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ABSTRACT
A class of stochastic approximation procedures which generalizes
the nonadaptive maximum 1ikelihood recursion procedures of Wu'(1985,
]986)»and the nonadaptive Robbins-Monro procedures is defined. These
procedures are sﬁown to be consistent in quantal response problems

and in some other situations.



1. Introduction and Summary

Suppose that for each x € R, we have a probability distribution
on R with c.d.f. F(-{x) and mean M(x) € (-=,»). Each time we choose
a "stimulus Tevel" X, We see a “response" Ynfn F(-]xn). The goal will
be to find a scheme for sequentially choosing the stimulus levels X1»

Xpsee. SO that X, converges rapidly to the root ¢ of

(1.1) M(x) = p,

where p € R 1is given. We will assume that the regression function M

satisfies the usual stochastic approximation conditions:
(1.2) M(e) = p for some 6 € R

(1.3) inf {M(x) - p} (x -8) >0, forall 0 <& < 1.

§ < |x - 8] < 67!

Under some weak additional condition§ on M and oz(x) = 1 var(Y|x),
it is well known that various adaptive and nonadaptive Robbins-Monro (RM)
procedures cause X to converge to 6. The simplest nonadaptive RM rules
take the form

(1.4) X = x_ - (Y

for some positive constant b > 0. Lai and Robbins (1979) remark that



the rule (1.4) sets x equal to the MLE for & under the parametric

n+l

model

(1.5) Y =p+ b(xi -8) t e, i=1, 2, ...

i+l i

where €15 Eps... ar€ assumed by the model to be i.i.d. N(O, 02). The
iterated least-squares procedure of Lai and Robbins (1982) and, to a
lesser extent, the adaptive RM rules of Lai and Robbins (1979) may be

regarded as repeated MLE rules under the parametric model
(1.6) Y., =p+ B(Xi -9) + g, i=1,2, ...

where the 81'5 continue to be i.i.d. N(O, 02), and e € R and 8 > 0
are the unknown parameters.

The results of Lai and Robbins (1979) suggest that the asymptotic
rate of convergence of adaptive RM rules is not subject to general
improvement, even when one has considerable knowledge of the situation
beyond what was assumed above. Indeed, suppose that p = 3, and that

F(+|x) is the c.d.f. for a Bernoulli distribution for which

-1
(1.7) POY = Tix} = 1 - PEY = 0]x} = {1 + e (X = 8),

Thus, we are in a quantal response situation, and the regression function
M is a logit curve. If Xp» Xgs... are determined according to an adaptive

1
RM rule, then n2(xn - ) converges in distribution to N(O, 4/A2). (Lai



and Robbins (1979) assume "i.i.d. errors", but it seems clear that their
results and methods also apply here.) On the other hand, suppose that
X is known and Xys Xo» ... are all set equal to 6, which is where the

Fisher information for & under the model (1.7) is maximized. If én is

n

the MLE for o under the model (1.7) based on observations {(Xi’ Yi)}i=1’

then n% (én - 9) also converges in distribution to N(O, 4/A2).
Thus, the MLE under the true location model based on maximally informa-
tive observations does no better asymptotically (at least to first order)
than adaptive RM.

However, Wu (1985, 1986) has suggested that the small and moderate
sample size behavior of RM procedures may be improved upon by the use

of repeated maximum 1ikelihood estimation (Wu's term in Wu (1986) is

maximum 1ikelihood (ML) recursion.) under parametric models more

appropriate to the situation in question than the models (1.5) and (1.6).
For example, for quantal response problems where one knows that
P{Y =0 or 1|x} = 1 and that 0 < M(x) < 1, the models (1.5) and (1.6)

are almost ridiculous. A more appropriate model might have the form
(1.8)  P{Y = 1|x} =1 - P{Y = 0[x} = H(x|6), 6 € @ = RI,

where, for each 6 € @, H is a strictly increasing and continuous c.d.f.

Wu suggests finding the MLE én for 6 based on the previous observations

n

{(xi, Yi)}i=1’ and then choosing X 47 to satisfy H(Xn+1|en) = p. (Some

+

other choice rule must be used until the MLE én exists and is unique.)

Wu has especially considered the use of the location-scale logit model



-A(x-a)}_]

(1.9) H(x|a,A) = {1 + e , A>0, a e R..

Here, the rule for choosing X+ takes the form

(1.10) x .- =a -0V (p

Since the scale parameter ) as well as the location parameter o is being

estimated here, (1.10) will be called the adaptive Togit ML recursion

rule. If x is assumed to be known, then the formula is

(1.11) X L (p']

n+l n - 1)

which will be called the nonadaptive logit ML recursion rule. Similar

rules (adaptive and nonadaptive) can be based on other parametric models
such as the probit model.

Wu (1985) has done Monte Carlo simulations to compare the perform-
ance of adaptive and nonadaptive RM procedures with the performance of
his adaptive logit ML recursion rule for moderate sample sizes (n = 10
to 35). He claims that a modification of his adaptive Togit ML recursion
method with truncated step sizes generally outperforms RM procedures.

He also claims that his method is asymptotically equivalent to adaptive
RM if it is consistent. However, he has not given a rigorous proof of
consistency.

To deal with situations other than just quantal response, Wu (1986)



has suggested that maximum 1likelihood recursion be carried out under
generalized Tinear models with canonical link functions. This amounts
to assuming that the distribution of Y, given x, has a density of the

form

(1.12) exp[(x - a)ry - b{r(x - a)}]

with respect to a fixed measure, where b (-) is a known function and

A >0 and o € R are unknown parameters. Then

M(x) = b'{x(x - a)}.

Providing that p is in the range of b', (Otherwise, (1.1) has no root
according to the model.) we may assume without loss of generality that
b'(0) = p, so that x = o is the root of (1.1).

The models (1.6) and (1.9) are special cases of (1.12). Another
special case of (1.12) is themodel which assumes that Y, given x, has

Mx - u). (See Wu (1986).) Again,

a Poisson distribution with mean e
Wu has no proof of consistency.
The author has found it enlightening to compare several nonadaptive
ML recursion rules for quantal response problems by considering how the
shapes of the corresponding efficient score functions affect their be-
havior. Details and picutres are presented in Sellke (1986). Such

geometrical considerations show, for example, that the nonadaptive

Togit ML recursion rule usually performs far better than the nonadaptive



probit ML recursion rule or the nonadaptive RM rule when the initial
observations are taken far from e.

Section 2 of this paper defines a class of procedures called
score function rules. These score function rules incorporate the
geometrical properties which seem to be responsible for the fact that
ML recursion rules are generally consistent. (Again, see Sellke (1986)
for picures.) Section 3 shows that score function rules are indeed con-
sistent for quantal response problems under conditions (1.2) and (1.3).
Section 4 shows that the nonadaptive Poisson ML recursion rule of Wu

(1986) is also consistent under weak conditions.

2. Score Function Rules

Let f(-,-) be a function from R? to Rsuch that, for each y ¢ R,
f(t,y) is a nondecreasing function of t which is continuous at O and
for which f(0,y) =y - p. Let S(O)(-) be a strictly increasing function
from Rto R for which

(2.1) Hn o s <o <1im (0.

t > -» t > »

If Tim f(t,y) > 0 for any possible value y of Y, then we require

t > -

also that T1im S(O)(t) = -o, If 1im f(t,y) < 0 for any possible
t > - t-—>oo(0)
value y, thenwe require also that 1im S‘“/(t) = ». The score function

t> o
rule for finding the root 6 of (1.1) operates as follows. Given that

(n)

(X:s Y.) ?_ have been observed, define the nth score function S by
i i’ =]



(2.2) sty =+ 50ty 4 rf

f(t = X Y.
1= 1

1

).
1

The choice rule for xn+] is

(2.3) x .. = infet = Mgy > o0y

n+1

Note that our assumptions on f and S(O) guarantee that X+ is

always finite.
The nonadaptive RM rule (1.4) can be obtained as a score function

rule. Use

sU(t) = (v - p) + bt - x))

instead of S(O) as the initial score function, and
f(t, y) =y -p+ bt.
Then (1.4) and (2.3) are equivalent forn =1, 2, ....
Suppose that P{Y = 0 or Y = 1{x} = 1 for all x, so that we are in

a quantal response situation with

(2.4) P{Y = 1|x} = 1 - P{Y = 0|x} = M(x)

Let G be a c.d.f. with density g for which log G and log (1 - G) are



concave, and for which G(0) = p. ML recursion under the location

model for M given by
(2.5) M(x) = G(x - o), 6 € R,

is easily shown to be a score function rule. In this case, the maximum

1ikelihood estimate én exists and is unique precisely when

n n
(2.6) J Y., >0and § (1-Y,)>0.
- ko
Let {(Xi’ Yi)}1=] be "initial" data for which (2.6) holds. This

initial data may be the result of observations taken before (2.6) holds,

or it may be "fake" data which is thought to reflect prior opinion. If

(0)

we set S equal to {-p(1 - p)/g(0)} times the efficient score function

of the initial data, and if we use

p(1 - p) . g(-t)
(2.7) f(t,y) = ¢(0) G(-t) +y-1°

then the resulting score function rule agrees with ML recursion based
on the model (2.5). Nonadaptive logit and probit ML recursion are
special cases. See Sellke (1986) for details.

Wu's (1986) ML recursion design based on a generalized linear
model with a canonical Tocation 1link function (Take » = 1 in (1.12).)

is easily shown to be a score function rule with



(2.8) f(t, y) =y - b'(-t).

A heuristic argument for how a score function rule will behave is
as follows. Assume for simplicity that S(O)(-) and f(-,y), y € R, are

continuous. If Y, > P> then S(n)(xn) > S(n'])(x ) =0, so, by (2.3),

n

X < X Likewise if Yn < p, then x > X+ Thus, the change

n+1 n+1

between X, and X+ is in "the right direction" in that one moves to
the left if Yn is "too big" and to the right if Yn is "too small".

Furthermore, if f(t, y) is strictly increasing in t for each y ¢ R,
then the score functions S(n) get steeper and steeper, which in turn

causes the adjustments x - X to get smaller and smaller. (Indeed,

n+1

in the case of the RM rule (1.4), the score function S(n) is a line of

slope (nb) and S(n)(x ) = Y, - P. Thus, the root X1 OF S(n) (t) =0

n +1

satisfies x - x_ =-(Y =~ p)/(nb), which agrees with (1.4).) Further-

ntl n n
more, if X, converges to an incorrect Timit, say X_ > 6, then by (1.3)

one expects
- p) > 0.

If f(t, y) is uniformly (in y) continuous in t at t = 0, then (2.9)
and Xy > X, imply that S(n)(t) diverges to +«uniformly for t in a
small interval (x_ - 6 x_+ 8). But this contradicts Xy > X (This

argument for why Xp cannot converge to a wrong value appears in Wu (1985,

1986).)
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3. Consistency of Score Function Rules for Quantal Response Problems

In quantal response, Y is always equal to either 0 or 1, so that
a score function rule will be specified by the functions S(O)(-),
f(-, 0) and f(-, 1). The author conjectures that score function rules
are consistent in quantal response problems whenever f(t, 0) and f(t, 1)
are strictly increasing in t at t = 0. However, Theorem 1 below re-
guires a slightly stronger assumption. Let f;(t, y) and f'(t, y) be
the right hand and left hand derivatives with respect to t of f(t, y).

(0)

Let Fopo N = 0,1,2,..., be the c-algebra generated by S and by

Y1""’Yn' (Recall from Section 2 that it may sometimes be convenient

(0)

to regard S as random.) We assume that
POy = T8 = 1 - POY 0 = 0153 = M(x )
Theorem 1. Suppose that Xys Xo» ... are chosen according to a score

function rule for which fi (0, y) and f' (0, y) exist and are positive
for y = 0, 1. Suppose further that P{Y =0 or Y = 1jx} =1 for all x.

Assume that M(x) = E(Y|x) satisfies (1.2) for some 0 < p < 1, and that
(3.1) (x - 8) {M(x) - p} > 0, x € R.
Then X, converges almost surely to a finite 1limit. If in addition M

satisfies (1.3), then X, converges almost surely to o.

The heuristic argument of the previous section suggests that the
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steps x - X tend to be in the right direction and that they tend

n+1
to get smaller over time. For X to converge almost surely to 6, it

must be the case that Xn does not "wander around" forever, and that Xn
cannot "get stuck" at an incorrect value. Lemma 1, which is a sort of
upcrossing inequality, implies that Xq cannot wander around forever and
therefore must converge. Condition (1.3) and the continuity of f(t, 0)

and f(t, 1) at t = 0 will imply that Xn cannot converge to an incorrect

value.

Lemma 1. Suppose that all the assumptions of Theorem 1 except possibly

(1.3) hold. Then there exists a function U : R' x R' - [0, 1] such

that 1im U(n, A) = 0 for each n > 0 and such that the following holds.
A~ o
If L is a number for which L > 6, S(™1)(L) 5 0, and

(3.2) s ey =MDy 5 Py,

then

(3.3) P{sup x. >L+2n|g ;3 <U(n, A).
n>m

As Jeff Wu has pointedout, the following proof of Lemma 1 is a
sort of probabilistic Zeno's paradox. One shows that, with high prob-
ability, it takes a Tong time for the X, Sequence to exceed [ + n.

Given that it took a long time to exceed L + n, then with even higher
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probability the X, sequence takes an even longer time to exceed
L + (3/2)n. Continuing in this way, one shows that X, cannot exceed

L + 2n in finite time except on a set of small probability.

Proof of Lemma 1

Since f;(O, 0) and f;(O, 1) exist and are positive, there exist

e >0 and v > 0 such that

— > £, y=0,1
t2 t]

(3.4)

when 0 <ty <ty <2v, and t, -t > t1/2. It will suffice to prove
that Lemma 1 holds for n < v. Note for future reference in Section 4

that the only properties of F(-|x) that are really used in the follow-

ing proof are that E(Y2|x) is bounded and M(x) > p for Xn <X < x ¥ 21

m
and that Y is always bounded below.
For each j = 0, 1, ..., let ?(1, i)s ?(2, j)s ... be the (perhaps

finite) subsequence of Ym’ Y obtained by deleting all Yn's for

TIPS
which x < L + (2 2790 Fork, =0, 1, ..., Tet 2k, §) = g if
?(k + 1,j) corresponds to Yn+1' Thus, 2(k, j) is generated by the past
of the original process just before ?(k + 1, j) is observed. Let Nj
equal the total number of ?(k, j)'s. If Nj < =, set ?(Nj +i+1,3)=p
and g&Nj +1i,J) =3, fori=20,1,.... Again for each j =0, 1, ...,
let {T(k, j)}E=O be the random walk generated by the ?(k, i) -p

sequence, reflected downward at 0. Thus, T(0, j) = 0 and
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(3.5) T(k + 1, §) = min{T(k, j) + Y(k + 1, §) - p, O}.

Since E{Y(k + 1, §) - p|&(k, §)} > 0 and E[{Y(k + 1, §) - p}zL&(k, <,

it is easy to show that

(3.6) Wk, §) = T(k, 3)% - K, k=0,1, ...

is a &k, j)-supermartingale in k for each j. Let a and be positive

numbers. A trivial stopping time argument shows that

(3.7) PLinf T(k, §) < -al3, ;) < b/a’,
k <b M-

I now want to show that, if A is sufficiently large, then with

high probability it takes the T(k, j) process more than

(3.8) by = : (n )71 2372 oo (vt Ay

steps to cross below the level

(3.9) -8y = -exp{(/ﬁ)jA}

for every j. But by (3.7)

(3.10) PLinf T(k3) = 2,03, 1) < (1) 27 expt(1-/2) (/21"

kfbj J
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Set

(3.11) U(n, A) =
J

(ne)”" 29%2 expr(1-2) (v2)%*1 My,

~18

0

and note that 1im U(n, A) = 0. Define the event E, by
A

(3.12) EA= :{ inf  T(k, j) > -a, for all j =0, 1, ...}.
k < b. J '
- J

By (3.10) and Borel-Cantelli, P{Ez|3 ;} < U(n, A).

The rest of the argument is geometry. The point is that X will
never again exceed L + 2n if EA occurs. Assume that EA occurs.

In order to have some Xq> N> M, exceed L + n, it is necessary
to bring the value of S(n)(L + 1) down from above eA + 1 to below

zero. If X <L +q, then, by (2.2) and the fact that f(t, y) is

increasing in t,
(3.13) s+ ) - s v ) > Y - p.

Thus, since Yn -p> -1, S(n)(L + n) can decrease by at most 1 for each
observation until Xn exceeds L + n. (This is where the fact that Y is
bounded below is used.) Hence S(n)(L + n) must hit the interval

[eA, eA + 1) on its way down to zero if it ever gets down below zero.

Furthermore, S(n)(L +n) < eA + 1, n>m, implies that x > L, since

n+l

the score function gets steeper as more observations are made. Hence,
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) observations which take S(n)(L + 1) down to zero
A

the (Xn+], Yn+1

after its last previous visit to [eA, e’ + 1) all have x > L.

n+l

By (3.13), the sum of the (Yn+1 - p) values for these observations

must be Tess than -eA. Thus, S(n)(L + n) cannot drop below zero

before T(k, 0) crosses below -eA. But the event EA (with j = 0)

| A

implies that one takes at least b0 observations with L < x L+n

n
before T(k, 0) crosses below —eA = -3,
By (2.2) and (3.4), each observation (xn, Yn) with L < x <L +n

causes the difference

(3.14) s(M 1L+ 320 - s L+

to increase by more than en/2. (Recall we assume n < v.) Hence,

the difference (3.14) exceeds

(3.15) boen/Z = 2 exp{/2A} > exp{vV2A} + 1

before S(n)(L + 1) drops down below zero.

Now we iterate the argument. The geometry of the score functions
implies that S(n){L + (3/2)n} cannot drop below zero before T(k, 1)
crosses below - exp{/2A} = -3 The event E, with j = 1 implies that

A

at least b] observations with L + n < Xy < L + (3/2)n are taken

before this occurs. Finally, (2.2) and (3.4) imply that the difference

s+ (778)ny - s+ (372)n)
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exceeds

bien/4 = 2 exp{(VZ)?A} > exp{(vZ)2A} + 1

before S(n){L + (3/2)n} drops below zero, and we are ready for the
next iteration.

Thus, by induction we get that the event EA implies that, for
each j, at least bj observations must be taken before X, can exceed
L + 2n. Since bj + o as j » =, it follows that X, can never again

exceed L + 2n.

Proof of Theorem 1

Continue to suppose that all the assumptions of Theorem 1
except possibly (1.3) hold. If X does not converge to an extended
real number, then there must be a pair of rational numbers a < b
such that the X, sequence crosses the interval [a, b] infinitely
often. We may assume without Toss of generality that e < a < b.
However, if the xn sequence crosses [a, b] infinitely often, then it

is not hard to show that
S(n)(b) _ S(n)(a) 5 o

By Lemma 1, the X, Sequence cannot cross any such interval [a, b]

infinitely often with positive probability. Hence, X must converge
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to an extended real number.

I now want to show that Xg > @ is impossible. I want to be able

to assume here that S(n)(xn+]) = 0, but this may not be true if S(n)

has jumps. However, one can at each stage simply set S(n)(x ) =0,

(n)

n+1

leaving S unchanged elsewhere. This has absolutely no effect on
the behavior of the score function rule.

Let ;n = max X,. Fix A> 0, and Tet m = My be the first n for
which x> o a%%nfor which

(3.16) s("‘”(xn +1) - s(“'])(xn) NPCINEY

: (m_]) N : - (m_]) v = 1 = ¥ i
Since S (xm) >0 if Xo < Xos and S (xm) 0 if X = Xos in

either case Lemma 1 implies

(3.17) PUsup x> x + T{F_q) < U(T, A).
n>m

Thus, the conditional probability that X ™ given that ma is
finite, is less than U(1, A). It will now be shown that my is
necessarily finite if Xy > @ SO that P{xn + o} 5_1Rf u(1, A) = 0.
Since f(0, y) =y - p and f;(O, y) >0, y =0, 1, it follows
that there exists an ¢ > 0 such that f(t, y) >y -p + ¢ fory =0, 1

and for all t > 1. Thus, by (2.2) and the fact that ;n+1 Z-;n’

(3.18) sVG v =R 1y sy -

n+l
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If Xq > © for all sufficiently large n, then the martingale SLLN stated

in the Appendix implies

(Y-p+€)—>oo,

—i~135

(Recall that E(Yn - p|xn) > 0 when Xp > 6.) Thus, Xy > e implies
S(n'])(;(n + 1) > . Also x, > « implies that x = ;n and
S(n'])(;n) = 0 for infinitely many n. Hence, the difference in (3.16)
eventually exceeds any positive number if X, 7 ®s SO that L is almost
surely finite.

Likewise, Xy > " is also impossible, so that X must converge to
a finite Timit x_.

Now suppose that (1.3) holds and that P{x_ > 6} > 0. Then
P{x, € (a, b)} >0 for some b > a > 6. By (1.3) there exists an ¢ > 0

such that

(3.19) inf {M(x) - p} > 3e.
x € (a,b)

Since f(t, 0) and f(t, 1) are continuous in t at t = 0, there exists

a § > 0 such that
(3.20) f(-6, y) >y-p-e, y=0,1.

Let (c, d) = (a, b) be such that d - ¢ < 6 and P{x_ € (c, d)} > 0.
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let

(3.21) ny = sup{n : Xp ¢ (c, d)?.

If ny <o, then (3.19) and the martingale SLLN 1imply that

. k
(3.22) k! Y (Yn - p) > 2¢ for k sufficiently Tlarge.
=1 M
But then
(n]+k) (n]) k
S (c) =S (c) + 121 f(c - Xn]+i’ Yn]+1)
SR I
> C + =G, .
i21 ny+
(ny) k
>$ (e)*+ § (Yo, -p-e) by (3.20).
i=1 1
(ny)
> S (c) + ke for sufficeintly large k, by (3.22)
> 0 for sufficiently large k.
(n,+k)

1

But S (c) > 0 implies Xp 4k < Co which contradicts the definition

1
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(3.21) of ny- This contradiction shows that P{n] = »} = 1, and thus,

that P{x_ € (c, d)} = 0. Hence, P{x_ > 6} = 0. Likewise,

P{xoo <08} =10, so P{xm gt = 1.

4. Consistency of Poisson ML Recursion

Wu's (1986) nonadaptive Poisson ML recursion method is a score
function rule. If it is desired to stochastically approximate the
root of (1.1) for p > 0, then the parametric model used is that Y,

X8 (One can, of

given x, has a Poisson distribution with mean p e
course, change the scale and use mean p ex(x_e) for known Xx.) The

score function rule then has

(4.1) f(t, y) =y -pet.

(

The initial score function S 0) based on "pre-rule" data {(;1’ Y.)}.

K0 .

with ) Y. > 0 will be given by
1

Suppose now more generally that g : R -~ R 1is a concave strictly

increasing function for which g(0) = 0. Let f(t, y) be given by

(4.2) f(t, y) =y -p+ g(t).
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Clearly, (4.1) is a special case of (4.2). Let cz(x) = : var (Y|x).

For K e R, let

where A denotes the minimum.
Theorem 2. Suppose that the following conditions hold.
(4.3) For some constant B > 0, P(Y > -B|x) = 1 for all x ¢ R.
(4.4) M satisfies (1.2) and (1.3).
For some positive constants a, b, C, and K,
(4.5) M2(x) + cz(x) < C for ®8-a<x<e6+b
and

(4.6) inf
0 <h

1 {MK(x +b +h)-p} >0, for all & > 0.
< 3§

Then any score function rule using an f of the form (4.2) with a con-

(0)

cave initial score function S causes x to converge almost surely to 6.
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Remark. Theorem 2 shows that Wu's nonadaptive Poisson ML recursion
rule is consistent under weak conditions. Note that, although the
Poisson mode]l implies that Y takes on only integer values, Theorem 2
assumes only that the set of possible values of Y is bounded below.
It is tacitly assumed in Theorem 2 that S(O)(w) = » holds if this

is necessary to insure that (2.3) always yields a finite value for

For exampie, S(O)(w) = o may be necessary if T1im g(t) < B+p,
t >

xn+1'.

where B is the constant in (4.3).

Proof of Theorem 2

The proof of Theorem 1 applies almost without change to show that

- e)+, the positive part of (x_ - ), converges to zero almost

(x n

n
surely. This argument does not apply to show that (x_ - 6) converges

n
to zero, in part because Y is not necessarily bounded above, but also
because no assumptions have been made concerning o(x) for x < 6 - a.
Thus, different techniques are called for.

First, let us show that Xq cannot converge to an incorrect finite value
X, < 6. The argument used in the proof of Theorem 1 applies here pro-

vided that we can prove (4.8) below, which is a weaker analog of (3.22).

If ¢ < d < 6, where

(4.7) sup {M(x) - p} < -3¢,
x € (c,d)

for some ¢ > 0, and if X, € (c,d) for all n greater than a constant N,



then I claim

k
. -1
(4.8) Tim k .Z (YN4-1 - p) < =2¢.
k i=1
Note that, by (4.7), Sk defined by
k
(4.9) Sk = -iZ] (YN+‘i -p + 3¢)

is a supermartingale with respect to the filtration < NS

Furthermore, the increments (Y -p + 3e) are, by (4.3), bounded

N+i
below by (<=B-p + 3¢). Thus, the desired conclusion (4.8) follows

from Corollary 1 below of Lemma 2.

Lemma 2. Let

be a supermartingale with respect to {ﬁh}i=0' If P{Xn > =1} =1

for all n, then either Soo : lim Sn exists and is finite, or

lim S = e
—->00

=

23
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Proof of Lemma 2

Let C be an arbitrary constant, and let k be an arbitrary positive
integer. It will suffice to prove that either S_ exists and is finite,
or that inf Sn <C. If Sk < C, the second alternative holds. If

n >k
S, > G define a (perhaps infinite) stopping time t by

t=1:14nf {n > k : S, =0}
Then (SnAt - C+ 1) is a positive supermartingale for n > k and must
therefore by the martingale convergence theorem converge almost surely
to a finite Timit. If t = », then S_ exists and is finite. If t < =,

then inf S_ < C.
n>k n

Corollary 1. If {Sn}:=o is as in Lemma 2, and if h(n) -~ 0 as n -+ =,

then %{h(n)sn} < 0.

Proof of Theorem 2 (continued)

In the remainder of the proof, it will be convenient to assume that

(0)

p=20. Since S and g are both assumed to be concave, all of the score
functions S(n) will be concave and will have a finite left-hand deriva-
tive and a finite right-hand derivative at each point. Let dn > 0 equal
the right-hand derivative of S(n) at x, and note that dy s 31

measurable. Then it follows from the concavity of S(n) that
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(4.10) Xgep = Xy 2 ¥ /4.

Suppose now that Xo < 8 for some positive integer m. It will

now be shown that sup x_ > 6 with probability one. Let o be
n>m
the 3 -stopping time defined by

(4.17) ng = : inf {n>m:x > 0},

n0 + 1

(Recall that x is determined by S(O) and Y , Y_.). Define
n+1 n

-l, e 0 0
wn for n > m by

(4.]2) W = 2 X(
By (4.10) and the fact that

E(Y,,113,) = M(x ) <0

whenever x < 6, it follows that W is an 3n-submartinga1e for n > m.

(0) (n)

Furthermore, the conditions on g and S which insure that S always
has a finite root will usually be enough to insure that wn is bounded
above. If wn is not bounded above, one can simply redefine wn for

n>n, by



26

Then W_ will still be an 3 -submartingale, and (4.3) now implies that
wn is bounded above. (Note that dn will be bounded below by the

0
(0) at 6.) The martingale convergence

right-hand derivative of S
theorem implies that wn must converge to a finite limit. From this
and the fact demonstrated above that X cannot converge to a finite limit

X, < 8, it follows that sup x_ > 6.
n>m

We are now in a position to use the almost-supermartingale conver-
gence theorem of Robbins and Siegmund (1971) (See appendix for a state-
ment.) to show that (xn - 9) must converge to zero. Define Zn by
- 9)-}2 A a2,

(4.13) Z = {(xn+]

where a > 0 is the constant in (4.5). Note that

"

-2 2
(4.14) E(Z,18,_1) = ELU(x4q = x + % = 0)73° A a%[3 4]

ELC(Y /d + X - e)'}2 A a2|3n_]], by (4.10)

1A

2
*EUY/d )18 0 Tg - <x <o+b)

+2E((Y, /d ) (x, - 8)[F 43 L g < Xy 201
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I{xn >0 + b}

+ (d )72

2
n E{(Yn) |3n_]} I{e

~-a < + )
a<x, <8+Db}

But we know that (xn - e)+ +~ 0, a.s., so that

S .2
(4.15) | % a I{x s o+ by < ° A S
n
By (4.5),
(4.16) EC(Y )| .1 1 < ¢
’ n n-1" "{8 - a < X8 + b} — 7

Let d be the right-hand derivative of g at (a + b). Then

N n
n I{e-ajxn§ﬁ+b} > d I{e-afxn§ﬁ+b} 1Z]Jl{e—a§x1§9+b}

(4.17) d

It follows from (4.16) and (4.17) that

P ® -2 2 ~ a2
(4.18) % (d)7° EC(Y)[3,_1) Ho-acx <otb} < (d)

By (4.15) and (4.18), Zn satisfies

(4.19) E(Z,13,.1) < Z,.7 * b, _15 n=1,2, ...,
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where Zn and bn are nonnegative and 3n-measurab1e, and ) bn < w, a.s.
The almost-supermartingale theorem of Robbins and Siegmund (1971)
implies that Zn converges to a finite limit. But Zn visits any inter-
val [0, €), ¢ > 0, infinitely often, since sup x_ > 6 for every m.

n>m
Thus, Z_ ~ 0, a.s., which in turn implies (xn~¥ 6)” -0, a.s.

Appendix

The following result is a special case of a theorem found on
page 148 of Neveu (1965). Neveu's result is rederived as Application
1 in Robbins and Siegmund (1971).

A Martingale SLLN Let X X2, ... be a martingale difference sequence

'l’
. . . ® -2 2
with respect to a filtration {&} 4. If I n™" E (X [ 1) <=, a.s.,

then 1im n”! L X, =0, a.s.

N-»eo
The following convergence theorem for non-negative almost super-
martingales is a special case of Theorem 1 of Robbins and Siegmund
(1971).
Theorem. (Robbins and Siegmund)
Let {&,} .y be a filtration, and let {Z } _; and {bn}:=1 be two
adapted sequences of non-negative random variables such that

E(Z,18,9) <Z,q *b

n-1 n-1

for n > 2. Then T1im Zn exists and is finite, a.s., on the set
n » x

where } b < «.
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