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ABSTRACT. Representation and time reversal results of Lindquist and
Picci on Gaussian semimartingales with stationary increments are
shown to hold without the Gaussian and stationarity assumptions, the
key property being that the martingale term is a Wiener process.

The methods of proof also yield a Girsanov-type formula for a
t
process of the form Xt = Wt - I hsds, where h is not necessarily

_ 0
adapted.
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1. Introduction
In an interesting paper Lindquist and Picci [3] investigate
Gaussian processes with stationary increments. They characterize

when such a process Y has a representation of the form:

(1.1) Y—Y=Izudu+M—M (o < 8 < § < @)

where M is a martingale, and thus Y is a semimartingale.
Recently time reversal of stochastic differential equations and more
generally reversal of semimartingaies have been of interest, and
Lindquist and Picci further find sufficient conditions under which
Y can be reversed, yet still have a (backwards) representation of
the form (1.1).

In this article we put the results of Lindquist and Picei in a
more traditional semimartingale framework and we show that the
Gaussian hypothesis — fundamental to their approach — as well as
the stationarity, are actually unnecessary. Instead we use

Girsanov’'s theorem to show the reversibility. This idea is extended
t

in paragraph five to show that if xt = Wt - f hsds, where h is
0]

not necessarily adapted to the filtration of W, +then X might
still have a law equivalent to that of W; that is, one can find an
equivalent probability @ such that X is a Wiener process. Thisg

last topic is not considered in [3].
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Throughout this article we will only conside: one dimensional
results; finite dimensional analogs, however, clearly hold. Also,
since we are dropping the hypothesis of stationary increments we
will assume our processes are indexed by [0,1], rather than all of
R.

In [3] one begins with a process Y having stationary,

Gaussian increments. In a representation such as (1.1), the
t

processes I Zudu and Mt will inherit these properties.
0]

Lindquist and Piccli further assume M has orthogonal increments;
fhus it is a standard Wiemer process. As we shall see it is this
feature that is the key to the reversibility.

For all facts about semimartingales as well as any unexplained

notation we refer the reader to Dellacherie and Meyer [1].

2. The Lindquist-Piceci Semimartingale Representation Theorem.
In [3] Lindquist and Picei introduce the following hypothesis

on a process Y:
(2.1) IE{Yt+h - Ytlyt}l < Kh a.s.,

for all t > 0 and all h > O. The constant K can be random and
is finite a.s. Lindquist and Piceci assume further that Y is
Gaussian with stationary increments and obtain necessary and

sufficient conditions for (2.1) to hold.



(2.2) THEOREM. Let Y be an adapted process on [0,1] with cadlag

paths, with Y, € LY(dP), 0 < t ¢ 1.

%
(1) If there exists a r.v. K € LY(dP) such that (2.1) holds,

then there is a representation of the form

t
(2.3) Y, = f z,du + M,
0
_ 1
where M is a martingale and f E(IZuI)du ¢« o,
0

l+e
(ii) If for some e > O, E[ sup |2 |] <« » 4in a representation
== : u ==
0<u<1
1

of the form (2.3), then (2.1) holds with K € L .

Proof. (ii) Let C = sup |Zu|. Then
O<ugl

t+h
IE{I zudu|yt}|
t

|E{ﬁf,c_+h - Y, |5}

t+h
E{I |zu|du|gt}
t

I

I

E{Chlyt} = hE{clyt}.

3
Let N_ = E{C|%.}, and set N = sup |N.|. Since C e LI'®, wve
b t %
0<t<1
1

* *
have N € L°, and we can take K = N (ef. [1]).
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Proof of (i): Let = =%ty <ty < ee- <%, =1 be a partition

of [0,1]. Each Y

E( ) |B{y, -y, |3
. G i 1-1
i'ﬂ'

= E{K} < o,

and so Y 1is a quasimartingale. Therefore Y is a special
semimartingale and has a canonical decomposition Y = A + M where

M 1is a martingale and A is a predictable process with paths of

1
finite variation. Moreover letting f IdASI denote the total
0
1
variation of A, we know E{I IdASI} < w, VWe want to show A has
- 0

absolutely continuous paths. Fix s < t and let
t _
hg p = o E{f laa | 18 }(0) > K(a)(t-5)}.
s

It suffices to show that P(AS t) = 0 for arbitrary s and +.

Let H, - 2 Hillti’t
t.€n
i

and with IHil <1 a.s., and H

]» With = Dbeing a partition of Is,t],
i+l

€ 9t . Then, writing A for

i 1

LI



t
E{1, f Eda )} - E{1, ) Hi(Ati+1 - Ati)}
s i
= E{1 H,E{A - A, |7, }}
A Z 1555, ty 7y
< E{1 | E{A A, |%,. }]|}
A Z Siv1 T %y
$ E{IA K(t"'S)},

vhere H as above was arbitrary. On the other hand,

t
sup E{1, I H dA }
H 8

t
E{1, f laa, |}
S

t
E{lAE{I IdAu| |$s}}
S

v

E{lAK(t—s)}, if pQA) > O,

where the supremum is taken over all such H (cf. [1]). This

yields a contradiction. Since then A is absolutely continuous,
t
one can find an adapted process 2 such that At = I Zudu.
0
1
Moreover I IdAul €L

0

1 1
1 implies that E[f IdAu|] - E[I IZuIdu]
0 0
1

= f E(|Zu|)du < », by Fubini'’'s theorem. ' o
0



- 3. Backwards Processes and Backwards Stochastic Integration.
Let (Wt)0<t<1 be a standard Wiener process on a complete
space (Q,%,P) with filtration (gt)o<t<1 satisfying the "usual

hypotheses": yo contains all the P-null sets of ¥, and

.= N 9., each t. Let #° = W

- VW
t wrt u

for 1 > t > 0. ‘Then

t l1° = =

t

as t descends to 0, the process W has Gaussian, independent,

stationary increments; we call it a backwards Wiener process. For

0¢s «t<1, note that ¥ - #° =W, - ¥, , and so the

increments of W are equal to those of W. We let

yg =.a{Wu; u > t}, and yt denote the completed version of yg
t

Processes that are adapted to ¥ as t descends from 1 to O

will be indexed by superscripts.
Suppose a backwards process 3%
t i
Jd~ = J-l
2 [ti,ti+1[

tiew :

1>%>0 has a representation

», Where 7 : 0 = to < tl < eee ¢ tn =1 is a

i ti+1

partition of [0,1], and where J~ € 3 Ve can define a

backwards Ito integral of J with respect to W by:

1
(3.1) gtaw® =V i - W, ).
b &
i+1 i
0 tiew

It is important to note that a more natural definition of the

backwards integral would be

) Ji(ﬁti B REED XA

- W, ), Dbut the definition (3.1)
i+ t

i+l i
is that of EKunita [2] which has gained acceptance, so we use it

here. One can now develop an entire theory of the backwards

integral which is analogous to that of the customary (forwards) Ito
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integral. In particular one has a backwards change of variables
formula (all Lebesgue integrals are meant in the forward — that is,

traditional — sense):

(3.2) THEOREM. Let (wt)0<t<1 be a standard Wiener process,

t

and let f be %2. Then for 0 (&8 <« t {1 one

=

-V

t 1

B

as

t t
£CFS) - £(it) - j £ (F%)avs + 1 f £ (7%)ds.
s s

A proof of Theorem (3.2) can be found, e.g., in [6] as a special
case of Theorem 6.1. In any event it is elementary. One also has a
backwards Grisanov formula. Ve give the proof because it does not
seem yet to exist in the literature.

(3.3) THEOREM. Let (J%)

1
t : w2
to %" such that P{| (§)Au <« »} = 1. Let

1>t>0 X Jointly measurable and adapted

0
v 1 1

exp{f Jla§? - % I (@™%au}. Suppose E(L?) = 1 and set
t t '

e
I

1

0 t =t u

L"dP. Then under Q +the process X = W~ - Jdu is a
t

dQ

backwards Wiener process.
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Proof. Theorem (3.2) applied to £(x) = e¥ yields

1
¥ -1 f 1%%a¥*, so 1P is a backwards martingale. Next
t
1
t -t s u®
consider V. = exp{u(¥W” - I J-ds) - §—(t—1)}. It will suffice to
t
show that (Vz,%t,Q) is a backwards local martingale for all U.

-To see this, we need only show that Vf‘lLt is an (3°,P) backwards

local martingale. But

1 1 1
vor® - exp{f g%ais - % f (3%)ds + uiW® - f wd®ds}
| t % %
1 1
= exp{f (FS+u)ai® - % f (78+uw)Ras},
t t

which again is a backwards local martingale by Theorem (3.2). Thus

Xt is a backwards Wiener process. o

(3.4) COROLLARY. With the same hypotheses and notation as Theorem

(3.3), the process

is a forwards Wiener process under Q.
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(3.5) COMMENT. A sufficient condition to have E(LO) =1 is, of

1

course, that of Novikov: that E{exp(% I (Ju)zdu)} « o, Also, the
| 0

statement that X' - X0 is a forwards Wiener process is meant with

respect to its natural filtratiom.

4. Reversibility of Some Semimartingales.

In this paragraph we investigate the reversibility of
‘semimartingales Y of the form (2.3) under the additional
restriction that the martingale M is a Wiener process. That is,

we will assume our process Y has a (forward) representation:

b
(4.1) Yt=IHudu+Wt O<t<1).
)

This extends the results of Lindquist and Picei [3] since we do not
assume either that Y 1is Gaussian or that Y has stationary
inérements. |

Let W Dbe a standard Wiener process on [0,1] defined on a
filtered complete space (Q,%,%t,P) satisfying the "usual

'hypotheses“. Let H be a Jjointly measurable, adapted process such
1

that P{f (B,)%ds < »} = 1 and moreover that
0

1 1
E{exp([ H AV, - % f HAds)} = 1. Ve set:
0 0
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t

t
(4.2) | Y, = I Hsds + Wt
0

: b .
Let @o = U{Yu Yl,

the P-null sets of ¥. Observe that Y as given in (4.2) can be

t <ug1l}, and @t = @g V ¥, wvhere &« are

written as:
-V (0O <s <t < 1).

(4.3) Y, - Y = f Hudu + W

(4.4) THEOREM. Let V¥,H and Y be as given above. Then Y is

reversible in the seQ§§ that there exists a backwards Wiener process

M and a @t—adapted measurable process J such that

1
?t=Yt—Y1=Mt+IJudu (0<t < 1)
' t
or gQuivalentlv, for 0<(s <t ¢ 1:
t
_uS _ b u

Ys - Yt =M M™ + I J du.

s

Proof. Let Q be a measure equivalent to P given by:
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Then by Girsanov’s theorem (e.g. [4], p. 232) we know that

t

Yt = f Hsds + Wt is a Q-Wiener process. Therefore ?t = Yt - Yl
| 0

is a backwards Wiener process under Q. Since Q@ and P are

equivalent, we know there exists a process J such that

1
¥t - ¢t —.f I%u
%

is a backwards P-Wiener process, where J is adapted to

u
(¢ )12u20 . 1]

5. An Anticipating Girsanov Formula
In this paragraph we consider the question: under what

hypotheses on a process h can the law of
t
xt=wt—fhsds 0<% < 1)
0]

be transformed, by a change to an equivalent probabiiity measure, to
that of a Wiener process? VW = (wt)0<t<1 is of course assumed to be
an (Q,y,(yt)ost(l ,P)-Wiener process. The traditional assumptions
are that h be adapted and satisfy an integrability condition.

- Here we relax the requirement that h be adapted.
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Let H Dbe adapted, jointly measurable, and suppose
1
B{ 1 2
exp(§ Hsds)} < o, Set
0]

Let yt and @t be the completions respectively of
a{Wu—Wl; t {u¢<1l} and a{Yu—Yl; t < u < l}. Note that in general
one has neither @t C gt nor yt C @t. Define a new probability @
by
1 1
. o 1 2

(5.1) aQ - exp(f Hav, - L f #2ds)aP.

0 0
Let (Ju)1>u>0 be @u—adapted and suppose further that

1
EQ{exp(% f (Ju)zdu)} < o, or simply that
0

1
Eplexp(3 f B2 + (5%)%a8)) « o.
: 0

(5.2) THEOREM. Let H and J be as given above. Then there

exists a probability law R equivalent to P such that
t
Uy = W, + I (Js—Hs)ds is a ¥Wiener process under R.
0
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t
Proof. If Y, = W, - I Hsds, under Q as defined in (5.1) we
0
have that Y is a Wiener process. Therefore ?t = Yt - Yl is a
backwards Wiener process under Q. Next define
1
2% - §* - I 7%au
t
and define R Dby
1 1
dR = exp [f glaf® - % I (Ju)zdu]dQ.
0
Then z® is a backwards Wiener process under R, and hence

is a forwards Wiener process under R. §Since R is equivalent to

@, and Q 4is equivalent to P, we have that R is equivalent to
P. o
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Let Wt = Wt - Wl . Then Wt is a backwards Wiener process
under P, but since (Ju)1>u>0 need not be adapted to %%, we
1
cannot give a usual meaning to I J%%"*. However since
| t
t
Wt - =gt -8, I H du, we can define the integral as follows:
S
1 1 1
(5.3) f Jlaft = f et + I J'H du.
t t t

¥ith the above convention, we have the following:

(5.4) COROLLARY. ¥With the assumptions and notation of Theorem
(5.2), and (5.3), we have:

dR _ | u.=u 1 u 2
I - exp[f Jav- + I Hdv, - 3 f (= + Hu) du].

Proof. 'Since == =

1 : 1 1 1

dR u.5u 1 U2 1 ]
I - exp[I Jay” - 3 I ™ du]exp[f AW, - 3 I (Hs) ds]
0 0 0] 0]

exp[f JUaw" I JH du + f BV - fI(Ju)2 + (Hu)zdu]
0

1 1 | |
exp[f Jhai® + I H AV, - % I CE 2H I + (Hu)zdu]
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Note that if one writes

1 1 1
u - u,zu
I (g +Hu)dW(u) = I Jdav- + f Huqu ’
0 0] 0

one has as & replacement for Corollary (5.4) the pretty formula:

1 1
(5.5) & - exp([ @HEpavew - L [ @)% |.
0 0

-~

(5.6) COMMENTS. The chief advantage of Theorem (5.2) and

Corollary (5.4) is their simplicity and their reliance on well known
theorems. Other approaches to developing a Girsanov type formula
might be that of the expansion of filtrations, or that of using a
stochastic integral that integrates anticipating processes. Nualart
and Zakai [5], for example, have used this latter approach with the

Skorohod integral, and they have achieved some success.
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