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-Abstract : Let X be aforward diffusion and Y a backward diffusion, both defined .
on [0,1], Xt and Y* being respectively adapted to the past of a Wiener
process W(.), and to its future increments. We construct a "two-sided"

stochastic integral of the form.

ItQ(u;X ,Yu)dW(u)
o u

which generalizes the backward and forwad It integrals simultaneously.
Our construction is quite intuitive, and leads to a generalized stoc-—
hastic calculus. It is also shown that for each fixed t, our integral

coincides with that defined by Skorohod in [18 ].
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§1 - INTRODUCTION

The Ito integral defines a process :

A%

t
Xt HEE £ ws dWS , t o

where {Wt} is a standard real valued Wiener process defined on a probability

space with filtration (SZ,F,Ft,P), and {mt} satisfies

(1) ¢, is a measurable process and wt is an Ft—measurable random

variable, Vt=o.

T
(i1) [ @Xdt<e  a.s., VI>o
(o]

Clearly, the second part of condition (i), which means that the process is
"adapted to {Wt}" or in other words 'non anticipative' (i.e. ©, is independent
of future increments of {W_} after time t), is by far the most restrictive one.
| It has been a challenging problem, and has become important for applica-
tions, to be able to relax condition (i), i.e. to define stochastic integrals
with anticipative integrands.There have been several important results in that
direction, using at leastthree different kinds of methods. The first method
consists of replacing { Ft} by a 1argér filtration { Gt}, with respect to which
{Wt}his no longer a Wiener process, but might still be a semi-martingale, i.e.
in this case the sum of a Wiener process and a process with bounded variation,
which still is a possible integrator. This idea was proposed by K.Itd himself
in [6 ], and it led to the theory of "grossissement d'une filtration", of which
a rather complete account may be found in [7 ]. The second method allows the
:integration of a process of the type wt(X), where wt(x) is an adapted random
field, and X is an anticipative random vector. The idea is to consider the
stochastic integral {tws(x)dws, which depends on the parameter x. Provided one
can show that it has a modification which is an a.s. continuous function of x,
one can then "evaluate it at x=X." This kind of technique has been used in
connection with the theory of flows by Bismut [ 1 ]. The third method consists
in expanding the integrand into a series of multiple Ito-Wiener integrals, and
then defining the integral through‘its series expansion. This last method has

been used by Skorchod [ 18], Berger-Mizel [2 ] , Kuo-Russek [ 9 ], Rosinski[l7].

A related approach is used by Ogawa [14] . For an account of Skorohod's inte-
gral and its relation to the Malliavin Calculus, we refer to Nualart-Zakal [13] .
The last method seems to be the most general, but apparently little is known

about the resulting integral .



The aim of the present paper is to comstruct via an elementary and
very intuitive method (i.e. a variation of Itd's original construction of the
stochastic integral) the integral of a particular class of anticipative
integrands.

Suppose {Xt, t€[0,1]} and {Yt,tEI[O,l]} are real valued processes,
which solve respectively the following forward and backward stochastic

differential equations :

t t
X, =X+ g b(X )ds + g o (X )dW(s)
+ 1 1
Y =y + [ c(Y%)ds + { v(¥%)dw(s)
t t

where the last integral is a backward It$ integral (see the definition below

in §2).'It then follows that at each instant t, Xt is o(W(s), 0 < s < t)

measurable, and Yt is o(W(s) - W(1), t< s< 1 ) measurable , and we want

to integrate with respect to dW(t) a function of both Xt and Yt, say @(Xt,Yt).
Our aim is in fact to get a stochastic calculus for c? functions of both X, and
Y. our chief motivation was the pair of forward and backward stochastic PDEs
that arise in nonlinear filtering theory, see Pardoux [15] . Nevertheless,

we will treat here only the case of a pair of finite dimensional SDEs, and we

will give some simple applications of our results in §6.

The paper is organised as follows. Section 2 is concerned with prelimi-
naries, notations and a technical Lemma which will be very useful later.
In section 3, we construct our two sided Ito integral as a limit of sums. In
section 4, we prove the path continuity of our integral, and compute its quadra-
tic variation. In section 5, we study the continuity of the integral with respect
to the integrand. In section 6, we prove a chain rule of Ito type, define a two
sided Stratonovich integral and prove a Stratonovich version of the chain rule.
In section 7, we compare our results with the other approaches described above.
In particular, we check that our integral is a particular case of Skorohod's
integral as was indicated to us by Nualart [12]. We also discuss possible

extensions.



§2 - NOTATION AND PRELIMINARIES.

2.1 - Preliminaries : Let {W(t),t€ [0,1]} be a D-dimensional standard Wiener

process satisfying W(o)=0 , defined on a probability space (Q ,F,P);
i.e. W(t) = (Wl(t)’ Wz(t), ceny WD(t))'.

To each t€[0,1], we now associate two o-algebras :

Ft g (W(S), o< S<t)

and Ft

oW(s)-W(l)  t<s<1)
Then{Ft}is a forward filtration (i.e. Ft + as t +), and{Ft}is a backward filtra-
tion (i.e. th as t+ ). We will use the notatiom with subscript {Xt} to denote
an Ft—adapted process, and the notation with superscript {Y'} to denote an
Ft—adapted process. The reason for the notation {W(t)} is that {W(t),t 4} is an
Ft Wiener process, and {W(t) -W(1), t +} is an F' Wiener process, both having
the same differential dW(t).

Let us now recall the definitions of forward and backward stochastic
integrals. Below, w(t) stands for any of the W.(t), 1 <i<d. Let {X ,t€[0,1]}

be an F —adapted continuous process (i.e. with a.s. continuous paths) w1th values

in ]2 ,» and & € C(R.). Let {n" ,n € N} denote any sequence of partitions

={o=tt <t <..<cth =1}
o 1 n
Such that Inn := sup (tn -tn)-+0 as n + «, We will in fact write t
k+1 k k
os<k<n-1

instead of t”, for notational convenience. Then the forward Itd integral of

k’
Q(Xt) with respect to dw(t) can be defined as
t n-1
f <I>(X Jdw(s):=P -1lim I ¢ (X Y (w(t At)- w(t, At))
k+1 k
n-+> « k=o k

and it is well known (see e.g. [11]) that the resulting process is a continuous
forward F local martlngale.

Let now {Y* ,t€[0,1]} be an F —adapted continuous process with values
in I@d, and w€<3CR ) . Then the backward Ito integral of w(Y ) with respect to

dw(t) can be defined as :
1 n-1 t
HJ(Y Ydw(e):=P-1lim = & Ty cu(e

\Y t)—w(tk vt))
n-> k =0

k+1
. . . t £, .

and the resulting process is a continuous backward F local martingale, as is

readily checked by reversing the usual construction and properties of the

forward integral. Note that the operation of backward Itd integration does

definitely differ from that of forward Itd integration, as well as their associa-

ted chain rules (see below §6).



We nevertheless avoid any specific distinct notation in order to avoid
complications, since we are using different notation for Fo and FC adapted
processes

Suppose now that {Xt} is a forward continuous F semi-martingale, and
{Y } 1s a backward contlnuous F' semi-martingale. We moreover assume that
<I>€C (]R ), and IDGC (]R ). We can define the forward Stratonovich integral of
@(Xt) with respect to dw(t) as

t t t
g@(Xs)odw(s)=£<1>(Xs)dw(s)+ % £q>'(xs) A<K,w >

t
(note that f@'(XS) d<X,w> 6=,
o)

ll M=

f (X )d <X W > s the. denoting scalar product)
10
=1

or also as ®(Xt )+<I>(Xt )

t n-1 Kk K+l
jcp(x Yo dw(s)=P-lim % (w(t, . At)w(t, At))=
k+1 k
i=o 2
n~1
=P-lim X @(th+ tyrl ‘)(w(tk_'_1 At)~w(tk/\ t))
k=o \ —5——

see [ ]. Note that the validity of the second definition is restricted to
integration with respect to a Wiener process. Similarly, we can define the backward

Stratonovich integral of w(Yt) with respect to dw(t) as :

1 1 1
f w(YS)o dw(s)=f lj)(YS)dw(s)+ —;—f 1,[)'(YS).d<Y,w>S
t t t

where —as usual - <Y,w e denotes the joint quadratic variation of Y and w over
the interval [0,t].

Again, we also have :

ty t,
1
IW(Y Yo dw(s)=P-1im Z w(Y )+ lp(Y )’w(tk_'_l vt)-w(tkvt))
n—>« k=o 2
o
=P-lim X (Y 2 )(w(tk+1 vit)- w(tkv t))
n-+« k=o

Clearly; there is no need for a distinction between forward and backward
Stratonovitch integration, and both associated chain rules coincide with the
usual one (see below §6).

Let us introduce now some notation that we will be using constantly
below. If x"1s a vector, Xs will denote its i-th component. If a is a matrix ,

a; will denote its i-th row. Let f be a real-valued function. f}'{ means the



—o—

(partial) derivative of f with respect to x whenever x is a real variable, or
the gradient of f with respect to x if x is a vector. If x varies in IRd , and

f takes values in ]Rk s f)'{ denotes the kxd matrix (E{—l).

Let us finally indicate that Gt will stand for the Dirac measure at t,
and §., . é{o 1f l#J
1] 1 if i=3

2.2 - Qur framework and first assumptions

Suppose we are given functions

b : [0,1] x BT - K
o : [0,1] x ]RM - ]RMXD
c ¢ [0,1] x ]RN - ]RN

N NxD

vy : [0,l]] x R > R

We assume that each of these functions is measurable in (tyx) [resp. in
(t,y)] ; that b(t,o0), o(t,o0), c(t,o0) and y(t,0) are bounded functions of t,
t€[0,1] ; and that Vt€[0,1], x -(b(t,x), o(t,x)) and y =(c(t,y), v(t,¥))
are functions of class Cl, each first order partial derivative beeing a bo-mded
function of (t,x) [resp. of (t,y)].

Given X€ R and yE B , we define {Xt,t € [0,1]} as the unique solution

of theItd forward stochastic differential equation :
t

t
©OX = X + cj)b(s,Xs)ds + go(s,xs)dw(s)

and {Yt,tG [0,1]1} as the unique solution of the Itd backward stochastic differen-
tial equation :
1 |
Y = § + fe(s,¥%)ds + [y(s,Y®)dwW(s)
t t
Note that both E([Xt IP) and E(|Yt [P) are bounded functions of t€ [0,1],
for any pE W .

Associated with the above SDEs are two stochastic flows, one runing

forward and the other backward. More precisely, for s<t, we denote by :
(2.2.1) x = o(t;s,x)

the mapping from ]RM into the set of M dimensional random vectors, which is
specified by the fact that for fixed s€ [0,1], {@(t;s,x), s<t<1} solves the
SDE :

t t
Xt = x + ,Sfb(u,Xu)du+ io(u,Xu)dW(u)

We will also use the notation x;s:,x for o(t;s,x).



Again for s<t, we denote by :
(2.2.2) y = ¥(s;5t,y)

the mapping from RN into the set of N dimensional random vectors, which is
specified by the fact that for fixed t€ [0,1], {y(s;t,y), o<s<t} solves the
SDE :

t t
Y% =y + fe(u, Y du+ [y (u,Y")dw(u)
s s

We will also use the notation Yi y for Y(s;t,y).
s .
We are not going to use any of the recently discovered properties of
stochastic flows, and we do not make the corresponding hypotheses.

We will only use the following result :

Lemma 2.1 : V OSs<t<1, the mappings :

x > @(t;s,x) and y - Y(s;t,y)
are mean-square dlfferentlable, and for any F measurable M-dim random vector
£ [resp.for any Ft measurable N-dim random vector n] the Mx M matrix valued

process wx(t;S,E)[resp. the Nx N matrix valued process wy(s;t,n)] is a.s.

continuous in (s,t) and its norm possesses a moment of order p which is bounded

for O<s<t<1l,VpeEN.,

]
Proof : The mean-square differentiability is proved in Gihman-Skorohod [ 4 ,

page 59].

. S,E . i 1 . i >
Let us write Xt for wx(t,s,g), and Zs,t for wxi(t,s,g). Then {Zs,ft s}
solves . ‘ . c Dt ..t
= ' ’ '
zs’t e +£bx(u,Xu )z du+J):1 £(GJ)(u X ’7). z dwj (u)

. M . . .
Where e, denotes the vector in R whose i-th component is one, and the

others zero; b; is the matrix 521 , and similarly for (oj);. The fact
3

that all moments of Z: ‘ are bounded follows from the boundedness of the
’

derivative of b and o. The existence of a modification of Z: ‘ which is
b

a.s. jointly continuous in (s,t) follows from Kolmogorov's and Gronwall's

Lemmas.
(N

We let
¢ : [O,I]XJRMx]RN - R
be a measurable mapping such that V(t,y)€ [0,1] xZRN, x = o(t,x,y) is of class
Cl, and V(t,x)E[O,l]:cBﬁH, y » &(t,x,y) is of class Cl, and moreover :



3, @;, @; are continuous with
(H1)
respect to (x,y), uniformly in t€[0,1]
and either

3 K>0 and d €N such that :
(H2) : i qd oy 4
l‘l’(t,x,y)|+|‘P}'{(t,x,y)|+|®;,(t,x,y) ISR +|x|"+]y|)

V(t,x,y)€E[0,1] x RMX IRN

or

vC , BKC s.t.:

(H3) lq)(tax’}’)]+I®}'((t’x,}’)I+‘I®}',(t’xsy) I< KC
+
V(x,y) € RM N s.t. |x|<c,lyl<c
Our first goal is to define a "two sided Ito stochastic integral.
t .
Jo(u,X ,Y") dW(u)
s u
such that, when ¢ does not depend on y, we get the usual forward Ito integral,
and when ¢ does not depend on x, we get the backward Ito integral. We will then
study the properties of the above process, as a function of s and t, define a
two-sided Stratonovich integral, and establish chain rules. But before doing

that, let us establish a Lemma, which will be a useful and practical tool in

much of what follows.

2.3 - A Féllmer—-type Lemma :

The main step in the classical proof of Itd's formula consists in
showing that if {Zt} is an adapted continuous and bounded process, then we have
the following convergence in LZ(Q):

n-1 n n. .2 1

kio ZtE(W(tk"'l)_ w(t,)) n_)—; gzt dt
While the classical arguments use in a crucial way the adaptedness of {Zt}’
Follmer [ 3] has remarked that the above convergence holds a.s., for any
continuous process‘{Zt}, since the random measures :

n-l n n,.. 2
uo= I (w(tk+1)- w(tk)) s

n k=0 tE

converge a.s. weakly to Lebesgue measure on [0,1]. The latter follows easily

from the a.s. convergence : un([o,t]) -» t, vte[o,1].



Let us now generalise FGllmer's idea. We will consider random signed

measures on [O,l]k, with k=1 or 2. For t= (tl,...,tk)G[O,l]k, we denote by
' = ; 0<s,< i=1,... .
[0,t] the set {s (Sl""’sk)’ 0S<s;St., 1 i, ,k}

Lemma 2.2 : Let {un,n.EIU} and p be random signed measures on ([0,l]k, B([O,l]k)),
such that :
(i)  ¥™([0,t]) ->u([0,t]) in probability, vte€ [0,1]%
(1i1) sup.P([un|([O,1]k)> M) 50, as M > + = ,
n

Then for any continuous random field Z = (Z(t))tEI[O 1]k .
. ’

un(Z) - u(Z) in probability, as n = «; where u(Z):= f kZ(t)u(dt).
; : s
Proof : Each partition n"(as defined in §2.1) induces the following partition
of [0,1]:
[O,t?]U]tT,tg]U ...U]t:_l,l] ; which in turn #nduces a partition T
of [O,I]k.
We again assume that [ﬂn[+ 0, as n > », Let € > o be arbitrary. First

choose K >0 s.t.

Sup p( ™l 10,115+ |u]([0,11%) > k)< &2

There exists p€ IN and a random field (Zp(t))

t€ [O,l]k such that :
(a) Zp(t,w) remains constant, as t remains in a partition element
of P,
' € £
(b) P( Sup k l Zp(t’w)_ Z(t,w)l > ﬁ)< -2-

t€[0,1] v
Clearly pn(ZP) - u(Zp) in probability as n - «, as a consequence of (i)

and (a). Moreover :
ln(@)~ v (@) | < [u(2)- u(zP) |+|u@zP)- v @P) |+ | (ZP)- n"(2) |
< Ju(@Py- wPEB+C sup  |z(e)- 2P o, 15+ [wP K l0, 115))
tE[O,l]k -
P(Ju(2)- w"(2) [Ze) < p(|u(@P)~ 1v™(2P) [> e/2)+2(|u ([0, 11%)+ 1P |[0, 1%y >K) +
+2( sup |ZP(t)- Z(t)|> f% )
k
t€fo,1]

lim P(|u(2)- u™(2) |2e)<e .
n-—> o '

And this last inequality holds Ve >o .



- -

§ 3 - DEFINITION OF THF, TWO-SIDED INTEGRAL

We first construct and characterize our two-sided Ito integral on the
fixed interval [0,1] . For clarity, we first state and prove our result in the

case D = 1, and then in the case D > 1 .,

Proposition 3.1 . Suppose D = I; {Xt o, { Yt } and ¢ are defined as in §2-2,
and & satisfies assumptions (H1) and (H2) .
Suppose moreover :

¢, o! and ¢' are jointly continuous in(t,x,y) .
(H4) x y 7

Let { ﬂn,n € N} be any refining sequence of partitions of the inter-

val [0,1] , such that Iﬂn [ > 0,as n> + ® , For any n € N, define :
n-1 tn
- n ]'_+1 n _ n
En(é) 'Z Q(ti »X no L ) (W(ti+1) W(ti ))
1=0 ti

Then {En(Q), n € N} is a Cauchy sequence in LZ(Q)

Remark 3.2. Note that in case & does not depend on Y, En(®) converges to the
forward Itd integral ; and in case ¢ does not depend on X , En(Q) converges to

the backward Itd integral .
C

Before proceeding to the proof of Proposition 3.1, let us state its
main consequence . We denote by £2 the set of processes { @ (t,Xt,Yt),tHE [ 0,11} ,
where X and Y are given as in §2.2 , and ¢ satisfies assumptions(H1) and (H2).
We will use below the notations defined in (2.2.1) and (2.2.2). In the following
statement, as well as in all similar expressions. below @; and @; are understood

as row vectors.

Theorem3.3. There exists a unique linear mapping &(X,Y)> £ [ &(X,Y)]from £2
into LZ(Q, FI’P) such that :

0
B S of(e,x,¥0ae +

(i) E[ £(@)]
(i1) E[ £2(3)]

(o)
+ 2 E jl It (@; (s,Xs,YS) w; (S;t,Yt) Y (t,Yt)) .
(o] o]

L} t \ A
o (t,Xt,Y ) ws(t,s,XS)<5(s,Xs)) ds dt

Moreover, if ¢ satisfies (H4), £(3) is the LZ(Q) -limit of the sequence

{EH(Q), n€ N } defined in Proposition 3.1,
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Proof of Proposition 3.1 :

i n o, oo
We write AW for W (ti+1) W(ti), so that
n-1 t

gn = ¥ @(ti,X

. Y 1+1) ALy
i=0 i

The proposition will follow from
(*) lin  E(E) =X

n,m > ©
where X is the right side of (ii) .
Let us suppose without loss of gemerality that n < m; i.e. 7" in a
refinement of 7. Note that the hypothesis that {7"} be a refining sequence is

not essential , but does simplify the proof . We will write t. for t? and tj

for tT .
J
n-1 m-1
En Em = .Z 'Z aij(n,m); where :
1=O J= =
t._*_1 t.+1 1 .
a, . (n,m)= o(t,,X_ ,Y ") o(t.,x. ,v Iy alw adw
ij 1%, i*7t.
1 J
Enim = Arlm + Bnm + Cnm , Where :

A= ocij‘(r_x,m‘)

. > . <
{1,_],tJ.+1 ti}

Bnm = aij(n,m)
1,736, St.< <
{1,J,ti t; tj+1\\ti+1}

Cnm = :; ' dij(n,m)
. . - <
{l,J,ti+1 tj }

. . . s e . i+
Let us first compute the limit of E(Bnm). Conditioning upon Ft v FJ ;, one

easily checks that : J
Ei+1 TS
E(B_)= , BIOCe;,X, LY ) oCeyX Y T (e, - ]
< < . .
{e, tJ.<tJ.+1 ) i j _

It easily follows from the continuity of ¢ that
1 2 t '
E(B_) > E g o) (£,X,Y )de .

Let us next compute the limit of E (Cnm)



Consider E( ai.), for t St, . With the notation introduced in §2.2, we can
t. t.

rewrite X as @(t st Yand Y i+l as P(t. t ,Y J) Suppose we replace

’ >
J 1+l 1+1 i+l
X ' by Xi s = O(t.:t X ) Yti+lb Yti+1._ . tj+1 1: th Aiw
tj tj H j’ i+1’ ti resp. y J. = w(ti"‘l,tj’Y ) H then

[ resp. “Alw ] becomes independent of all other terms in the such modified aij'

It then follows that : ¢
i+1

t.
= - o 1+1 '
ECa, 0= E LD @t X, .Y 7 )- 0(e,X v My oy

i i ]
t'+1 i Lis1 i i
x [0¢t.,X. ,Y 37— o(e.,xt v 3T 1 atwalw )
] t. ] t., .
] ]
Applying the mean value theorem twice , we obtain :
' _tia Bie1 Fie
By )= E {0 (r; Xt Y Thox Y- le ) x

t. . . .
' =g j+l xt oy aly Al
x @X (tj,Xt., Y ). (Xt. xt') W AW}
. j ioi
S Byt b+l N
where Y (w) lies on the segment joining Y (w) and Yj (w) in R° . It
follows from our hypotheses and the proof of the mean value theorem that one
_t. _kt. t.
can choose { Y 1+l (w)}in such a way that Y i+l is an Ft v F 1+l peasurable
random vector. We could also argue exactly as we do below'with the introduction
- . . t.
of the function f . Similarly, thls an Ft v F J*] measurable random vec—
tor, s.t. ié (w) lies on the segment jo{ning Xéw)J and'Xz (w) in RM .
j i N

We would like next to apply again the mean value theorem to

t. t. t, t.
1+1 i+l v J j+1
— V = - -
Y Y w(tl+1, s Y 7) w(ti+1,tj, Y ) and
e, "%, m(tj’ti+1’xt.+1)' w(tj’ti+1’xt.) :
] ] 1 1

Unfortunately, under our standing assumptions, the flows are only mean-
square differentiable, so that the mean-value theorem cannot be applied directly .
For s,t € [0,1 1], def1ne : ¢

t. t.
Beo)= B L 0y(e,x LT 0. yeey, e,y T v e 3oy )y o
i
t.
1 b j+l . _ 143
x @X(tj,Xt., Y ). w(tj,ti+1,xt_+ s(X_ X, )) ATwATwW )
j i i+l i
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Clearly

B(o;;) = £(0,1)= £(1,1)= £(0,0)+ £(1,0)

and f is C1 in t and fé is C1 in s .

Therefore, 3 (u,v) € ]0,1[ X] 0,1[ such that :
= - £
E(aij) ftS (u,v)

= - E (@, T i+l l[)}',(ti_'_l;tj,?J) AMyy Mu x

1

t. . .
' - j+l ' . = 1 1
x ( @x(tj, Xt', Y ) @ (tj’ti+1’ X.1 Y AT XY AW )]
. . t. t, . t. t.
where YJ =vJ 4+ u(yY i+l Y J), Ay = ¥ J+l y J ,
=i i
X = - b = -
X P v Xe s MX =X X,
1 i+l i i+l 1
Now define :
= £ Biy adgy A
N ' . .
aij(n,m) ( @y(ti,Xti,Y ) wy(ti,tj,Y Yy A'Y) AW b4
& i i
) - 1 .
X (®x(tj’xt.’Y ) wx(tj’ti’xt.) ATX) AW
i i
It is easily seen that as n and m > ®
— n n m m
Ela.. - .. = . - t, P A
! 1J(n,m) ulJ(n,m) | o( ] €1 ts 1 [tJ+1 tJ 1)

On the other hand , let us define for each k <M and £ < N a sequence of random

' signed measures on [0,1]2 { UE’Q :n,m €N } by:
b .

. n,m _ _ gE i i ] ] '
(3.1) Mg = A Xk AW A YZ AW §£t2 m

s I N »t.)
) y { 1,i]\1,t.1+1 tj } ]
~ — » 1 | R s Voo t
Then : ;;Ei . . (n,m) § z [ (@y(S,XS,Y ) wy(s,t,Yr))R- X
(i j'tn <&} =] =1 o o
L K B

. : N . n,m
X ( @x(tﬁxt"Y ) wX(t’S’XS))k uk’z (dS,dt)

‘It follows from lemma 3.4 below that we éan appiy lemma 2.2 with k = 2

to conclude :

1 t ' s ' . t t
E(Cn,m)+ E£ »g (@y(s,XS,Y ) wy(s,t,y Yy y (X)) x

' t Vee.
x ( @x(t,Xt,Y ) wx(t,s,XS) o (Xs)) ds dt
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in probability, as n and m » © . Uniform integrability, and hence the conver-

gence of E(Cn m), follows from hypothesis (ii) on ¢ and lemma 2.1 . Since the
b

fact that n < m has not been used in the computation of lim E(Cn m)’ clearly

lim E(An m) = lim E(Cn m) and (*) is proved .
n,m > < n,m > ©

O

Lemma 3.4 Let { uﬁ’z sn,m € N} denote the sequence of random signed mea-
b

- sures on [0,1]2 defined by (3.1). Then ¥V k < M, < N,

V(s,t) €[0,11°,
) meog (10,(s,01) > 5 4% 5 x) v, (1) d8 du
(o} [¢)

in probability, as n,m - ®

(ii) sup P (| P [0,11) > M) > 0 as Mo
n,m ?

Proof : For simplicity we drop the indexes k, £ .

(ii) follows easily from the fact that :

sup E ( | ™™ ([0,11%) ) < o
n,m

Indead , for t?+l < t? » by independence :

i, i, ] i _ i i i j . n _.n ., m _m
E[a"x a'w Ady adw | = B(] A* x aTw |) BC |ady A W< ey, ti)(tj+1 €5 )

Let us now check (i). Define :
n-1 m-1 . . . .
TR T atx Atwaly Alw s
i=0  j=0 (t.,t. )

Then :

u™ A(ds,dt) = A"(ds) xv™(dt), where :

n n-1 i i
A= X ATX AW § n
i=0 t.
1
o Vm—l . .
vi=- 3 AMyaAw sm
. t.
J=0 ’ ]

From a well-known result on joint quadratic variation (and its adaptation to

the backward diffusion {Yt}) ,
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AN [o,s]1 ) » [® o(X)du , asn>e
o

Ym( [0,t] ) » ft Y(Yu)du , as m > ®
)

So that

T 0,(5,0)1 ) » 5y @hdu  [S o(x,) du
(o) (o)

On the other hand ,
u"™(ds,dt) = o<t ] 10 (ds,dt) + 1"(ds,dt)

where N°° = _Z— AT At MY A s

n . m
. .. .0_.m n (t.,t.)
. < ’
{1,J,ti\\tj<ti+l } I S

We need to show :

(@) W™( [0,(s,t) In{s <t} ) [F [UBAS 0, (Xg) v, (¥")dbdu
(o) O

®) W™ [0,(s,t) 1) >~ O

Define U (ds,dt) : = o(X,) v (YHds dt . and A: = [0,(s,t)] N {s <t }
V € > 0, there exist two subsets A and A of [0,1]2 , such that :
(a) A and A are finite unions of disjoint rectangles(l).
(B) A cA c A
M IWIGE-4)<e
From (@), 1" &) » @& ; ™M) > (@A) as nm > .
So that :

W)~ e < U@=lim W) < lin ™M) < Ta ™% <
n,m n,m n,m

< lim 0"@) = U@ < TQA) + ¢
n,m

This proves(a).(b) can be proved similarly .

(1) A rectangle is by convention closed above and on the right, and open below

and on the left .



Proof of theorem 3.3

(a) Existence Suppose first that (H4) holds . Using Proposition 3.1, we

then define :

£(0) = L% - limit £_(9)

n > ®
But obviously E En(Q) = 0, Wn, and we haveshown in the proof of Proposition 3.1
that E[Ei(@)b X

where Y denotes the‘right- side of (ii). It then follows that £(®) satisfies
(i) and(ii) .
Suppose now ¢ satisfies(Hl) and(H2), but not(H4) . All we need to do is

find a sequence of @; s satisfying (H4), s.t.:
(@ {£(),n € N} is Cauchy in L°(@)
(B) The right side of (ii)n converges to the right side of (ii)

() being ‘checked by applying (ii) to E(@n- @m)= E(@n)— E(@m) ,» only (B) needs

to be proved .

Let {pn,n € N} be a sequence of smooth functions from R into R

1

such that pﬁ 20 ,j'pn(t)dt = 1 and supp (pn) c [ -0 1 . We define :

1
n

o (t,%,9) = (p
M

n ¥ O0LEy)) (B)

for(t,x,y) € [0,1] x R x By , where :

o(t,x,y) if t € [0,1]
B(t,x,y) = $(0,x,y) if t <O
o(1,x,y) if t > 1

It is easy to check that @n is jointly continuous, and to'verify(B)
with this sequence .

We note that the linearity of £ follows immediately from the construc-—
tion . Let us nevertheless make precise what we mean by linearity .
Let ¢(X,Y) and '6(§,?) € £2 . Then, if we define X = (%) and Y= (%), clearly
(X, )+ % (X,Y) is of the from O (’)\(J,'f), with & (')\(’,'S\{‘) € £;2. The linearity of ¢
means that :

ECTX, = & 0,1 + £ X))

(b) Uniqueness

Choose p € L2(0,1), {it,o < t <1} solution of the SDE :

X, =1+ [° X pls)ducs),
o



Y£ =0, and ¢ (t,x,y) = p(t)x .

fl i; p(s)dW(s), which is a forward Ito integral, coIncides with E(E{i;?)),
o

and :

E( £(2(X,Y)) i&) = E(E(®)) +E [ £(®) £(B)]

But E(E(®)) = 0 and
E[£0) E® 1= [ BE2 @) - EEZ (@) - E(E2@)) ]

Using (ii), we obtain :

ECEQ@EYE, ) = B [ o(e,x,,¥) o(t) X, dt +
(¢}

ft(Q;(s,XS,YS) w;(s;t,Yt) v(£,Y5)) X, 0(t) p(s) ds dt

+ E fl
o o

Thus E( &( @(X,Y))'i1 ) is completely determined , V p € L2(0,1). But as p varies

in L2(0,l), il describes a total set in L2( Q, Fl’ P).

[

We have already proved a particular case of the following immediate :

Corollary 3.5. Let D = 1 ; 0(X,Y), I(X,Y)E £2

Then :

B [E@E,D) EEEIN] = & [ o(6,%,,79F (£,X,,75) at +
o .

+E {‘ gt (@) (3, %008 (556, )7 (£, Y) @) (8,7, T B (e55,%)5(s,X))ds at +
1 (t =y, = —8.— Sti— . =t ~ '
rE S £t<¢;<s,xs,Ys>w;(s;t,Yt>y (£,5) (@] (£,X, Y0} (£55,X )o(s,X ) ds dt

O

We now generalize the above results in the case D> 1| . We only state

the results, since the proofs are obvious variations of the above ones.

Theorem 3.6. There exists a unique linear mapping &®(X,Y) » £[® (X,Y)]
from £2 into LZ(Q, FI,P;'RD) such that :

(1) E[E@®@) ]=0
(i BlE; @) £,(@) 1= &, F foeP (e, 1hae +

1 t, ., Syt t t . ty v
+ E 40( ({ (@y(S,XS,Y )l!}y(S,t,Y ) Yi(t9Y ))(@x(t,Xt,Y )(DX(C,S,XS) C)'j (S,XS)) ds dt +

+

1 (t,., Sy iy . t t 1 Byt .
E i £ (@5 (85X Y)PS (556, Y)Y, (£,Y7)) (B (£,X,, Y )0} (£58,X ) 0, (s,X)) ds dt



Moreover,if ®satisfies(H4), {m'} is a refining sequence of partitions of [ 0,1]

such that |[1™| ~ 0 as n >, and if :

n—1 n tn | n 0 '
= 1+ -
En(Q) = izo Q(ti’ XtI..l ’ Y ) (W( ti+1) w(ti))
1

then En(®) - E(®) 1in LZ(Q, F P; 'RD) , 45 n > © |

1,

Corollary 3.7 . Let &(X,Y), ®(X,Y) € £2. Then :

E L @) ;@)1= 055 B [0tk 7% F(LR,Tde +

I t,., S\ v, ., ot Ey i T SEvtie.. T A= . =
FE L RO Y oY) v (6Y0) B (6X LT (55,8 )5, (5,F ))ds a

Dotz 5 5y Trpe., oty = o Sty sns t ve.
+ E ( y(s,XS,Y ) wy(s,t,Y ) v;(6,Y )) (@ (t,X Y )wx(t,s,XS)Gj(s,Xs)ds dt .

O *—
O *—

O

Let us finally construct the integral in case & satisfies(H1)and(H3).
We denote by £ the set of processes {@(t,Xt,Yt),t € [O,f] } , where Xand Y are
given as in § 2+2 , and @ satisfies(Hl) and (H3).

Let f € C (RM+N) have compact support, and satisfy f(x,y)= 1 on the

set {(x,y); IxI <1 and |yl <1} . For any k € Nt , we define fk(x,y):= f(E-, hA )
*
If ©(X,Y) € £ , we define for each k € N o (X,Y) € 2 by,
t, . t t
CDk(t,X_ﬂt,Y Yi= 0(6,X,Y)E (X ,Y)

Finally, we denote :

Qk: = { w; sup ]Xt(w)[ < k, sup |Yt(m)| <k}
t €0,1] te[o,l1]
Theorem 3.8 : There exists a unique linear mapping : &(X,Y) - £(®) from £

into the set of classes of a.s. equalFl—measurablé random vectors s.t. V k € I¥
£(®) =&( 2) a.s. on Q

Proof : Since U Qk = a.s., it suffices to check that for £ > k, €(<I>'Q )
k .

coincides a.s. with E(@k) on Qk’ which follows easily from the constructions of
£(¢,) and E( %)e.
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It is worthwhile to verify the following uniqueness result :

Proposition 3.9 : Suppose &(X,Y)€ £ , and moreover :

o(t,X,Y) =0 dtx dP  a.e.
Then fl @(t,xt,Yt)d W(t) =0 a.s.

o
Proof : In view of Theorem 3.6(ii), it suffices to show that V i < D , either

* ' Ys Voo t ) t -
" @y(s,Xs, )wy(s,t,Y ) Yl(t,Y ) 0 l{s < t}ds dt dP a.e.

or else

t
*ok ' (. =
(**) @X(t,Xt,Y )wx(t,s,Xs) Gi(s,XS) 0 l{s < t}ds dt dP a.e.

Let us for instance establish (**) . The proof of (*) would be analogous.

Let { X, 0<t< 11} be the solution of

X

O o Mm

=x + gt[b(u,Xﬁ)+ l[s—e,s](u) Oi(u,Xi)] du + gt g(u,xu)dw(u)

It follows from Girsanov's Lemma that the laws of Xi and Xt are equi-

. .. t .
valent . Since each of these random vectors is independent of Y , it follows from

the hypothesis that :
o(t,X;,Y) =0 dt dP  a.e.

€ _ . £ € _ s
Moreover , Xt —(p(t,s,XS) , and XS XS+ {S_€)+ Oi(u,Xu)dU + ﬂe

with e given by :

ne = {:—ef'[ b(u,XE)+ Oi(u,Xs)—b(u,Xu)— o, (w,X )] du .

+ fs . [o(u,Xi)— o(u,Xu) ] dw(u)
(s-€) ’
It is easy to show that L HnEH 9 - 0,
L7

We then have :

2 [ 8(t,0(t3s,X + {:__8)+ 0; (X dus 0_),¥)- o(t,x,,¥)] = 0

1 )
{s < t} ds dt dp a.e.
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(**) then follows by taking the limit in probability along a particular sequence

€, ~ 0, provided we show that for almost all s € [0,1] ,

é— fs oi(u,Xu)du %-Ui(s,Xs) in probability, for a certain sequence
n s-¢
n

an > 0 . This will follow if we show that :

1 1 s )
f E] = f Gi(u,Xu)du —%-(S,XS)I ds » 0

(o] S—€
But
1 1 s ,
g = i_g 0, (u,X )du - 0ys,X ) | ds > 0 a.s.

and this last sequence is uniformly integrable with respect to dP .

O
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§4 - THE TWO-SIDED INTEGRAL AS A PROCESS

Let now O0<s <t<1. If ¢(X,Y)E £, we can define :

t
£@)F 1= 1y, 19)= [e(u,X Y)W (u)

s,t]

Proposition 4.1 : Let (X,Y) and (Y,?)Gﬁz.

We then have :

FS\/Ft s
(i) E [€(<I>)t]=0
F_VE . . F_VES t e o
(11) E [g, (2)] gj(é)t]= sijE £¢(“’Xu’Y )2(u,X ,Y )du +
t
+ EFS\/F £t (v, x LYY )0! (viu, ¥y (0, Y@ (u,E T3 (usv, X )
e y V, v’ lpy vsiu, Yj u, x u, u’ WX u,v, v
Ei(v,Xv)dvdu +
t
+EFSVFIU%$< X LIV (viu, IO (0, TN (u, X, Yo' (u3v,X )
2 sy V, v’ le viu, Yi u, ” u, a’ (px u,v, v
Oj(v,Xv)dv du
0

Remark 4.2 : Under additional regularity assumptions on & and the coefficients

b,o0,c,y, it is possible to obtain an estimate of the form :

t
E(|fo(u,X ,vhaw(w) [H < (£-s)?
S

It is then possible to deduce from Kolmogorov's Lemma that the

t
process {f 0 dW; o<s<t<1} possesses a continuous modification.
s

We will now prove, however, this result in greater generality with a

less tedious method.

‘Theorem 4.3 : Let ¢(X,Y) €L. Then the process {E(@): s 0OSs<t<1} possesses a

modification which is almost surely continuous.

Proof : In order to simplify the notation, we restrict ourself to the case D=1.
From the argument in Theorem 3.8, it is enough to prove the Theorem in
case ®(X,Y)€E£2, which we now assume. On the other hand, it suffices to
show that {£(t):= g(@)i » 0St<1} has an a.s. continuous modification.

This will follow if we show that :
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dc, Y>o,a>0 such that VO<s<t<]l,
(%)

PCE(E) - £(s) [> (e~ s)Y)<C (£-s) '™

&
Indeed, one way of proving Kolmogorov's Lemma consists in first
establishing (%) and then showing that the existence of an a.s. continuous
modification follows from (*)(see e.g. Lodve [10]).

We now prove (%), for fixed OSs<t<1l,

g(t) - £(s) = 6 +n, where :

D
It

J't[@(uﬁxu:Yu)— (I)(u,XS,Yt) ]dw (u)

2]

n = Itcb(u,x ,Y5) d W(u)
s S

Since (XS,Yt) is independent of {W(v) -W(u); s<u,v<t}
n is in fact a usual Ito-Wiener integral. It then follows from (H2)

and the bounds on all moments of IXSIand |Ytl that 3 ¢, s.t.:

1
.E(r14)<c1 (t-s)?
One easily sees that (ii) of Proposition 4.1 makes it possible

to compute E(ez), yielding :

2
E(92)= Eft[<1> (u,X ,Yu) -~ ®(u,X ,Yt)] du +
< u s

t u
+ 2 E [ [0 (v,X Y ) (v,u,Y )y (u,Yh)) .
ss ¥ v y
1 Uy .y .
(2 (u,X ,Y )wx(u,v,XV)O(v,Xv)) dv du
Clearly, the second term on the right side is bounded by c2(t— s)2.
On the other hand from the mean value theorem,
t
E [ [o(u,X ,YH- o(u,X ,¥9)1%du=

t
B [ 1o u,T T (% - %)+ q>}'7(u,§u,?“).(y“—yt)]2 du

t 4 1/2 I 1/2
<c3£ [Elx -x ) =+E]X"-Y[) ldu

< EB (t-s)
Finally, for y€ (0,1/4),

Y Y
Ple(t)-&(s) |>(e -s)YI<P[|0]> (—t—z—‘ﬂ—]ﬂ’ [Inl>(tfi]

2

2 4 |

<2 _ — E(o%)+ 2 . E(n*)
(t-s)Y (t-s)""

< ¢ (t—s)z_lw

where ¢ does not depend on s,t , and. (x) follows.
O
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: s : . . -
Henceforth, {E(Q)t, 0<s<t<1} stands for its a.s. continuous modifi-
cation.

It follows readily from the continuity and Proposition 4.1

Proposition 4.4 : Let ® satiéfy (Hl) and (H2).

s . . . '
Then {£(<I>)t, 0<s<t<1} is the unique continuous process

such that Vp € 1.2(0,1; RY), vV 0<s<t<1, Vi<D,
' t.
S= 1_ 5ot u =
Elg, (9) [ X 1=EIX] £ @(u,X ,¥ )p, (WX dul+
D ¢ t.u 9 u u =
+ ¥ E[X] J Jer(8,X ,Y )¢ (83u,Y )y.(u,Y )p.(u)X p.(6)do dul
j=1 ss 7Y 6 y h] j u i

: t t , —_
where ii = exp{/ p(u).dW(u)—%-f[p(u)lzdu]-, X =X° .
S s t t

O

We could have given another formula in Proposition 4.4, had we considered

_'§§ as a backward diffusion.
We now compute the quadratic variation of the process £(t).
Theorem 4.5 : VO<s<t<1, let {r", n€EN} be a sequence of partitions of [s,t],

of the form :

e {s=t"<tl<...<t? = ¢}
o 1 n ‘
where Iﬂn]= max (t£+l-t2) - 0, as n - ™,
oSk<n-l
Then, if &(X,Y) €L,
n-1 ! e
k k t 2
T [£.(9) £.(9) 1-6,. [ ¢°(u,Xx ,Y") du
k=g L Tgm Ci7m ij g u
k+1 k+1

in probability, as n - o,
In other words, we can associate to {£(t); 0<t<1} its qua-
dratic¢ variatién as a dxd matrix valued process {« g » \(t), o<t<l1}
which is given by :
t 2 s
<g>» (t) = (J o (s,XS,Y Yds) I
)
Proof : Again, it suffices to establish the result in case ¢ satisfies (Hl) and

(H2), which we suppose from now on. The proof is split into two steps.

a) Fir:t_suppose that ¢ satisfies (H4).

It follows from Lemma 2.2 :



n-1 t
T o2t L%,y S haky, aFy. 56, ol (u,X Y% du
k=0 k tk i J 115 u

in probability, as n - co.

It then suffices to show that :
t t
k+1 k+1 2 .k
:= . . - . 3 0
a Eftk @(u)dwl(u)ftk <1>(u)dwJ (u) EcpkA W, Aka -
in probability, as n = o ; where :

o(u):= @(u,‘Xu,Yu)
t
k+l
o, = c1>(tk,xt ,Y )
k
2a
n

z f et o(u)- o, yaw th+l(¢(u)+¢> yaw, +
k k k i tk k _]

t
(o Cu)- g e, [ Yo (uy+ o )aw,

t
+ X f k+1
k Tk k

t
Using Schwarz's inequality, we then get :
12 t 1/2
2 k+1 2
(@(w)-0)aW; )" CENf " @w+eaw) "D+
k K . J

12 t V2
(e-s )] [(Jt‘:‘<¢<u)+ 0 yaw,)’1)

k+1
k
k+1

2E|0L [<(Z E[(I

+(ZE [(f

It then suffices to show :

1) relf k+1(<1>(u)- 2)aW.)%1 >0, asn-w

(ii) 3 t ZE[(ftkH(fD( )+ & )dW )2]<c Vn
11 cs.t. " tk u Kk i s

" Let us prove (1), (ii) being proved exactly in the same way. By the
formula already used to compute E(6 ) in the proof of Theorem 4.3,
we obtain :

k+1

2
(2(u)- @, )dw.) ]_E E j le(w)- ¢, | du +

+ 2 Eftfu (v, 8! (V! (v3u, Y%y, (TH 8! ( )u‘( :v,X )o. (X )dvdu
Ssgkv,U)vayv,u, Y; (W0, (u;v,X )o. (X

where gk(v,u) =
0 otherwise

Boths terms of the above right side tend to zero as n - o : for the
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first term, use the continuity of ¢ ; for the second, use the fact that
n-1

z gk(v,u) - 0 dv.du a.e..

k=0

b) We now_suppose that ¢ satisfies only (H1) and (H2).

We associate to ¢ the sequence {<I>p,p ENWN} defined in the
proof of Theorem 3.3 (where the index n was used instead of p). Define :
8n=n£1(jtkqj(ls)dw.jtk;is)dw. - ftk;l(s)dw.thgl (s)aw,)

p e, J "t P 1L, p ]

k=0 'k

It follows from arguments very similar to those used in the proof of

Ela_|+o that :
n

On the other hand? Ve>o ,.

it Fr+1 ty
P(|E [ e(udw,[ e(uaw, -6 . J e (wdu |>e)<
t 1t ] ls
k Tk K
L+l bes t

< _ 2 €
P(|§ jtk 2 (u)di; jtk @, (u)dW, -, . £ <I>p(u)du | >73)+

t
+ 2([80]> 73) +2(| (02 (u)- @§(u>]du | >%3)
S

Let us fix p such that each of the two last terms in the
above right hand side is less than ¢/3, Vn€ N. We can then find,
using the result of Part a), n s.t. Vn= n_, the first term of the
right hand side is less than e/3.

We have shown that Ve, Elne s.t. Vn>ne,

Crl trrl t, o
P(|Z @ (u)dw. d(u)dw, - §..) @ dul > e)<e
(Iz Itk ) lftk (@)W = 85, [ 0% (@du] > )

The result follows.
0O

‘Corollary 4.6 : Let {A(t),t€[0,1]} be a process of bounded variation, and

suppose

t

Vt€lo,1], A(t) + [o(s,X_,Y")dW, (s)=0 a.s.
o

Then A(t)=0 a.s., Vt€[0,1], and

t
P(3t€[0,1], s.t. | &(s,X ,Y )dW,(s)#0)=0.
o s 1



- 26 -

Proof : It follows from the assumed identity that {A(t)} possess an a.s.
continuous modification. Since it is of bounded variation, its quadratic

variation is zero, as well as the joint quadratic variation of A(.) and

I.Q(S,XS,YS)dWi(s). We then infer from the assumed identity and
0 ,

Theorem 4.5 1

| éz(t,xt,Yt)dt =0 a.s.
o

The result then follows from Proposition 3.9 (whose conclusion holds

t
as well for f @(u,Xu,Yu)dW(u)) and Theorem 4.3.
s
()
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§ 5 — CONTINUITY OF THE TWO SIDED INTEGRAL WITH RESPECT TO iTS INTEGRAND.

We have already established a convergence result of the type'g(Qn) +£(9)
in the proof of Theorem 3.3. Here we want to have the coefficients b,0,c,y of § 2.2
varying as well, which of course means the forward and backward diffusion X and Y
will vary also. We will restrict ourselves to establishing a convergence result
in LZ(Q) . However, this result can clearly be " localized" .

Let {En, ;n; n€ N } be a sequence of initial conditions, and
{nb,HO,nc,nY ;n € N} sequences of coefficients , which all possess the same

regularity properties as b,0,c, Y . We assume :

(H5) X' +*x and ;n +';_
@) sup {I"p'(£,001 + 1"} (£, 141 "o(t,001 + "l (£, x) | +
n,t,%,y * '

+ 17e(e,00 ]+ 1fel e,y 1+ 1%v(E,0) 1 + MYy (ey) 1} <

For almost all t € [0,1] , and all K > O,

sup  {I™ (t,x)-b(t,x) |+ Inb;(t,x)- b!(t,x)| +

Ix| <K
(H7) + 1Mo(e,x)- o(t,x)| + lnc;(t,x)— o;(t,x)l} ~Q0asn>®
n n , ]
sup I Te(t,y)-c(t,y)| + | cy(t,y)‘cy(t,Y)l +
lyl <K

+ 1™ (t,%)- y(t,x)| + InY;(t,X)- Y;(t,y) |}> 0 as n >
Let {nXt } and {nYt } be the solutions of :

x

t

. gt nb(s,“xs)ds + "o (s,"x_)du(s)
0

(o}

S

E o3 P, ™Sds + 1 Py(s, %) au(s)
't t

We then have :

Lemma 5.1 Under (H§3,(H6) and (H7) , V p € IQ,$as n-> o

“
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sup E InXt - thp > 0
t €[o,1]
sup E InYt - Ytlp > 0
t €lo,1]
¥se€lo,11, suwp EI%0l(t;s,"K )= @] (55,X )P >0
t€[s,1]
vee[o,01, sup  E IPpi(s;e,™5- 9'(s5t,¥HIP >0
s€[0,t] y y

where ¢ and ¥ are the flows defined by(2.2.1) and (2.2.2)

Proof : We only prove the result concerning { "X } and {n¢;} , the other proofs

being similar . It suffices to prove the result for p =2 2 .

a) Convergence of {"X }

Using the decompositions :

b(X)- ™b("x)
a(X)- "o (M%)

b(X) - "b(x) + "h(X) - 2 (%)

o(X) - 6@ + "ox) - "6 (™x)

and (H5), it is easy to establish :

2 C et n 2
- < -
E( IX, nxt| )< c 8 +c g E (Ix, - "x_I%) ds
with
en =E [tlb(s,XS) - nb(s,XS)I Pis + E ft IG(s,XS)— nO(s,XS)lP ds
o o

It follows from(H6) that Gn »> 0.The result then follows using Gronwall's Lemma.

b) Convergence of {n¢; }

We fix s.€[0,1] , and define

i ' n,i > _n'
: = 3 Z~ = H
z, @ (t,s,Xs) > Zy ¢%'(;,s,nxs)
i i
We have :

Y . R Y D . .
1 n,1 _ ,n t ' ini , n ' in,i

(%) z, - "z = £+ g "b! (u,"X ) (2 -"20)du + jzl { (oj>x<u,“xu) (2,="2,) W, (0)
where @

du +

n _ t ' n - '
S = [ b)) bl (w,X )] 2

MO e +

t ? - n [ i
: g [(0;);(u,x)-Co)) (w,"X )] 2, aw, (w)

N
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from
1 _n < 1 ot ' L,
| by (u,X )= b2 (0, "R D 1< 1b) (u,X ) = ! (u, "X + 1 B! (w,"X ) ! (u,"x ) |
and a similar decomposition for (Gj); » one gets, using(H7)and the first part of

the proof :

sup E(IE~E1P) >0, asn »o
t €[0,1]

The result then follows from () , using (H6) and Gronwall's Lemma .

O

Let now {n®;n € N} be a sequence of mappings from [O,l] xl@4x'RN

into R , each one having the same regularity as @ and satisfying (H1) . We

suppose moreover :

3K> 0 and d € N such that :

‘ d
L M N B MU R S (eI R R L
(H8)
. M N
Vit,x,y) €[ 0,1] x R. x R, Vn€ N
For all t €[0,1] , and all K> 0, as n > » :
@) { sep om0 L+ 1Tl (5,x,y) - 0l (k)| +

IxIS|yl< K

+ |n<1>}',(t,x,y) - <I>}',(t,x,y)|}->0

We finally define :

@5 = [° aGu,x v aw(u)
! |

eC0)g = 5 Pou,"™x v dw(w)
s

Théorem 5.2 Suppose $(X,Y) € £2, and moreover that (H5),(H6),(H7)(H8) and (H9)
hold .

Then  sup E( [£(®)5- EC")P 12 ) » 0 , asn-o .
0Ss <t<l :
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Proof : To simplify the notation, we suppose that D = 1 . Considering that @
X

and "® are functions of both the 2M dimensional forward diffusion t and
t

t

the 2N dimensional backward diffusion(

nyt ) » the expression for

E(li(@)t - &( @)i |2 ) is given by Proposition 4.1 , and all we have to show is that

the following goes to zero as n > «

g [ 19¢e,X,v%) - oe,"x,"%) 12 ae 4
(o]

w26 1[50 (s, x Y% 0 (st YY) y(e, YY) -
o o y S y

- n@;(s,nXS,nYS)nw;(S't OH% &,H 1 x
x 10)(e,X,,Y)0) (635, o (s,X ) = "8!(£,","¥)%! (£35,%k )%0(s,”k )| ds at
In other words, we need only check :
) o(e,"x,™ > @ (£,x,7)  in 1( at ap)
(%) @ (s,"x, “YS) by (s 56, My (e, ®;(S,XS,YS)W;(s;t,Yt)Y'(t,Yt)

in Lz(l{S < t}ds dt dP)

/

(***)‘n®;(t,nx nYt)nm (t;s “xs)“o(s,“xs)+ @;(t,Xt,Yt) ! (£35,X )0 (5,X)
. .2
in L (1{S < t}ds dt dP )

These follow easily from Lemma 5.1, (H8) and (H9) . Note that we use Lemma
b

5.3 below to take the limit in probability of “@(.),n®;(.) and “@;(.)

and (H8) plus Lemma 5.1 to get the uniform .dntegrability .

O
Lemma 5.3 Let { Zn,n € N; Z } be k-dimensional random variables, and
{fn,n €N ;f Jc C(BQK) . If Z > 7 in probability ,and fn + f uniformly on

compact sets , then fn(Zn) + f(Z) in probability .



Proof : Sincejconvergence in probability of a sequence of r.v. is equivalent
to the fact that from any subsequence one can extract a further subsequence which

converges a.s.,it is in fact sufficient to show. that Zn +~Z a.s.= fn(Zn)e-f(Z)a.s.

This follow from the decomposition :

£(z)- fn(Zn) = £(Z) - f(Zn) + f(Zn) - fn(zn) and the fact that :

{ Zn(uD } converges = 3 Z (w) remains in a compact subset of?ng
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§6 - DIF ERENTIAL CALCULUS

6.1 A chain rule of Ito type :

Theorem 6.1 : Let &: [0,1]}{]£HXZRN > R be once continuously differentiable
with respect to t, and twice continuously differentiable with respect
1 L} 1" Li i L3 s .3 >
both to- x and to y, @,@t,éx,¢xx,¢y and ny being jointly continuous
in (t,x,y). We then have

VOo<s<t< 1,

t t
S u u
@(t,xt,Y$)=®(s,Xs,Y )+ g@;(u,XU,Y )du+—£¢;(u,xu,Y )b(u,X )du +
t t

T u L1 " u * _
+£ @x(u,Xu,Y )O(U,Xu)dw(u) * 5 iTr[@xx(u,Xu,Y Yoo (u,Xu)]du
t t
-[8' (u,X Yu)c(u Yu)du-f 3" (u,X Yu) u
. y TR s A y TR Y(u,Y )dW(u)—
-1 t ' u * u
- E—jTr[Q;y(u,Xu,Y Yvy (u,Y ) ldu a.s.
s
which we also write in more concise form as :
t t
t 5 u u
o(t,X ,Y )=0(s,X_,Y )+£¢;(u,Xu,Y )du4—£®;(u,xu,y Yax  +
1 t u * t u u
t 5 fTr[Q;x(u,Xu,Y Yoo (u,Xu)]du+f<I>}'7(u,Xu,Y )y -
s s

t
_.l " u * u
5 iTr[@yy(u,Xu,Y Yyy (u,Y )ldu a.s.

Proof : We first remark that the formula makes sense, in particular since the

coefficients of the two-sided stochastic integrals belong to £.
Since it suffices to show the formula on each

n:={uu; |Xt(m) |<n, lYt(w) |<n,vte€[0,1]}, we assume without loss of
4 L ] " ) "
generality that @,@t,Qx,éxx,Qy and ny are bounded.

Since by Theorem 5.2 we can approximate ¢ and y by sequences

. . £, . . ,
of jointly continuous coefficients in such a way that we can take the
limits in all the terms of the formula to be proved, we further assume

that o,y,oé

and y; are jointly continuous in (t,x)[resp.(t,y)].
Also, we will prove the ¢ase N=M =D =1, its multidimensional

version being exactly the same, except for vector and matrix notation .
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Let {m" ,NEN} be a refining sequence of partitions of [s,t],

of the form :

={s = tT<t? <... <t = t}
o 1 n X

and such that |7"|= sup (t?

+1—tril)—>0, as n > o,
0<i<n-1 *

As usual, we write t.1 instead of t? .
‘ n-1 t]._+1 t
@(t,xt,Y )= ®(S X ,Y )= [(I)(t +1’X sY )—Cb(tisx 'sY )]
i=o 1+1 i
n-1 ti+1 t.
=3 [o(t. +1,X »Y )—@(ti,X
i=o 1+1 i+l
n-1 t. t.
+1 +1
+ I [<I>(ti,Xt ,Y 1 )- <1>(ti,Xt ,Y t Y1+
i=o0 i+1 i
n-1 t]._+1 ti
+_Z [Q(ti’Xt.’Y )- Q(ti’xt.’Y )]= An+Bn+ C,
i=o i v i .
n-1 ¢t. t. ]
i+] .
Je o op(s X,
o i i+l

t

Now n

i't follows easily from the continuity of @E with respect to x and y and

from the contlnulty of the paths of { X } and { Yt} that :

A - f@'(u X »Y “Ydu a.s., as n > o .

n
n-1 t. n-1 t. 2
B,= T 0!(t;,,X_,Y Hhx  —x )+ iz o %,y M —x )
n . t. t. 2. XX 1771 t. t.
i=o 1 i+l i i=o : i+1 i
where X, is a random intermediate point between Xt and Xt .
* i i+l
B =B + B> + 1-33, with :
n n n 2 n
, ol tl+1 tie1
B = T o (t,X LY )j b(u,X )du
i=o i
o Pl i+l ti+1
B” =% o' (t X oY ), o(u,X )dW(u)
n . t. u
i=o ty i
B3-n£1®" (t.,X Firly x )2
n . XX ti’ i’Y ) ( t. t.)
i=o i+l i

One easily checks that :

t
u
- £ @;(u,Xu,Y )b(u,Xu)du a.s., as n - «,
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On the other hand, if we define :
) n-1 9
o= X (X -X )78
Boi=o fiel Y0H

it follows easily from Lemma 2.2 :
n-1 t

. t
~3.= " 1 _ 2 " u. 2
B i= X o (t.,X ,Y )(xt. X )" - i@xx(u,xu,Y Yo (u,Xu)du

3
i=0 t; i+l i

in probability, as n - e. But, from uniform continuity,

1

3 =3 = Fie iy, 2
5 < 1" v —Fh -
an BnI sup Iq)xx(ti’xi’Y ) Qxx(ti’xt.’Y ﬂ(-Z IXt. Xt.I )
i i i=0 i+l i
and the latter tends to zero a.s., as n - o,
From Proposition 3.1, we know that :

n-1 t. : t

T et ,X LY ot ,x YW, - W, )of0' (u,X YN0 (u,X )dW(u)
. x 1’7t i’7t, t t. x ’>7u’ *Tu

i=0 i i i+l i s
in probability, as n - .
To establish the desired convergence of the sequence Bn’ it remains to

show that :

t ti+1

n .

\i 1+1 -
E @x(ti,Xt.,Y )ft. [o(u,Xu) c(ti,Xt‘)]dW(u) -0
1=0 1 1 1

in probability, as n - ., We use again Lemma 2.2. Indeed, let :
n-1 Si+1
un:='Z (LL [c(u,Xu)—o(ti,Xt')]dW(u))Gt.
i=0 1 1 i
‘{un, n €N} satisfies the hypotheses of Lemma 2.2, with 0 as its limit.

The sequence Cn is treated in exactly the same way as Bn'

O
Example 6.2 : We suppose here that M=N. Let A, Bl""’BD be Mx M matrices
(which might as well depend on t), and let {Xt}, {Y®} be the solutions
of : R D t
X =x + g AX_ds+ I IBiXSdWi(s)
i=lo

Yh =7 + le*YSds+ g le’."Yde.(s)

* j=1t b i
It is known (for the corresponding result for stochastic PDES, see
Pardoux [15], Krylov- Rozovskii [ 8]) that the scalar valued process
{(Xt,Yt), t€[0,1]} is a.s. constant. With the aid of our It& formula,
we can prove it directly.

t
(Xt,Yt)=(XS,YS)+Sft(AXu,Yu)du+}iZ i(BiXu,Yu)dWi(u) -
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-j(x ,A*YHdu - zf(x BY)dW(u) (X, ,Y0)
s 1 8

We have used the linearity of the two-sided stochastic integral.

O

6.2 A chain rule of Stratonovich type :

We begin by defining the two-sided Stratonovich integral.

Let first ¢ denote a functional which satisfies (H1) and (H3), and
does not depend on t. {n"} again denotes a refining sequence of partitions
of [0,11. |

Consider the sequence :

n-1 1 t. t.+1 .
n_:= ¥ [e(X_ ,Y Y)+o(X Y 1T 1aMw
n . 2 t. t.
1=0 i 1+1
n-1 t. . n-1 t. : t. .
no=x o Ly halwed sz rex. L,y Mh-sex Ly Phalpe
n ., t. 2 . t. t.
1=0 1 1=0 i+l 1
1 n-1 t. vl i
+5 T lex Y H-ex ¥ Y Hlalw
i=o i i

Using again the mean value theorem and Lemma 2.2, we obtain :

f (s,XS,YS)c(s,XS))*ds+

NI
O

1
> [8(X_,Y5)dW(s)+ 1
o s
1 1 ' s S,k
+§‘£(¢’y(SQXS’Y )Y(S’Y )) ds
in probability, as n - « ; where x denotes transpose . Note that the sequence :

i i+l v '+y i

also converges to the same limit as {nn}.

Motivated by these considerations, we give the following :

" Definition 6.3 : Let ¢ satisfy (HI) and (H3), and 0 <s<t<1. We define the two-

sided Stratonovich stochastic integral of ¢(u, X ,Y ) with respect to

dW(u) over the interval [s,t] as :

J@(u,xu,yu)o dW(u) := jcp(u,x , YY) dw (u) +

+ —-f(@'( u,X ,Y Yo(u,X )) du4- f(@;(u X,Y )Y(u Y )) *du .
(N
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Using the connection between the Itd forward[resp. backward] and the
Stratonovich forward [resp. backward] integrals, we can rewrite the equationms

for {Xt} and {Y%} in Stratonovich form as follows :
t t

Xt =X + g g(s,XS)ds + go(s,Xs)odW(s)

~J D
where b(s,x) = b(s,x) - %— 3 [(ci); ci](s,x), (Gi); denoting the Nx N matrix
i=1

ao, .
whole element of the j th row and k th column is 1]
"
1 1
v = v + [ T(s,1%)ds + [ v(s,Y%)o du(s)
t t
D

where € (s,y) = c(s,y) - %- X [(Yi); Yi](ssy) .
i=1

Theorem 6.4 : Let ¢: [0,1] x]RMx IRN - IR be once continuously differentiable

with respect to t, twice continuously differentiable with respect to

[ 1 " 1 " " . . . . .
(x,v), @,@t,éx,éxx,éy,éyy and Qxy being jointly continuous with respect

to (t,x,y). We then have :
VO0Ss<t<l],

t t
t — S ) u ' u, o~
2(t,X ,Y )= 2(s,X_,Y") + £@u(“’xu’Y )du+£<1>x(u,Xu,Y )-b(u,X ) du +
t u t u, ~ u
+£<I>}'{(u,Xu,Y )o(u,X o dw(u)—£¢}'7(u,xu,Y ).c(u,Y )du -
t u
~fo'(u,Xx ,Yu)y(u,Y YodW(u) a.s.
sV u

which we also write in more concise form as :

t t
t S u u
o(t,X,,Y") = 0(s,X_,Y )+£¢>l'l(u,xu,y )du+£<l>}'{(u,Xu,Y )odX +
t
' u u
+ £@y(u,Xu,Y ) odY a.s.

Proof : From Theorem 6.1, it suffices to show that :

t ) t
' u . 1 D ' ; u ' )
£(<I>x(u,Xu,Y Yo(u,X )o dW(u))--z—iE1 iéx(u,xu,Y )-[(0]),0,1(u,X )du
t u u 1 D t u u
_g(é;(u,XU,Y )y (u,Y )odW(u)}hiiilié;(u,Xu,Y )I(YQ;Yi](U,Y Ydu

t
=»£((I>}'((u,Xu,Yu) c(u,Xu)dW(u))+-;—i%r[d);x(u,xu,Yu)oc*(u,Xu)]du +

t t :
. u u 1 " o u u
—i(@y(u,xu,Y Yy (Y dW ()= 5 Trlef (u,X,, YD) vy*(u,Y") Jdu

But this equality follows from Definition 6.3.
O
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Example 6.5 : Let A(t), Bl(t),...,BD(t) again denote Mx M matrix valued bounded

and measurable functions of t. We consider the following stochastic

differential equation written in Stratonmovich form :

D
dXt = A(t)xt dt + iElBi(t) th dwi(t)

We associate to this equation its fundamental solution, i.e. the process

¢(t,s) which takes values in the set of Mx M matrices, and solves,
Vs fixed :

D
(x) dé(t,s)=A(t)d (t,s)dt+ X Bi(t)fb(t,s)odwi(t)
i=1

together with the boundary condition ®(s,s)=1. We can consider (%)
either as a forward SDE for t=>s, or as a backward SDE for t<s, so

that &(t,s) is defined for all s,t € R. We want to prove that :

¢ (t,s)= <I>—71(s,t) a.s.,Vs,t€R
which is in fact a particular case of general results on stochastic
flows, and a generalization of a well-known fact on 0.D.E.s.

Let us choose s <t, and consider the following process :

{6(u,t) Yo (u,s), u€ls,t]}

It is a function of both the forward diffusion :
u u
®(u,s)=1+ [ A(0)2(0,s)d0+% [ B, (8)d(6,s)0 dW, (8)
s isg 1 1
(s<u<t)
and the backward diffusion :
-1 : t -] t-1
® “(u,t)=I+J0 "(6,t)A(8)do+Z [ & (0,t)B.(8)odW. ()
u iu 1 1
(s<u<t)
It now follows from Theorem 6.4 that :
du[Q(u,t)_lé(u,s)]==o

Hence <I>(t,s)==<I>(s_,t)'_1 a.s.
[
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§ 7 COMPARISON WITH OTHER APPROACHES, AND POSSIBLE EXTENSIONS

7.1. Comparison with the filtration enlargment approach.

It is not hard to show that Yt is Ft Vo (Yp)-measurable . Therefore
we now define : Gt = Ft vV o (YO) . The filtration {Gt} is obtained from {Ft}
by an initial enlargﬁent, i.e. we enlarge Fbto GO = Fb v O(YO), and then define
Gt = Ft v GO . The question now is whether or not W(t) is a Gt—semi—martingale .
It follows from the result in Pardoux []6]that, provided in addition to the

hypotheses in § 2.2

(1) V t < 1, the law of vt has a density p(t,.) and there exists

5. 10) k €N s.t. p(t,.) € L2@®Y;0+1 2157 ax )
2 *
9y ): s "
Vaiy) ———32 e1®(Jo,1 [ x BY)
axiaxj

then {W(t), t € [0,I1[ } is a Gt semi-martingale . It then follows that V t € ]0,I[ ,
we can define the forward It0 integral of the process { @(t,Xt,Yt) } , which is
Gt—adapted » with respect to the semi-martingale W(t) :

t s
g CD(S,XS,Y ) . dW(s)

If in addition ¢ satisfies (H4), then the above integral is the limit
n-1 th
n i n n . n_,_.,n_.n n _
of E (I)(ti,X n ,Y 7 )( W(ti+l) W(ti ) if w=0 to< tl <euw < tn t,
1=0 ti :

and I7% + 0 . 1t follows that :

gt 8 (s,X_,Y°) . du(s) = £t¢<s,XS,YS)dW(s)+ gt 0y (s,X,Y%) y (5,7°) ds

Clearly, the filtration enlargment approach is feasible only under
additional restrictions . Of course, we could interchange the rolesof X and Y .

In any case ,the symmetry of the two-sided integral is lost .-
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7.2. Comparison with the " random field approach ",

Suppose the coefficients c and Y are continuous in (t,y) . Then
Y(s;t,y) has a modification which is a.s. continuous in (s,t,y), and such that

moreover y > U(s;t,y)

. . -1 . .
1s a.s. an cvato homeomorphism. Denote by wt s 1ts inverse .The process to be
b4

integrated can be written as :
-1 0
X
26, vyl %)
Let y € I@d, then the process & (t,Xt, w;l (y)) is Ft—adapted , and we can
3

define the forward Ito integral

1) = 1 oce,x, v @) anee
Fo) s

Let p > 0 . It follows from Burkholder-Davis-Gundy's inequality (see Ikeda-

Watanabe [ 5]) that :

ECROT@IN <, [1Ea oex,ut 60) - ot x,u7h @)% ) ac

The existence of an a.s. continuous modification of { I(y),y € ]ﬁn } owill

follow from Kolmogorov's Lemma if we can estimate the above quantity by C lx—ylp,

. provided that p > M . Such an estimate can be obtained under slightly more res-—
trictive conditions than our conditions in § 2.2. Provided I(y) is a.s. conti-
nuous , we can define I(Yb), and we have again :

1= floe,x 1" yaw &) + ! &) (£,X,Y0) v (5,7 at
[o] o .

In addition to the fact that it does’break the symetry with respect to
time reversal, the present approach is not extendable to infinite dimensional
situations . Indeed Kolmogorov's Lemma would not apply.Moreover if we replace
the SDEs for X and Y by stochastic partial differential equations of parabolic

type, then the associated flows do not possess smooth inverses..

et



7.3. Comparison with Skorohod's integral

In [18] Skorohod defined a stochastic integral of a large class of
anticipative integrands with respect to a Wiener process, over a fixed time-interval,.
Unfortunately , this work seems not to be well known. Only at the very end of our
research did we learn about it. We would like to thank D.Nualart and M. Zakai as.

well as E. Wong , who drew our attention to Skorohod's integral . We now prove
a result, which was first suggested to us by E. Wong, and elaborated upon by

D. Nualart [12 ] (we restrict ourself for simplicity to the case D = 1) :
& :

Theorem 7.1 Suppose that the hypotheses of § 2.2 are in force, and in particu-
lar that ¢ satisfies (HI) and (H2) . Then the Skorohod integral of @(t,Xt,Yt)
over the interval [ 0,1] exists and coIncides with the two-sided integral

fl ¢(t,Xt,Yt)dw(t)
o

Proof : The result is a direct consequence of Proposition 3.1 in Nualart-Zakai
[13] . Indeed, from Theorem 3.3, all we need to show is that any element in
2?2 s integrable in the sense of Skorohod, and that the Skorohod integral is
linear and satisfies (i) and (ii) in Theorem 3.3 .

On the other hand, Proposition 3.1 in[13]says that any measgrable process

u such that :

E [ uPeyae+ & gL ! D, u(e)1? ds dt <o
o _ ) o)
is Skorohod integrable, 'its Skorohod integral has mean zero and variance equal to :

E fl u2(t)dt + E fl fl D u(t) Dt u(s) ds dt
o o o s

where{ DS u(t), 0< s <1} denotes thé Malliavin derivative of the random
variable u(t). Let us compute the latter in our case . We use well—knownrfacm
about Malliavin derivatives, which can be found e.g.in [13] .
t = 1 t 1 t t
Dy 8(t,X ,Y") @ (£,X ,Y)D_ X+ @y(t,xt,Y D, ¥
= L
Ds Xt 1{S <t} cpx(t,s,Xs) O(S,XS)
2y

Do YT = I oy ¥ (Ess, YY) v(s,Y%)

The result follows immediately .



The same result would be true for integrals over the interval [s,t] ,
VOSs<t<1 ., Note that there exists up to now no result concerning the

general Skorohod integral as a process.

7.4. Possible extensions

Clearly , our approach could be adapted to the case of a pair of
diffusion processes with values in an infinite dimensional space, e.g. to the
case of a pair of stochastic partial differential equations . It could also be

adapted to the case of " diffusions with jumps " .

In fact, the comparison with Skorohod's integral suggest that it
might be possible to adapt our results to a pair of forward and backward semi-

martingales, which would not necessarily be Markov processes .
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