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PREDICTION INTERVALS IN BALANCED ONE~-FACTOR

RANDOM MODEL

S. Jeyaratnam and S. Panchapakesan
Southern Illinois University at Carbondale

1. Introduction.

Prediction intervals for the overall mean of future
observations have been considered in the literature under
the usual regression (fixed effects) model; see for example,
Graybill [2, pp. 267-2701 and Hahn [4]. Such problems for
random effects modeles are also of interest in practice;
however, this seems to have not received enocugh attention.
The purpose of the preseﬁt paper is to consider prediction

intervals in a balanced one-factor random model given by

(1.1) Y, = u+A, +e;, i=1,...,13 3=1,...,7,

i3 3’
involving I levele of a factor and J observations per level.
Here the EiJ are i.1i.d. H(O,ag), and the Ai are independent
of the EiJ and are i.i.d. N(O,ai). The parameters pu, ai,
and af are all unknown. Let Y;J denote the observations in
.a future experiment according to the model (1.1) where the

factor is now taken at I* levels with-J* obhservations per

level. We are interested in obtaining two-sided prediction

intervale for ?*, the overall mean of the future



observations based on the present data. In other words, we

are interested in defining an interval (L(Y),U(Y)) such that
(1.2) PriL(Y) < Y < U(Y)} = i-a

vhere Y denotegs the set observations Y and the predictioen

iy’
level l1l-a is specified in advance. The limits L(Y) and U(Y)

will, of course, depend on Y through Y = z z YiJ/IJ,
i3

2 =2 2 _ _ 2 _
57 = J z (Y, - ¥)%/1-1, and S2 2 E vy, - ¥21a-n,
i i3

since (?,sf,sg) ig minimal sufficient for (p,ai,of).

In dealing with prediction interval for Y*, several
cases arise. When the ratio ai/af, or equivalently,
R = (ag i)/af, is asgumed to be known, an exact

prediction interval is obtained (Section 3.1). When R is

+ Ja

unknown, an exact interval is obtained only when J* £ J
(Section 3.2). Thie interval based on certain linear
combinations of the YiJ ig not unique; however, in the
particular case of J* = J, this method gives a unique
interval based on the minimal sufficient statistics. For
the case of unknown R, approximate intervals (in the sense
that the prediction level is approximately 1-a) obtained by
different methods, namely, (i) Plug-in Method (Section 4.1),
(ii) Modified Large Sample Method (Seciion 4.2), and (iii)
Satterthwaite Approximation Method (Section 4.3) are

diecugsed. The relative performances of these different



procedures are evaluated by a simulation study (Section 3),
which finds the modified large sample method most
gatisfactory in terms of validity. In view of these, the
approximate interval using this method is compared with the
exact interval which is available when J* < J. It is shown
(Section 6) that the approximate meﬁhod is superior in terms
of the expected squared length unless 3*¥ = 3 in which case

both yield the same (exact) interval.

2. Nolations and Preliminary Results
In this section, we introduce a set of notations that
will be often used throughout the paper. We will also state

a few well-known results that will be repeatedly used. Let

n, =I-1, n, = I(J - 1),
R A !
(2. 1) \ 'ff = af + Jai, 'vg = o2,
p = ai/(oE + ai), R (o + JaA)/aE = 1?/73.
2 St _ = 2
\ T = Var(y - Y) = 72[H2 + Rull = H111>+ M272,



/ 2 2 2 1+ (J-1)
_ _ p
6y(p) = 7y/T = W, TT + (3-17pT + W (1-p)"
- N2, 2 _ 1 - p
6olp) = ax/T = H,TT + (3-1p7 + M (1-p)’
(2.1) (1-1)82 n, g2 I1(3-1)8%2 n_S5?
(Cont.) ﬁ U, = 1 = 11 U- = 2. 22
. 17 T2 z Y2 2 -
£ A 1 € 2
2 2
52 ) n252 * (nlsllR)
[ 4
p n, + n,
L u+ =u 1f u > O, and = 0O, otherwvise.

Let N(u,az), xi and tv denote the normal distribution

with mean p and variance-az, chi-square distribution with v
degrees of freedom (d.f.), and Student’s t-distribution with
v d.£f., respectively. Further, z, and tv,v denote the upper.
¥ quantiles of N(O, 1) and tv distributions, respectively.

As usual, E(:) denotes the expectation of a random variable.

We conclude this section by stating the following

results which are easgily verified.

1. Y ~ N(pu, vf/IJ).
2 2
2. U, ~x and U, ~ x_ .
1 n, 2 n,
3. ?, U1 and U2 are independent.
4. Y* - ¥ ~ NGO, 2.
2,2 2

3. (n1 + nz)Sp/-v2 ~ xnl+n2'



3. Exact Prediction Intervals

We consider two cases: A. R known and B. R unknown.

In Case B, we assume that J* < J.

3.1 Case A: R Known. Using the fact that

ve get an exact (1-a) level prediction interval for ?* given

by

<

(3.1) I + t S v, + RM,.

ER’ a/2,n,+n, “p* 2 1

3.2 Cage B: R Unknown and 1% < 3. Let us consider
J

Di = z eiJYiJ' i=1,...,1, wvhere the coefficients 013 are
J=1

chosen such that, for all 1 = 1,...,I,

3

_ 2 *2 % 2
z ¢, =1 and Var (D)) = (o + 30})/3" = of, say.
J=1

Since Var (Di)

2 2 2 2 -
UA[Z 213] * o, 2 eiJ, one posaible choice
J J

1
is ¢ =-—*—' J

1,...,3%, and ¢ , = 0 otherwise. Now, let
3

I
D = 2 D,/I. The D, are i.i.d. N(p, a%). Noting that



I

2 (D, - ﬁ)zlag ~ xi , 1t is easy to show that
1
i=1

*- b a-nIt o
2 + *) n,°
J’z >, - B (I + I 1

- Thus we get an exact (l-«) level prediction interval for ?*

<l

‘given by

—
_— 2 (0, - &
1

1 I1* I-

Ol

(3. 2) I

ED' /2, n :
The idea of taking suitable linear combination of
observations has been used by Burdick and Sielken [1] in the

context of confidence intervals in variance components

models.

Remark 3.1. It should be noted that the choice of the

-coefficients eiJ in Di is not unique unless J* = J. When
*

3" = J, a unique interval I is obtained based on minimal

ED
sufficient statistice. When J* < J, one would expect I__ to

ED
be less efficient as it does not depend on minimal
sufficient statistics. In other words, we pay‘a price in
obtaining an exact interval. This i= brought out in Section
6 where IED and IAM (to be defined in Section 4.2) are

compared in termse of expected squared length.



4, Approximate Prediction Intervals

When R is known, we have an exact prediction interwval

for ?* which is easy to calculate. The need for aﬁproximate
intérvals arise when R is unknown. We consider three
different methods, nawely, (A) Plug-in Method, (B) Modified
Large Sample Method, and (C) Satterthwaite Approximaticn

Method.

4.1 Plug-in Method. Since R = 12/12 > 1, we define

1" '2
2,2

ﬁ = max (1, 51/52) and obtain an approximately (l1-a) level

prediction interval for §* given by

| AF
+ t S RM,,

+
a/2,n1+n2 p 2 1

<

(4.1) IAP:

A . A
vhere Sp is obtained by replacing R with R in Sp.

4.2 Modified Large Sample Method. This method i=
motivated by Graybill and Wang [3] who used such a procedure
.to obtain good approximate confidence intefvals on
nonnegative linear combinations of variances. The wmain idea
is to modify a large sample interval so that it might be
more exact for small or wmoderate sample sizes.

In our problem, as I - ®, we see that

~ HN(0Q, 1).




So a large sample (I - o) prediction interval for §* is

given by

' = 2 2 2 7+
(4.2) Y ’//(zm/2 Mlsl * 20 M252) ’
wvhich has an associated coverage probability 1-«
asymptotically. Now, the modified large sample method
considers the interval (4.2) with the first 22/2 under the
radical sign replaced by a constant A; this constant A is to

be determined such that the associated coverage probability

tends to 1-« as ai -+ @, This yields the prediction interval

=<0

2 2 2 2.+
(4. 3) IAM' + v/Ttalz,nl Mlsl + za/2 M252) .

It should be noted that the interval IAM iz exact when

J* = 3.

4,3 Satterthwaite Approximation Method. We firét note

that @ = MISf + nzsg iz an unbiased estimator of

12 = Var (§* - ?). However, @ can be negative when J* > J;

in this case, we will use a modified estimator. We discuss

the two cases separately.
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Cage (i): J* < J. We want to find a nonnegative

2
1

function k(5,,S.) such that

NN

2 .2

(4.4) Pri|Y* - Y| = k(S],55)v@1 = 1-a.

Now, @ is a linear combination of independent but not
necessarily identical chi-square variable=s. The

Satterthwaite [6] approximation gives

(4,3) NQ/E(Q) = xﬁ
wvhere
(4.6) N = 2[E(Q)]2/Var (Q).
However, we do not know N as it depends on 1? and 73, unless
J* = J. So we use the estimates Sf and Sg, respectively,
leading to

A - 0 o (MoS; MISS
(4.7) N = [M,S7 + M, S_17/ .

171 272 1 n,

Using the usual method of constructing a t-variable from a

standard normal variate and a chi-square variate, we get an

approximate (l-a) level prediction interval for ?* given by

]

. A 0
(4.8? IAS' * ta/2'N Y.



* 2 A
When J = J, we have @ = M,57 and N = n

154 In thie case,

1.

A
NQ/E(Q) is exactly distributed a=s xi and consequently, I

1

is exact.

11

AS

Cage (iid): J > J. Note that @ can be written in the

form

- U}
0=l

(4.9) Q =

When J* > J, we use the interval (4.7) with @" in the place

of @, where

(4.10) Q@ =

+
o [N

Obviously, we can combine the two cases and write the

prediction interwval as

(4.11) - I..: Y+t A

S. Validity of Approximate Intervals: Simulation Study

The prediction intervals IA I and IAS are

P’ TANM’

constructed so that the coverage probability fo: each is

approximately the specified level. The validity of any of

thege intervals depend on how close the actual COverage
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probability is to the specified level. This was
investigated by a simulation study. In order to facilitate
the estimation of the coverage probabilities, we provide
below alternate forms for them. These can be easily
verified by using the results in Section 2. Let P(IAP)'

P(IAM) and P(IAS) denote the coverage probabilities of I

IAM and IAS' regpectively. Let 2 ~ N(O,1). Then the

AP’
coverage probabilities can be written in the form

(5.1) P(I) = Prl|2] = ?(Ul,Uz; Ml,nz,p.a)]

where the P-functions for the intervals (labeled

accordingly) are as follows:

' 2 2 2
M1U161(p) H2U262(p) _ n2U161
ta - + ~ if ——=— 2> 1
2+ 0y *No 1 2 _ nUz6;
?AP = ¢
(M, + n2>[ulsf(p> N u26§(p)]
t otherwise;
Z,n,+n (nl * n2) '
27y 2
\
2 2
. _ t2 Hlulal(p) . .2 M2U262(p) +.
= —_—— z
AM o:/2,n1 ny a/2 n, ]

and
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U 6 (p) 5 (p)
1 2 22 *
A
ta/2'N I + o if J =< J,
1 2
fAS = <
2 2 2
. U161(p) U262(p) U181(p) U2 2(p) *
tar2, N n. I3 % | % n - n
L are 1 n,I°30  1Jt M M2
otherwviage
wvhere
2 2 2.2 4
)
[ 1U151(p . n2u252<p)]2/[n 16 (p) . M2U2 z(p)].
n 3 3
2 n1 n2

In order to estimate the coverage probabilities by
gimulation, 72 different sets of values of (I,J,I*,J*) wvere
considered. These are the sgets obtained when I,J = 3,5,7;
and I%,3" = 5,10,15, omitting sets with J = J* (in which
case, the intervals are exact). For each of these 72 sets
of values, 1000 random sets of observations (Z,Ul,Uz) vere
' generated by using IMSL subroutines. Based on these, tLhe
coverage probabilities of the three intervals were estimaled
for p = 0.1 (0.1) 0.9; and «a = .05, .10. In the case of
IAS' ﬁ value was rounded down £o an integer Qéiue. The
range of the estimated probabilities over the chosen Qalués

of p are given in Table 1 only for a = 0.05, since the

pattern of the intervals is sgimilar when a = . 10.
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Insert Table

" The results of the above study indicate beyond doubt
that the modified large sample method is the most
satisfactory in the sense that the actual coverage
probability is quite close to the specified level over the
entire range of the tables. 0Obviously, its competitors do
not exhibit this behavior; in fact, sometimes they miss the

’mark by considerable margin.

6. Sensgitivity Comparison of I

gp 2nd I,y

From the wvalidity point of view, we saw in Section S5
that IAM vas the most satisfactory approximate procedure.
It still remains to compare IAM with the exact procedure IED
with regard to sensitivity. We will consider the expected
squared length as our criterion. Letting LED and LAM denote
the half-lengths of these intervéls, we will show that
E[Liul < E[LED] when J* < J. 0Of course, the intervals are

identical when J* = J. Since J* < 7J,
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2 2 2 2 2
ElLy? ta/2,n1‘nlql * 22 272
- 2[ 2 [1 1]1 2 [ 1 1] 1]
o |t —l= =z —_
£ cx/2,nl I I* J a/2 J* J I*
o242 R
A a/2,n1 I I*
2,2 [ 1 1 } 2,2 [1 1]
< ot = + o, t = + —|,
€ a/2,n1 1 I*J* A cx/2,n1 I I*
gince t2 > 22 Now, by replacing J on the right-hand
/2, n a/2° ’

1
side by J*, we get

2 2,2 [1 1] 1 2,2 [1 1]
EIL_ ] < ot -+ —|— + ot - * ——
AM £ a/2,n1 I I* J* A cx/2,n1 I I*
_ 2
= E[LED].

Since IAM is only approximately valid as opposed to IED

wvhich is exact, one might feel that the gain in sensitivity

in using 1 is only slight arising mainly due to the

AM
coverage probability being less than the specified level at

times. A closer inspection will, however, show that thise

gain can be substantial. For example, E(LiM)IE(LED) - 0 as
02 40 and I,1" - =,

7. An Illustrative Example
To illustrate our results, consider the following data
on tread loaé (in mile) after 20,000 miles for 4 brands of

tires (Hicks [61, p. 52).
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Brand
A B (o4 D
17 14 12 13
14 14 12 11
13 13 11 10
13 8 S S

Here I = 4 and J = 4. We wish to obtain 93% prediction

interval for ?* based on I* = 4, J* = 2. For constructing
IED’ wve take el = 92 = ;/2 and 03 =,e4 = 0. From the data,
ve get

n, = 3, n, = 12, Ml = 1/8, M2 = 1/16,

i 2 2

Y = 12.06, S1 = 10. 23, 52 = 4,19,

A . A 2 A

R = 2. 44, Sp = 4,19, N z 4,

The prediction intervals are:

IED: (9.55, 17.20), IAM: (8.32, 15.80),
I,,¢ (9.41, 14.71), IAS: (8.61, 15.351).



17

ACKNOWLEDGEMENTS

The authors wish to thank the referee for useful

comments. The research of the second author was partially

supﬁorted by.the Office of Naval Regearch Contract

NOO014-84-C-0167 at Purdue University, and he thanks Professor

Shanti Gupta for this as well as other facilities and encouragements.

(11

(21

£31

[4]

£51]

[61

REFERENCES

Burdick, R. K. and Sielken, R. L. (1978). Exact
confidence intervals for linear combinations of
variance components in nested classifications. J.
Amer, Statist. Assogc., 73, 632-635.

Graybill, F. A. (1976). Theory and Application of the

Linear Model. North Scituate, Mass: Duxbury Press.

Graybill, F. A. and Wang, C.-M. (1980); Confidence
intervals on nonnegative linear combinations of
variances. J. Amer, Siatist. Assoc., 75, 869-873.
Hahn, G. J. (1971). Simultaneous prediction intervals
for a regression model. Technometrics, 14, 203-214.
Hicks, C. R. (1973). Fundamental Concepts in the
Design of Experiments. New York: Holt, Rinehart and
Winston.

Satterthwaite, F. A. (1946). An approximate
distribution of estimates of variance components.

Biometrics Bull., 2, 110-114.



TABLE 1.

-

8]

10
10
10
15
15
15

10
10
15
15

wn

10
10
10
15
15
15

[#

10
15

10
15

10
15
10

15 .

10
15
10
15

10
15

10
15

10
15

i8

Range of Estimated Coverage Probability

Specified Level

L]

(85. 2,
(85. 4,
(85. 3,
(83. 4,
(85. 3,
(82.9,
(84.7,
(85.5,
(83.9,
(82.0,
(85.0,
(81.6,
(81.7,
(83. 2,
(81.7,
(81.4,
(82.6,
(84. 2,
(82.5,
(81.9,
(83. 3,
(82.5,
(82.9,
(82. 2,

95. 5)
94. 4)
94.6)
93. 6)
S4.1)
92.7)
95.1)
96.0)
94. 4)
91.3)
S3.7)
91.7)
92.3)
52.9)
92.7)
91.5)
91.8)
92.2)
S4.0)
92. 4)
92. 0)
92.0)
S2.0)
90.9)

1 - & = -95

I

AS

(76. 2,
(98.7,
(96.7,
(99. 3,
(99.2,
(98. 1,
(99.1,
(98. 8,
(98. 5,
(98. 2,
(97.7,
(99.0,
(97.9,
(98. 3,
(98.6,
(92.5,
(99. 3,
(98.9,
(92. 3,
(98. 8,
(98.5,
(93. 4,
(99. 4,
(98.9,

97.9)
99. 5)
99. 5)
99.7)
99.7)
99. 8)
99. 9)
99.7)
99.7)
99. 5)
99. 8)
99.9)
99. 9)
99. 5)
99. 8)
94. 1)
99. 9)
99.7)
94.7)
99. 8)
99.9)
94. 35)
100, 0)
99.7)

(92. 9,
(92. 1,
(91.0,
(92.8,
(93. 8,
(92. 4,
(93. 6,
(94. 4,
(94.0,
(91. 8,
(94. 2,
(93. 0,
(92.7,
(93. 6,
(94.6,
(94.2,
(94.0,
(93.9,
(94.3,
(93. 9,

(94. 4,

(94. 4,
(95. 2,
(94.7,

95.0)
35. 2)
94. 2)
93. 8)
95. 5)
93. 8)
94.7)
95.5)
94.6)
53.0)
95.6)
93.9)
94. 3)
94.0)
95.7)
95. 5)
94. 8)
95.7)
94.9)
94.6)
95. 4)
94, 8)
95.7)
95. 3)



Table 1 (Continued)

1 J3 1

i0
10
10
15
15
15

w

10
10
10

J*

10
15

10
15

10
15
10
15
10
15
10
15

10
15

10
15

10
15

10
15

10
15

L

(50. 2,
(89.1,
(89.9,
(89.7,
(89. 4,
(89. 4,
(90.9,
(90. 4,
(90. 1,
(88. 1,
(87.8,
(90. 2,
(90. 5,
(88. 3,
(90. 8,
(89.0,
(89.0,
(88.1,
(87.5,

- (88. 4,

(86. 6,
(87.7,
(88.6,
(90. 4,
(91.7,
(89.7,
(89. 2,
(92.0,
(90. 2,

(91.3,

94. 3)
94.1)
94. 5)
94. 5)
94. 4)
94.0)
94.6)
S4. 4)
95. 5)
S1.4)
92.5)
94. 5)
94.1)
92.9)
S4.7)
93. 2)
92.5)
90.7)
92.0)
92.2)
91.5)
92. 4)
92.7)
S3.6)
94.6)
93. 2)
92.9)
95. 3)
93.7)
94.6)

AS

(97.7, 100.0)
(97.4, 99.7)
(97.3, 99.5)
(97. 4, 100. 0)
(96.4, 99.7)
(96.6, 99.7)
(97.2, 99.3)
(96.9, 99.8)
(97.2, 99.7)
(95.6, 99.9)
(97.1, 99.6)
(96.7, 99.5)
(97.0, 99.4)
(95.9, 98.9)
(96.8, 99.8)
(95.0, 95.8)
(97.7, 99.8)
(95.7, 99.3)
(94.0, 94.6)
(96.3, 98.8)
(96.7, 99.6)
(94.4, 95.0)
(96.5, 98.7)
(97.7, 99.8)
(95.2, 99.6)
(95.3, 99.9)
(95.2, 99.7)
(96.1, 99.4)

(95.4, 99.4)

(95.7, 99.7)

(93.6,
(91.7,
(91.1,
(94.9,
(53. 2,
(93. 3,
(95. 3,
(93.9,
(94. 8,
(92. 3,
(93.0,
(94.2,
(94.7,
(93.6,
(95. 1,
(95.7,
(95. 5,
(92.2,
(94. 3,
(94. 4,
(93.0,
(94.6,
(95.1,
(95. 4,
(93.0,
(si.9,
(89.7,
(94. 2,
(93.0,
(92.5,

19

95. 5)
95. 5)
95. 3)
95.9)
94.6)
95. 1)
95.9)
95.7)
96. 2)
93.7)
94. 8)
95.6)
95. 5)
94.2)
95.7)
96. 2)
96. 3)
93.6)
95.0)
94, 8)
94.9)
95. 3)
95. 4)
96. 2)
94. 4)
95.1)
94. 2)
95. 5)
94. 5)
94.7)



Table 1 (Continued)

1 1 1*

15
15

10
10
15
15

(4]

10
10
10
iS5
15
15

J*

10
15
10
15
i0
15
10
15

S5
10
15

S
10
15

S
10
15

(90. 4,
(90.6,
(90. 4,
(88. 6,
(93.1,
(90. 8,

(90. 4, .

(90. 3,
(as. 8,
(91.1,
(92. 5,
(50.7,
(91. 4,
(88. 8,
(90. 7,
(90. 3,
(90. 3,

94.0)
93.9)
93. 2)
92.1)
95. 3)
93.7)
94. 2)
94, 3)
92.1)
94. 0)
93. 8)
93. 2)
92.9)
91. 3)
94.0)
93. 4)
93. 3)

H

(94.56,
(95.0,
(95. 5,

99. 4)
99.7)
99. 8)

(95.6, 100.0)

(96. 3,
(96. 8,
(95. 1,
(95.5,
(93.7,
(96.0,
(96. 4,
(94. 2,
(96. 2,
(96. 2,
(95. 4,
(96.0,
(96. 2,

99. 4)
99.7)
98.9)
99.0)
94. 2)
98. 8)
99. 4)
94.5)
97.6)
98.9)
95.6)
98. 2)
98.7)

(92.8,
(92.1,
(93. 2,
(91. 4,
(95.1,
(94. 3,
(93. 7,
{93. 6,
(94.0,
(95.0,
(94. 4,
(94. 4,
(95. 5,
(94.9,
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