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ABSTRACT

A finitely additive model is used for the non-linear estimation of a
random signal in the presence of ‘white’ gaussian noise. The continuous
dependence of the resulting estimators on the observed sample path and
a priori parameters is investigated. It is shown that the estimators are
robust in the sense that they are Lipschitz-continuous functions. Appli-
cations to the nonlinear filtering problem and discretes approximations
are also given. "

1. Introductiop. : _ <o
In this paper we consider the following estimation problem for a continuous time Markov
process.

Let T := [0, T'] be a finite time interval and (Xt)teT a progressively measurable Markov
process on a countably additive probability space (12, A,II), taking values in a complete,
separable metric space S.

We suppose that direct observation of (X;) is not possible, but that observations are
available of the process (y:)teT, which is related to (Xt) via
(1.1) Y = ht(Xt)---f-'et' - T L

where

h: TxS —R™

is a known nonlinear function of ifs arguments with values in the Euclidean space R™ and
(e:) is assumed to be an R™- valued ‘gaussian white noise’ process, independent of (Xt).

If teT is fixed and observations Q.y: = {y, : 0 < u < t} are given, then we consider
the problem of finding estimators for functionals of the (signal-) process. (Xt) given the
observations Q:y and the a priori information contained in the probability measure II.

If we take the random variable
g: (2,4) - (R,B)
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equal to f(X,), for a fixed seT, and f: (S,8) — (R, B), i. e. . 7—7

9(w) = f(X,(w)) , wef

we encounter the nonlinear filtering, prediction or smoothing problems, according to
whether s = t,5 > ¢ or s < ¢. Here and in the sequel B* and S will denote the Borel -
o-fields in R* and S respectively; for k = 1 we omit the superscripts. -

To make the model (1.1) mathematically rigorous we have to define what is meant by

a gaussian white noise processes. e

The usual approach is to treat (e;) formally as the time derivative of an m-dimensional
standard Wiener process, i. e. :

= () = (2%

and to consider the ihtegrated'model e

-

¢ ¢ , _
(1.2) : Yi:= /yu' du = /hu(Xu) du+W;  teT.
’ 0 0

<

Equation (1.2) gives now a well-defined model on a countably additive probability space.
We will call (1.2) from now on the stochastic calculus model, since stochastic (Itd) calculus
is generally used to solve the estimation problem in this context. Detailed accounts of the
stochastic calculus model can be found in the books of Kallianpur [5] or Liptser and
Shiryayev [13]. :

Recently, Kallianpur and Karandikar in a series of papers [6]-[9] have proposed a differ-
ent approach for the study of the estimation problem, which they called white noise calcu-
lus.

Assuming that _ .-
T
(1.3) E / | ha(X.) |7 du < oo
- 4]

they write equation (1.1) as

(1.4) y==¢(+e .

where y, £ and e are now considered as elements of the Hilbert space L2 : = {f : [0,T] —
T —~

R™; f is measurable and [ | f(u) |* du < oo}, satisfying the following condition. £:  —
0

L? is a random element in L? such that for all wef, teT

(1.5) €i(w) : = hy(X;(w))
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and e: L? — L? is a random element in L? defined by
(1.6) efg):=g for all geL?

having a canonical gaussian distribution, i. e. with C, (g9) denoting the characteristic func-
tional of e

(1.7) C.(g) = ezp{—%(g,g)} for all geL®.

—

Here (.,) denotes the inner product in L2, and we will denote the morm by II-]]-
y: O x L? — L? is then defined as

(1.8) ) y(w,g) : =‘§(w) +e(g) forall (w,g)efd x L2

Remark (1.9): Since the measure induced by e on L, is only finitely additive, the process
e is called finitely additive white noise. By the same token the observation process y is
not defined on a'countably additive probability space, but on a so-called quasi cylindrical
probability space. For a detailed account on the white noise model (1.4) we refer to the
survey paper [9] of Kallianpur and Karandikar. We only quote here the following result

from [9]. o R

THEOREM (1.10): Let g : (2, 4) — (R, B) be an integrable random variable and for
T

teT let Q; denote the orthogonal projection of L? onto Hy : = {feL?: [ | f(u) |? du = 0}.
t

Then the conditional expectation Elg | Q:y] exists and has the representation

_ O't(g, Qty’ H) ‘ -
(1.11) Elg | Qiy] = oo, Q. TD) (Bayesformula) W
where ‘ S - «,»-«kv.,,
(1.12) (9, Q1) = [ 9(6) - au(o,)11(de)
with ‘
(1.13) 0(,9) = exp{(Qey, Qut (W) — 3 | Qut(w) ). -

Elg | Q:y] is the optimal estimator of g, with respect to mean square efror, given the
observations Q;y in the model (1.4). "

It should be remarked here that despite its appearance, the quantity Elg | Q:y] is
not the conditional expectation used in countably additive probability theory, but rather

a ‘weak’ random variable on a quasi cylindrical probability space (cf. [9]).
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The term o4(y, Q:y,II) defined in (1.12) is called the unnormalized condltlonal expec-
tation, and is finite for every yeL?. Since o:(y, Q:y,Il) is proportional to E[g | Qty] there
will be no loss of generality if we state various results only for the unnorimalized estimator.

The general estimation problem in the white noise model (1.4) being solved by the |
computation of the conditional expectation (1.11), we now turn to the investigation of its
continuity properties.

2. Continuity. -
As the terminology indicates Elg | @;y| depends on the observed sample paﬂ;h yeL? and

on the probability measure II. We will now show that E[g | Q;y] depends continuously
on y and II. The continuous dependence of the estimator on the observations is usually
referred to as robustness of the estimator (cf. Clark [2], Picard [14].

The follo—x;ving theorem is the fundamental result of this section.

THEOREM (2.1): Let g be a bounded random variable on (Q *A IT) ‘then E[g | Qey] is a
locally Lipschitz- continuous function of y, uniformly in #¢T, i. e.

(2:2) wup | ly | Qul - Blg | Qul < K-y ||

for all y, z is a bounded subset C of L? and some constant K > 0.

We will prove (2.1) by first establishing the corresponding result for the unnormalized -
expectation.

THEOREM (2.3): Under the conditions of Theorem (2.1) we have

(2-4) sup | o4(9, Qu,TT) — 046, Q2. TI) |< K- ly—z].
€

Proof: From (1.12) we obtain

(2:5) | 0t(9, Qey, TI) — 04(g, @42, TT) | < / | 9(w) | - [ g:(y, ) — gs(2,w) | TL{dw).

By applying the inequality -

(2.6) ]e“—eb]$|a—b|-(e“"+eb)
which is valid for all a,beR to (2.5), the right hand side can be bounded by

/ | g(w) | - [(Q:(y — 2), Qe (w)) | [exp{(Qty,Qtﬁ(W)) - = || Q:¢(w) 1%}
(2-7) + ezp{(Qtz, Q:é(w)) — 5 || Q:€(w)) IIZ}]H(dw)
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The triangle inequality now implies that

1 1 1,
(2.8) (Qew, Qué(W)) — 5 | Qe€(@) IP< Sl @y < S I w|?
and from the Cauchy-Schwartz inequality we obtain

I (Qt(y —2),Q46(W)) I<I| Qely — 2) || - | Qeé(w) <l y — = II I E(W) I

Hence we can bound the right-hand side of (2.7) by -

29) vz K@) [ 196) |- &) | ma)
with i
K(59) = esn(E 1y %)+ ol | 2 7).

By assumption (1.3) and the boundedness of g the integral.in (2 8) is ﬁnlte, so that the
boundedness of the set C in L? implies

| 0t(g, @iy, IT) — 04(g, Q+2, I:[)IS K ||y—=z| for all teT
with
@10 Ki=swp (o]} [100) ] ] &) | M) < oo
VE
which completes the proof. O

For the proof of (2.1) we observe that

e

1 -
o¢(1,Quy,T0) [a*(y’ Q:y, l'[) Ut(y, )12, TI)

— {041, Qe 1) — 04(1, Quz,T0)} - Elg | Quy

Elg| Q]-Elg | Q:z] =

so that from (2.3) we have

-

1
| Elg | Qiy] — E[g | Q:2] |<2-K-||y—z=] -

at(la Qtyg H)

—~ -~

(cf. Picard [14]). -

Thus the proof will be complete it we can show that o4(1, Q:y,II) is bounded away
from zero for yeC. To this end we note that (1.3) implies the existence of a constant
M > 0, such that .
6: = TI{|| €w) I< M} > 0.
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Hence the following chain of inequalities is valid
(1, Qu, ) 2 [eap{— |y - I €0) | -3 || €(e) [}T1(dw)
1 - .
> [ eap{—Ko- || €w) || ~3 || €(w) [}T1(dw)
{llé(w)||<M}

Zé-ezp{—Kc-M—%M2}>0 -

with K¢ : =sup,.c || v ||
This establishes the strict positivity of o4(1, @:y,II) and thus completes the proof. 1

Having ‘thus proved the robustness of the estimator with respect to the observed
sample path we now consider the continuity properties of (g, Q:v, II) as a function of II.

For this let Mp(f2) be the set of all finite signed measures gn (Q ‘#). Endowed with
the total variation norm

| v ||zv: = sup Z | v(An) | veMy(02)

M»(Q) is a Banach space (here the supremum is taken over all countable partitions

~ The followmg result now proves the strong continuity of the unnormalized estimator
with respect to the apriori distribution II.

THEOREM (2.11): Let yeL? be fixed and g be a bounded random variable on ({2, 4).
Then o(g, @+y,1T) is Lipschitz-continuous in II, uniformly in ¢, i. e.

~te .

(2.12) iu,lI"(Ut(g, Q:y, 1) — 04(9, Qey, I') |<K K- | T~ T ||gw - -
€ ) *

for some constant K and all probability measures II,II' on ({2, A).

Proof: From ;1eﬁnition (1.12) we obtain ~
| 04(0, Qey, TT) — 04(g, Qe TT') |= | / ) x canl(Qe Qut(w))
| — 5 1 @u€e) I7H01 — )] |
By the boundedness of g and relation (2.8) we can bound the right-hand side by
C-eap( ||y I} [ IT=T0| (do) = eap( Il y P} I -0 iy
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and since this bound is independent of ¢ (2.12) is proved. - O

As a corollary we can now obtain the joint continuity of o:(g, Q:y,IT)-in (y, II). For
this we consider the product space L2 x Mp(2) equipped with the metric

d((y, 10), (2, 10)) : =l y —z || + | T~ T || 7w .

Then the following property follows from Theorems (2.3) and (2.11): -

Corollary (2.13): Let g be a bounded random variable, then the map

(ya H) = at(ga Qty7 H)

is a locally Lipschitz continuous function on the metric space (L? x My(0), d).

Remarks: Analogous robustness properties of estimators in the stc;éhastlc calculus ap-
proach to nonlinear filtering were first formulated by Clark [2] 2nd were recently investi-
gated by Picard [14] -

The results of this section provide an extension of remarks by Kallianpur and/break
Karandikav [9] (Lemma (5.4) regarding the continuity of the nonlinear filter.

A careful investigation of the proofs shows that the theorems will remain valid if
the Euclidean space R™ in the white noise model is replaced by an infinite-dimensional
Hilbert space K. Thus the robustness of the estimator is retained even in a so-called
infinite-dimensional white noise model, as considered by Kallianpur and Karandikar [7].

3. Properties of the nonlinear filter

As mentioned in the introduction the nonlinear filtering problem is encountered when the
random variable g is of the form g = f(X;) for some measurable function f with finite
expectation. Again E[f(X:) | Q:y] is the optimal estlmator in-this case a.nd thus for a
bounded f all results of Section 2 remain valid. : »

Rather than estimating functions of X; one may equivalently obtain the conditional
distribution of X; given the observations, which can be defined as follows.

Definition (3.11):
i) For all BeS

(3.2) T4(B,Qu) : = / I5(Xo(w)) - g:(w, v)TT(dw)

is called the unnormalized conditional distribution of X;. T';(-,Q:y) is a countably
additive measure in M(S) and



(3.3) mummowmraéﬂ@nwa@w

from all f with E | f(X;) |< oo.
ii) The normalized conditional distribution of X; is defined for all B_E:'S by

——

(34) Ft(B,Qty)==m-rt(B,Qty)

Fi(-,Q:y) is a countably additive probability measure S and

men@m=ﬁﬂ@mmgm3.f:

Considering M(S) endowed with the total variation norm we observe the following
robustness property of the unnormalized conditional distribution.

THEOREM (3.6): T';(, Q4y) is locally Lipschitz-continuous, uniformly with respect to .
This is to say that

(3.7) iu'lg | T¢(-, Qey) — Te(+, Qt2) |[rv< K- ||y — 2z ||

for all y, z in a bounded subset C of LZ2.
Proof: Let (An)n>1 C § be a partition of S, then- - - -
Y I T4(An, Qey) — To(An, Q:2) |
n=1 :
0o -
= 1 06(14,(Xe)s Qes TT) — 0414, (X2), Qe2,T0) |-

n=1

Applying (2.3) to g = I4,(X;) we can bound the sum by

—~

5.8) vzl (eonz |y %} +ezplz 12120 3 [ Tan(Xelw) 1) €)1 10(d).

The last sum is now equal to [ || ¢(w) || II(dw), so that (3.8) is independent of the choice
of the partition (4,),>; and also of ¢.



Thus (3.7) holds with K given by (2.10). ' O

Theorem (3.6) entails an important corollary in the special case when the measure
I‘t( Q:y) admits a dens1ty w1th respect to some o-finite measure p on (S, §). For this let
LY(w):={f: (S,8)— J | f(z) | p(dz) < 0o} and denote by | - ||, the norm

on this space.

Then it is well known (cf. Lang [12]) that for a measure Ve.Mb-(S ) Wh1ch admits a
pu-density p we have

v llzv=Ipllu

Thus the proof of the following result follows from Theorem (3.6).

Corollary (3.9) Suppose p is a o-finite measure on (S, §) and tha.t I‘t( Q:y) admits a
density pi(z, Q:y), zeS with respect to u. I

Then the map o
y = pe(, Qey)

from L? into L!(u) is locally Lipschitz continuous.

Remark: Corollary (3.9) is particularly useful when (X;) takes values in a Euclidean
space and the dominating measure u can be taken as Lebesgue measure on this space. This
situation is frequently encountered in the filtering of multidimensional diffusion processes.
But the result also applies to the filtering of Markov processes with countable statespace.
Here one may choose the counting measure as dominating measure. The statement of
(3.9) may then be regarded as a robustness property of the conditional probability. This
problem was previously addressed in the stochastic calculus model of nonlinear filtering
by Clark [2] and Kushner [10].

Finally we will consider the behavior of the filter under a.pproxuna.tlons of the signal
process. e

Let D(T,Rd) be the (Skorohod-) space of all right continuous function on T with
valued in R%,.that have left limits everywhere. This space endowed with the Skorohod
metric p is a Polish space. (cf. Billingsley [1]).

By C(T,R%) we denote the space of continuous.R%-valued functiohs on T, which
becomes a Polish space with the supremum metric.

If z is an element of D or C we denote its value at the point teT by X (¢).

~

We make the following set of assumption (3.10):

i) Foralln > 1 (X{‘)teT'is a Markov process with values in R% and almost all sample
paths are elements of D(T,R¢?)

ii) The Markov process (X;)ser has sample Paths in C(T,R?) with probability one.
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iii) The map from C(T,R¢) into L? defined by .-
z = (he(2())ter

is continuous.

If we denote by P™ and P the probability measures induced by (X7) (r_éspectively (X)) on
D(T, Rd) the following theorem shows the continuity of the filter under weak convergence.

THEOREM (3.11): Suppose conditions (3.10) are satisfied, and the function f : R? — R
is bounded and continuous. Then for all yeL?

o ot (f(X1), @y, II) — 04(f(X3), Quy, IT)
as (X7)-% (X,). L

Proof: Setting -

(@) : = F(o(0) - enp{ | < s halol@)) > =3 | hu(a(w) Pldo}

we observe that h is continuous with P-probability one and
ot(f(X7), Qey, 1) = /D h(z)P™(dz).

Now if P* — P (weak convergence) then

/ h(z)P™(dz) — / h(z)P(dz) = oo(F(X3), Qsv, TI)
D : D e e --- B

W

by Theorem 5.8 of [1] and thus completing the proof. ' m|

In the stochastic calculus model Picard [14] proved a result similar to (3.11) under
slightly stronger assumptions on the sequence of signal processes (X7*).

Before indicating some applications of the last result we mention that the results of
this section will apply to the problems of nonlinear prediction and smoothing as well with
minor notational changes.

—~

4. Applications :

We now consider the so-called discrete approximation problem which presents an effec-
tive way to approximate the optimal filter for a diffusion signal process. For illustration
purposes we will consider only one-dimensional diffusion processes, but point out that the
technique is easily carried over to higher dimensions.
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Suppose that the process (X;) is given by the unique solution of the stochastlc differ-
ential equation

dX(t) = b(t, X(£))dt + o(t, X(t))dW,
(4.1) X(0) =

where b(¢,z) and o(t, z) are real valued, measurable functions; (W) is a one-dimensional
standard Wiener process and Xo a random variable independent of {Ws). To formulate
the next result we need to introduce the following additional notatiom. ’

Let C2(T xR): ={f: TxR — R: f is jointly continuous and has continuous
derivatives up to order 1 in ¢ and up to order 2 in z} and § be the set of functions g such
that for some constants K and C

(4.2) | g(t,z) |< K-exp{C- |z |} for all teT,zeR

Further denote by Xo the space of all Lipschitz continuous funcﬁons from T to R.

We can now state the following theorem which was first proved in [6].

THEOREM (4.3): Let (X;) be given as the solutlon to (4.1). Assume that with a(t,z) =

o2(t,z) we have that

7 0?2 o

—a, Wa,, b, %b and h
are bounded and Lipschitz continuous functions. Further suppose that a(t,z) > 0 and
that X, admits a Lebesgue density ¢e§. Then the unnormalized conditional distribution
T'(-,Q:y) of the white noise model admits a Lebesgue density p:(z,Q:y), which is the
unique solution of the partial differential equation

9 92 d
ult,2) = a(t,z) gult, :z:)+[2 35t:2) — b(_t z)] u(t z)
(4-4) + [Wa(t,z) b(t D)+ <yihe(z) > —5 I ha(a) 12 ult, 2
u(oa x) = ¢($)

in the class C1'2(T x R) N g for all yeXo.
Remark:

In the light of (3.9) the restriction of theorem (4.3) to observation functions in ¥o provides
no principal difficulty, since we can approximate an arbitrary element of L2 by functions
in ¥o. The denseness of ¥ in L? and the continuity of the density thus.make it possible
to compute p:(z, Q:y) for all yeL?.

It is however not this approximation that we want to discuss here. Rather we want to
point out that even for Lipschitz continuous observations y the computation of p:(z, Q:y)
by solving the PDE (4.4) is in all, but the very simple cases, a difficult task. To overcome
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this difficulty one possibility is to apply available numerical methods for the solutlon of
parabolic PDE’s, a route which yet has to be explored. o

We want to follow a different approach to this problem, one that }ima‘.é"'alréa;dy been
suggested in the stochastic calculus model by Clark [2], Kushner [10] and diMasi and
Runggaldier [3].

This so-called discrete approximation method replaces the original filtering problem
with one that is simpler in its solution and uses this as an approx1ma.t10n to the original
problem.

The first step is to approximate the signal process (X:) by a suitable sequence of
simple processes. We follow here the ideas of [3] and define Ry : = {2¢R: z==zo+n-h,n
integer } to be the grid of mesh width 2 > O centered at zyeR.

Set i
A (t,z) = bF(t,2)/h + O (t, ) /2 B2 .
(4.5) : AR (t,z) = b (t,2) /b + 62 (t,z) /2 - 2 -
M(t,z) = — | b(t,2) | /h—o%(t,z) /B>
with b+ = maz{b,0} and b~ = maz{—b,0}. Then we can define a continuous time birth

and death process as follows.

Definition (4.6): Let (X[*) be an Rj-valued Markov process such that II{X% = 20} = 1
and the transition probabilities are given by .

t+-¢e
I{X},=z+h|X}=z}= /t A'j_(_u,m)du

~i

i+
M{X", =z—h|XF=2z}= / S
t
Z I{X} ., =z+n-h|X}=2z}=o0(e)
n#—nle;zb,-lrl
t+e
I{xXt, =z|Xt=2z}=1 —I—/ AP (u, 2)du — ofe).
¢

The Markov process thus defined is time inhomogeneous process Wit}tl discrete state space
and almost all paths in D(T,R). ~

If we assume that the initial condition in (4.1) is degenerate, i. e. Xo = zo W. p. 1,
thenash — 0 (X*) i>(X) in D(T,R), cf. [3]. Since (X}') is Rp-valued we can solve the
nonlinear filtering problem by finding the unnormalized conditional probabilities

(4.7) (2, Q) = oe(I(zy(X7), Quy)

12



for all zeRy. These can now be found by solving a system of linear ordinary differential
equations. : T

THEOREM (4.8): Under the same condition as (4.3) the unnormalized ﬁlfering distribu-
tion

(7P (2, Q1Y) zer,, is the unique solution (within the class of summable sequences) of the
system of equations

(49) %u(t, z) = At (t,z — k) - u(t,z — B) + A*(t,2) - u(t,z) + A}:‘Et‘,z +h)-ult,z + k)
4.9

H{<wehi(z) > —3 | he(@) [} - ul,2)

- u(0,z) = Itz 3 (z).

The proof of this theorem follows from a more general result proved in [4].

Remark: The filtering problem for the signal process (X}) thus leads only to ordinary
differential equation for the conditional probabilities. Although we cannot use m;(z, Q:y)
directly as an approximation to p:(z,@:y), Theorem (3.11) provides the link between the
two filtering problems. ‘o

THEOREM (2.1): Suppose that the function k;(z) satisfies the condition (3.10) and that
f is bounded. Then with

o(f(X1),Qu) = ) f(@)7i(z, Quv)

zeRy,
and -
o:(f(X1), Qiy) = / f(z) - pi(z, Qey)dz n
(4.11) oi(f(XF), Qey) — o:(f(Xe), Qey)
as h — 0.

The proof is a straightforward application of (3.11) to the approximating sequence
(XP).

Discrete state approximations for multi-dimensional diffusions é.re also discussed in
[10] and [11]. For these cases the results of this section still remain valid with minor
notational changes. -
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