need to either use a subjective choice for 7r’2",2(a,2r),

or use the “conventional” choice in (2.14). The latter would result in use of

. K~ 1L(0%)o
7"2,2(‘71r|93) = 2(0? + 01253/2

(4.2)

instead of (4.1).

It is of some interest that, for the proper priors in (2.16) (including the “conventional”
choice of m = 3/2), the posterior probability of Hy and the Bayes factor can be calculated
in closed form, providing

m*=m+ (k—15)/2 (4.3)

is an integer. Indeed, then
K = / 1r) 7r2 20 2) d‘712r

_ (m—1)(m*) N
= ey |1 e > = (4.4)

1=0

where v = §2/(202). (At v = 0, equation (4.4) is to be interpreted as K = o(!=P)(m —
1)/(m* + 1).) Formulas (3.3) and (3.4) then provide the posterior probability of Ho and
the Bayes factor.

Section 5 - Two Dimensions

5.1 General Result

For the special case £k = 2, simplifications over previous formulas can be obtained.
Indeed

p* = Pr(0; < cb; + b | data, Hy is false)
= [ 202 malotlo) dok, 6.0
0.
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where

U(o2) = b+ oZ[czi Wy — z,Wa| 4 cotWy(y1u* + di) — 03Wi(ysu* +ds)
" [02(c202W) + 02W3) + V*(co?W1y1 — 02Woy,)2]|1/2 ’

here W; = (6% + 02)~1; ® is the standard normal c.d.f;

1

ey —_—— 3 _ Ao t 2 2
u'=p 1+A(thy) (:3 B )’ y Wy =yiW1 + yaWo,
A 1
p= thy[le(:cl — d1) + y2Wa(z2 — d2)],
1
V* = :
A7l + (y'Wy)

and 73 ,(02|z) = K~ L(0Z)n3 ;(02), where

(5.2)

exp{ -3 [ZL (i — yiB — &)W + (B - 8°)* /(A + [thy]‘l)] }
L(Ufzr) = (WiWo)—1/2[A-1 + ytWy|1/2

and K is the appropriate normalizing constant.

5.2 Hypothesis Testing Interpretation

Consider testing

— 0, — —d 0, — d
:01 4 = 2 a2 versus Hjy: versus Hy: 2 L 2 2,

Y1 Y2 "N Y2 "N Y2

0, —dy >02—d2

Hy

Then po, the posterior probability of Hy, is given by (3.3); p}, the posterior probability
of Hy, is given by p} = (1 — po)p*, where p* is given by (5.1) with ¢ = y2/y1 and
b = d2 — y2d1/y1; and p3, the posterior probability of Hz is p5 =1 — po — pj.

Equal Variances

When 02 = 02, in addition to the above choices of ¢ and b, p* simplifies to

* e Ontp *
p* = /0 & (.—)1/_2) 3 5 (02|z) do? (5.3)

(62 + o2
where (letting |y|? = y? + y2)

v = [y2(z1 — d1) — y1(z2 — d2)}/[o]y]}-

14



Noninformative Second Stage Prior for 8

If B is given the noninformative prior m3,1(8) = 1 in the equal variance case, then,

2 A
since ) (z; — y:8 — d;)? = p?0?, (5.2) becomes
=1

L(oz) = (0% + 02) 7/ exp{~p®0®/[2(c® + o2)]}

(ignoring the irrelevant multiplicative constant |y|).

Of particular interest for 3 , is the choice given in (2.16), for m being a half integer,
for then p* can be evaluated in closed form. Indeed, defining v = ©2/2, m* = m — 3/2,
and assuming that m* is a nonnegative integer, calculation gives

- E (% [+ 5]
P = =0 , (5.4)

1—e? _rz:::) (v’/z')

where ¢p = 1 and, for ¢ > 1,

k=0

(This is to be interpreted as p* = % if ¢ =0.) Also, K is given by (4.4), and the formulas
for pp and B are given by (3.3) and (3.4).

As a specific example, if m = 2 (the “conventional” prior in (2.14)),

L) - (b )

1—e vV

p

and
B =2v(e* —1)".

Section 6 - Computations and Conclusions

6.1 The Example

The entries p; in Table 1 are the posterior probabilities that 8; is the largest mean,
conditional on the data and Hp being false. Note that these do not depend on ~, the
prior probability of equality of the means. The exchangeable means hierarchical prior was
used, with noninformative second stage priors specified by (2.9) and (2.11) or (2.13) (the
results being almost completely insensitive to the choice of (2.11) or (2.13)). Of course,
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one might well use informative second stage priors for 8, based on knowledge of typical
baseball averages.

The results bear out the intuitive discussion given in Section 1. Player 1 is not judged
to have the greatest probability of being the best; indeed, Player 1 is now third. Player 2
has the highest probability of being the best hitter. It is also interesting to consider Player
11. Although he ranked eleventh on the basis of actual batting average, his posterior
probability of being the best is now seventh largest. The reason is that his variance is
large; his low batting average thus has greater probability of being the largest than those
that have small variance, and hence are essentially known to be low. (This conclusion
would, however, be affected by the other prior considerations discussed in Section 1.)

Although not of great interest here, the Bayes factor against Ho: 0; =60, = ... = 0
was 4.5 (using the second stage prior given by (2.9) and (2.13) — recall that (2.11) will
not work here because it is not proper). Thus there is moderate evidence that all players
are not identical; since such a hypothesis has no plausibility here, the Bayes factor is only
of academic interest.

6.2 The Computation

It should again be emphasized -that high dimensional numerical integration is not
needed; the integrations over the 6; were mostly carried out in closed form, resulting in
the need for at most (£+ 2)-dimensional numerical integration. A method that we found
quite effective for this numerical integration was direct Monte Carlo simulation, based
on the hierarchical representation for the posterior. Thus a sequence {(x02, 0, x0;);k =
1,...,N} of independent random vectors are generated; here k02 is generated according
to 73 5(02|z), £ according to 73 ; (8|x02, ), and xf; according to 7} (8;xB, ko7, z). Then

I= [ $(05,8,02)350,)731(8)735 (02)0; dB do
can be approximated by

N
. 1 )
I= yi k2=:1 Y(k05, k0, 10%)-

Since 7rJ and 73, are normal distributions, generation of the r0; and ;8 pose no
problem. The den51ty 73 5 is quite complicated, but its shape is well approximated by a
two-point mixture of gammas, and an accept-reject based method of generating the xoZ
is quite efficient. (Note that K, the normalizing constant for 3 ,, is determined by a
one-dimensional integral which can easily be evaluated.)

Calculation of the p; in Table 1 was done on a CDC 6000, using N = 6000 and
requiring about 460 seconds. The standard errors of the p; in Table 1 ranged from 0.003
for the large p; to 0.001 for the small p;. For most applications, standard errors in the 0.01
to 0.005 range would be quite satisfactory. Such could be achieved using N = 600 and at
1/10 the time and cost of the above calculation.
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6.3 Conclusions and Generalizations

The hierarchical Bayesian approach is a promising method of dealing with ranking and
selection problems involving unequal variances. The existence of quite easily computable
“objective” versions of the analysis (those with noninformative second stage prior) should
make the approach widely usable in practice.

Several generalizations are of obvious interest and are being developed. These include:

i. Unknown Variances: It turns out that the identical model with o unknown adds,
not k additional dimensions of integration, but only one additional dimension of integra-
tion (plus an additional multiplicative complexity of k). Efficient numerical methods of
evaluation are being developed.

ii.More General Models: Similar analyses are also desirable for models such as ran-
domized block models. Preliminary work indicates that, again, this can often be done with
addition of only one or two dimensions of integration.

iii. More General Rankings: Suppose one wanted probabilities of the form
Pr(; is the largest and 6, is the second largest | data).

Similar methods can be used to calculate such, though each additional ordering adds
another dimension of integration.

iv. Means and Variances: Problems such as estimating the largest mean, and provid-
ing variances and confidence regions for it can also be handled in this framework.

v. Loss Functions: It is very natural to take a decision-theoretic approach to the
problem of selecting the largest mean, with a loss of the form L(:,8) = W (6;,6*) for
selecting 6; where 6* denotes the maximum of the {6;}. (Typically, W would be an
increasing function of (8* — 8;).) A Bayesian analysis would proceed by calculating, for
each 7, the posterior expected loss E™(¢I2)[W (6;,6*)], and choosing that ¢ which yields
smallest posterior expected loss.

The calculation of these posterior expected losses is very similar to the calculations in
the paper. Indeed, instead of (3.2) say, one obtains

E"C2)w (0;,0%))
k 0o o g
=3 [T [ [T wieat T1 & (2324) ) w303 0)msalotla)andsact,
i=1 i e#ig
where

0
Wi o) = [ W(os05)m (09d8s

For many common losses, W can be calculated in closed form. For instance, if W (0;,0%) =
(6* — 0;), then

Wi 0) = 0; - ne (22 + VE e -G,
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The calculation of the posterior expected losses then involves essentially the same dimen-
sional integration as did the calculation of the p;. Also, the dimensionality reductions
in integration typically hold for the special cases we considered when W is, say, linear
or quadratic. (Note that when W is an indicator function, the calculation is of the type
considered in (3.2).)

Appendix

From Berger (1985, section 4.6), one has the representation, for the posterior distri-
bution of 4,

wle) = [ [ @3 )maalodle) ds do,

where )
n(0) = [] =360
=1
and :
72,2(05]z) = 4" oy (02) + (1 — v*)73 5 (02]2),
where .
* (1 - ’Y) K ] B
=114 . ’ Al
= 2 (41)

all other quantities being defined in Subsection 3.1. Since 02 = 0 corresponds to Hp being
true,
~* = Pr(Hy is true | data).

All formulas for po = Pr(Hp| data) and the Bayes factor B thus follow from (A1).

Other probability calculations are conditional on Hy being false, which means they
are done with respect to

7*(0|z, Ho false) :/ / 71 (0)73,1(8) 73 2 (02|x) dBdo?.

Proof of (3.2)

p* =/ 7*(0|z, Ho false)dd

Q
. ,
— / [ /Q H mr (0i)d0i] 3 1(B)73 2 (02]2) df do?,
=1

and (3.2) follows easily from the definition of 7} (6;) and the fact that 2 is a product set.

The changes in formulas for the noninformative prior case are also from Berger (1985).
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Proof of (3.6)

Assume that cy; 1 > 0; the result can similarly be established if cy; 1 < 0. Then

a; < 0; —cy;10; < b;
can be written
¢ yi(6; — b)) < 0; < ¢ yi(0; — ;).
This defines v;(f;) and w;(8;) for use in (3.2). We will only analyze the w; term, the
analysis for the v; term being identical. ’
Writing 0; = u; + vV, where  is N (0,1), algebra shows that

% =c yi(n + g(yj —¢)B) + o,

where

VvV, vV, _
o = — (T yd; — di) + (¢ Myizj — ).

™

Since 8 ~ N(u*,V*) independent of n,

n+ W(yj —c)B~N (g(yj —c)u, 1+ M) )

2 2
01r T aﬂ'

The conclusion follows from further algebra.

Proof of (3.7)

This falls within the framework of (3.6), with ¢ = y;, and either a; = d; — d;y; /y; and
b; = oo (if y;/y; > 0) or b; = d; — d;y;/y; and a; = —oo (if y;/y; < 0).

Proof of (4.4)

Upon transformation, it is easy to recognize K as an incomplete gamma function, for
which (4.4) is one representation.

Proof of (5.1)

In a fashion similar to the proof of (3.6), one can show that

p* = / [EZ ®(B + \/(—:Z)] W;’Z(aﬂm)da,%,
0

where
B = VZ_I/Z{(cofWIyl — 02Wayo)u* + b+ 02 (cWiz; — Wazs)

+ (CO‘%Wldl —_ O'%Wzdz)},
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and

2ﬁ+ (eViy1 — V2y2)2V*
V2 0'4V2

The conclusion follows from the fact that

EZ®(B ++/cZ) = &(B/V1 + o).

C=c¢

Proof of (5.4)

For the given situation,

p*=/0°°<1>< Ox _ <p) . K_l(m—l exp {—p%0?/[2(c +a,r)]}

VoI fo2 (o2 + 02)1/202(1 +o2/o?)m

where K is given by (4.4). Defining w = o, /0 and changing variables from o2 to w yields

p* — M /OO d ([1 + w—2]—1/2 So) W €xp E;fju/zgz”s'l"‘t wZ)]} dw. (A2)

Note that

I —

where

— (m*!)2(m*—i)/ [i!((pz) (m*+1—i)] .
Thus, integration by parts in (A2) yields

p* :ﬂr%;_l){KoQ(go) — -;— i K; exp {—p?/2}

2

2\—(i+3/2 1 ¥ p?
\/Z_WZK / (1+w) (+/)exp{—§|:(1+w_2)+(1+w2)]}dw}.

Since (1 +w™2)71 + (1 + w?)~! = 1, the integral in the above expression reduces to

e . 1 1
/ (1+ ,w2)—(1.+3/2) exp {—-2—<p2} dw = exp {—§<p2} ¢;
0

Collecting terms and simplifying yields the desired conclusions.
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