Covering Problems for Brownian Motion on Sphere.s
by

Peter Matthews
Purdue University

Technical Report# 86-1 "

Department of Statistics
Purdue University

February 1986



Covering Problems for Brownian Motion on Spheres -~

By Peter Matthews
Purdue University

Summary .

Bounds are given on the mean time taken by a strong Markov process to visit all of
a finite collection of subsets of its state space. These are specialized to Brownian motion
on the surface of the unit sphere £, in RP. This leads to bounds on the mean time taken
by this Brownian motion to come within a distance € of every point on the sphere and
bounds on the mean time taken to come within a distance € of every point or its opposite.
The second calculation is related to the Grand Tour, a technique of multivariate data
analysis that involves a search of low dimensional projections. In both cases, the bounds
are asymptotically tight as € — 0 on Y, for p > 4. )

-

1. Introduction R

The Grand Tour [Asimov (1985)] is a technique of data analysis that involves visual
examination of a sequence of low, typically two, dimensional projections of a p—dimensional
data set. Here a one dimensional Grand Tour, a sequence of one dimensional projections,
is considered. One technique to construct such a Grand Tour is to generate a random
walk on the surface of the unit sphere X, in R? and to look at the projections onto the
lines spanned by the points visited by the random walk. If the random walk takes small
steps, then the projections of the sequence will be close together, a desirable quality for
visual inspection. Of interest is the time taken until such a sequence of projections has
come within an angle € of every possible projection. This is the time taken until the points
visited by the random walk and their reflections in the origin are within a geodesic distance
€ of every point on the sphere, or the time taken until caps of geodesic radius € about these
points cover ¥,. Call this the two cap problem. There is also the one cap problem; the
time taken by caps of geodesic radius € about the points visited (and not their reflections)
to cover X,. ST

Now switch attention to Brownian motion on Y.p. Covering times for Brownian mo-
tion are of interest in their own right and bounds on their expected covering times are
asymptotically bounds on the expected covering times for random walks as the step sizes
of the random walks shrink toward zero. Let Cj(e,p) be the first time a Brownian path
on X, has come within a distance-¢ of all points of £,,-and define C3 (e, p) analogously for
the two cap problem. Since the sphere is separable both are measurable. The essence of
this article is that EC;(e,p) and EC3(¢,p) can be bounded above and below by quantities
that involve only the expected hitting times of caps and the number of caps of various
sizes needed to cover ¥,. For Brownian motion with scale parameter A on £,,p > 4 the
bounds are given herein and shown to be asymptotically tight as ¢ — 0. For the two cap
problem the results are
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For the one cap problem _ v
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=4Y" —_ > 4.
ECi(e,p) = 4 X p—3 T(2) 3 1+0 log(e-T) forp>4

For p = 3, for the two and one cap problems, respectively,
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all as € — 0. The bounds in the one cap problem are always twice those in the two cap
problem. For brevity only the computations in the two cap problem will be presented.

To obtain these bounds, it is necessary to be able to calculate the expected hitting
times for small caps on £,. This is why Brownian motion, rather than random walks,
is considered. If expected hitting times could be calculated for random walks, the meth-
ods of this paper would apply equally well to covering problems for random walks. The
techniques used here would also apply in the-case of two dimensional projections, a more
interesting situation. In the two dimensional case interest would be in a random walk or
Brownian motion on a Grassmann manifold. Again what is lacking is a way to calculate
expected hitting times, even for Brownian motion. A partial differential equation rather
than ordinary one must be solved. In a practical sense, the answer is already known. The
space of possible projections is so big that even the most efficient Grand Tour would take
a very long time See Huber (1985) for discussion.

The plan for the remainder is as follows. First some general bounds on the expected
time taken by a Markov process to visit a fitite collection of subsets of its state space are
given. Caps on spheres and Brownian motion on spheres are then discussed briefly and
the expected hitting times for Brownian motion-are calculated. These-are all put together
to give the results stated above. :

This work is a part of the author’s doctoral dissertation. He would like to thank his
adviser, Professor Persi Diaconis, for a great deal of insight and assistance.

< limsup

2. General Bounds on Times to Hit Collections of Subsets ,

This section gives upper and lower bounds on the mean time taken by a strong Markov
process to visit all of a finite collection of subsets of its state space.. Let {X(t)}, t>0 be
a time-homogeneous strong Markov process with state space A. Let {A;,A4z2,...,An}
be a set of N closed subsets of A. Further let X(0) be the initial position of the process
and let T stand for the first time, starting from X(0), that the process has visited all
of {A1,As,...,AN}. Let T(a,A) denote the random time taken by {X(t)} to hit
Ae {A;,A,,...,Ax} from a € A. Define

Uy

(2.1) A=X(0) U = 4
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min inf
2.2 = ET(a, A;
(2.20) # i=1,2,...,N a€A; (2, 4;)
and
(2.2b) pp = X S pTg, 4.

1=1,2,...,N a€A; -

Thus p_ and p, are the minimum and maximum expected times taken to hit one of

{Ay,As,..., AN} from another or X (0).
For a lower bound on ET the following assumption will be needed.

Assumption 2.3. T(X(0), 41),...,T(X(0), An) are distinct and nonzero with proba-
bility one.

For Brownian motion on spheres, this assumption is implied by - -

-

A; N Aj=0 for ¢#5 - =~ -

and U
X(O) ¢N.',-‘="1",2,‘...,NA’'

The route to get bounds on ET is the introduction of auxilliary randomization. See
Aldous (1983b) for a different approach . Let (f2, F, P) be the probability space on which
{X(t)} is defined. Let T be the set of all N! permutations of (1,2,...,N), G the set of all
subsets of ¥, and U the uniform distribution on . Let ¢ = (01,02,...,0n) be a random
permutation from (Z,G,U). Form the product space (1 X X, F x G, P x U). Let F; be
the sub-sigma field of 1 x ¥ generated by ¢ and {X(s),0 < s <t}. Define S; to be the
first time {X(t)} visits A, . Let Sz be the first time {X ()} has visited both A,, and A,,.
In general let S; be the first time {X(¢)} has visited each of Ay, ,...,As;. For notational
convenience let Sp = 0 and R; = S; — S;_1. R; is-the additional.time taken to visit A,
after time S;_;. Clearly Sy = T. The following propositions are easy consequences of
these definitions.

Proposition 2.4.

P(R:#0)< -

and assuming (2.3) -

jury

P(R,; #* 0) =

?-
Proof. For the second assertion, let 7 = (71, 72,...,7N) index-the permutations of
(1,2,...,N). For each 7, let II denote the event -
0 < T(X(0),Axr,) < T(X(0),Ar,) < ... <T(X(0), Ary)-

By Assumption 2.3 the union over all permutations of these events is the entire sample
space. Conditional on II, the probability that R; # O is the probability that o; occurs
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further to the right in « than 01,...,0;—;. This has conditional probability 1 /1, hence

unconditional probability 1/¢ as well. An identical but slightly messier argument proves

the first assertion. n
Proposition 2.5. The event {S; < t} is in F; for all ¢, i.e., S; is a stopping time for

t=1,2,..., N with respect to the family of sigma fields {F}}. .
Proof Stralghtforwa.rd |
Let F* be the o—field generated by the permutation o and {X (_) 0<t<S; 1.
Proposition 2.6. {R; # 0} € F~
Proof.

{B, 0} = U [{Ao; = A;} N {{X(t)} visits A; before time S;}].

Jj=1

Each of the events above is in Fi~1, . L ]

Now the theorem of this section can be stated. -
Theorem 2.7.

N
ETSM+Z'{

R e 1:=1

and assuming (2.3)
1
i=1

Proof. If either u_ or g, is infinite, it is easy to see that the corresponding bound
holds. Therefore assume both are finite. Write

N N
ET=ZE(R,-) = Z_E(E(_R,-JF"*I)) .

(2-8) . E(E(R:|F*™")) = E(T(X(S:-1), Aa.)I{R #0})

by the strong Markov property, time homogenelty and Proposﬂ:lon (2.6). On the set
{R: # 0}, X(S;_1) € A,,. Thus by the definitions of u}. and p_,

(2.9) Lipizoyp— < E(RilF'™Y) < Lipioyps-

So by Proposition 2.4, taking expectation throughout this inequality and summing over
from 1 to N yields the result. |

Similar arguments can be used to get bounds on the moment generating function of
T. See Matthews (1985) for an example of this in the context of random walks on finite
groups. Better bounds can be obtained with more work. This involves considering the
distance between A,, and X(S;_1). See Matthews (1985) for an example of this. It is
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possible that this kind of consideration could lead to tight bounds for Brewnian motion
on R3, C o

3. Caps on Spheres

Here the number of caps of radius ¢ needed to cover a sphere and the number of
disjoint caps of radius ¢ that can be packed on a sphere are considered. Recall that a -
cap of radius € on ¥, about a particular point z is the set of all pomt of ¥, within a
geodesic distance ¢ of z. The first problem is related to coding theory, and there is a
substantial literature on the subject. See Sloane (1982) for results and references. The
first problem has not been investigated as much; Rogers (1963) is one reference. Here only
give crude answers to these problems will be offered. As is apparent from the last section,
the mean time taken to visit a set of caps will depend on the number of caps only through
its logarithm._ This makes the crude answers to the sphere covering and packing problems
given here sufficient to obtain tight results for the problem of interest here, the mean time
taken by Brownian motion to become dense on the surface of a sphere The following
results are all that is needed. -

Proposition-3.1. There exist positive constants (depending 6nly on p) U and L such
that there are N(p) caps of radius p that cover £, and M(p, 9) d1s301nt caps of radius p on
3p with points in different caps a distance at lea.st 20 apart such that

N(p) <Up'? and L(p+6)'"* < M(p,0).

Proof. With the area of the surface of £, normalized to one, the volume of a cap of
radius p is
S sin?~2(6)do
fc:r sin?~%(8)do

This is O(p?~') as p — 0. Thus at most O((£)~?) disjoint caps of radius £ can be placed
on X,. With any placement of caps of this radius such that there is no room for any more,
concentric caps of radius p will cover £,. Therefore £, can be covered by O(p'~?) caps
of radius p. Similarly, place as many disjoint caps of radius p + § as possible on ¥,. Since
concentric caps of twice the radius will cover I, there must be at least O(2(p + 8)!~?) of
these caps, or else their total volume will be less than 1. Taking concentric caps of radius
p gives the same number of caps with the property that no two points in distinct caps are
closer than a distance 26 apart. |

An identical result is needed for the two cap problem. For future convenience define a
cappair of radius p to be a pair of caps of radius p whose centers lie on a line through the
origin. If opposite points of the sphere are identified, then a cappair is a ball of radius p
in the Grassman manifold of one—dimensional subspaces of RP. Instead of using cappairs,
Brownian motion on this manifold could be considered. However, cappairs seem intuitively
simpler and therefore will be used here. Consider the problems of covermg and packing
¥, with cappairs.

Proposition 3.2. There exist positive constants (depending only on p) u and ! such
that there are N(p) cappairs of radius p that cover X, and M(p,0) disjoint cappairs of
radius p with points in different cappairs a distance at least 20 apart on ¥, such that

N(p) <up'™? and I(p+0)'"? < M(p,0).
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Proof. The proof is exactly the same as the proof of Proposition (3.1). ‘Note that
the constants in this proposition will be exactly half as large as those -of :the previous
proposition. ]

4. Brownian Motion on Spheres

Brownian motion on a X,, as a limit of random walks, was studied by Roberts and
Ursell (1960). See Watson (1983) for a more modern description. Here the full diffusion is
not considered; only the cosine of distance of the process from a particular point, say the
North Pole, must be considered. This itself is a diffusion on [-1,1], with drift

-z
(4.1) _ ule) = =2
and inﬁnitesir‘nal variance
A(1 - z?) .
2 = meeee—— L
(4.2) | o*(z) = o oo

Suppressing the dependence on p, call this diffusion W) (t). Karlin and Taylor (1981, p.338)
discusses this diffusion briefly.

A is an arbitrary parameter like the infinftesimal variance of Brownian motion on the
line. Consider a symmetric random walk on the surface of a sphere and let ¢ denote a
random variable whose distribution is the same as the step lengths of the random walk. If
time and space are rescaled as usual in convergence of random walks to Brownian motion,
the limiting diffusion obtained will be Brownian motion with scale parameter A = E¢2.
Thus, intuitively, for small A, W, (t) moves about as fast as a random Wa.lk taking steps of
size \/_

Given u(z) and o?(z), it is an elementary exercise to calculate the expected time taken
by Brownian motion to hit a cap or a cappair. Let T(z,r) be the first time W) (t), started
from z, leaves the interval (—r,r) for |z| < |r| < 1. Then T'(z,r) has the same distribution
as the first time Brownian motion on X, starting from a point a'distance cos™ (z) from a
chosen point hits a cappair of radius cos~1(r) with one cap centered at the chosen point.
A similar procedure or a limiting argument equates a hitting time for Wy (t) and the time
taken by Brownian motion on X, to hit a single cap.

Following Karlin and Taylor, ET'(z,r), f(z,r) for short; satisfies

__ =z , AL :1:) "
(4.3) —1=—=f&)+ 53— 20— 1) ——=f"(z,7)

subject to f(—r,r) = f(r,r) = 0 with / denoting differentiation with Tespect to z. For the
two cap problem, the values of f(0,r) and f(z(r),r), where z(r) is slightly smaller than r,
will be needed. These are the maximal and minimal hitting times to be used in Theorem
2.7. Solving (4.3) is a standard exercise; see Karlin and Taylor, p.191, for example. The
derivative of the scale function, s(z) of (3.5) of Karlin and Taylor, p.194 is

s(z) = (1 —22)~ (57,
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The density m(z) of the speed measure is o V,V

(p-1)(1 27"
A

Lengthy but elementary calculations yield the following, valid as r — 1.

m(z) =

—3

2T I‘P'g—l 1 = piiy
A(p\i—3) 1(“(12-’))(1—r2) (1+0(1-r%)2)- p2‘47

—

(4.4) f(0,7) =

4 1 N

Forp>4 .

(4.5a) F(a(r),r) = ,\éfrs) I‘I(‘f(”zj)l) ( - _1,2> = (1 +0 (@f_—ﬁ)»

where z(r) = \/1 — (1 —r2)log? v 1= r2, - -

Forp=3

! log(@ (") + 0)

ym

(4.5b) f(z(r),r) =

where z(r) = (1 — (1 — r?)a?(r))3,

and a®(r) is arbitrary subject to T _1 5 > a’(r) > 1.
An arbitrary a%(r) is included for p = 3 since the bounds on the mean time taken by
Brownian motion to become dense in Ss are not tight in this case. By examining all
possible choices of a?(r) it can be seen that the bounds cannot be improved without a
more detailed analysis. ce : . .

For the one cap problem, expected times taken to hit one cap could also be calculated.
Let g(z,r) denote the time by W) (t) to hit a cap of radius cos™!(r) about a chosen point
from a point a distance cos~!(z) from the chosen point. The same calculations yield, as
r—1,

41 = b
S ()% o 1o




where z(r) = \/1 —(1—r2) log? \/1—_—73 | . -

and for p=3
o(z(r),7) = 5 log(a?(r))% +0(1)

where z(r) = (1 - (1 — 7'2)0'2(?'))%,

and again T2 a®(r) > 1. -

5. Expected Covering Times

In this section upper and lower bounds on the mean time taken by W) (t) to come
within a geodesic distance € of all points of L,, with opposite points identified (the two
cap problem), are calculated. Result will only be stated for the one cap problem and can
be obtained in the same manner. The bounds are quite messy and therefore will be given
only as € — 0. Since the bounds will be tight a.symptotlcally am € — 0 for p > 4 and not
tight for p = 3, the two cases will be considered separately.

Recall that EC; (e, p) is the expected time taken by Brownian- motion to come within
€ of all points of ¥, in the two cap problem.

Theorem 5.1. SRR

ECs(e,p) = VTPl L(25) log(™!) <1 +0 <M>) for p > 4.

Ap—38T(§) e3 log(e—1

Similarly, EC/ (e, p) is the expected time taken by Brownian motion to come within € of
all points of ¥, in the one cap problem.
Theorem 5.2.

803 (0] = 4¥E 2= 1T(2H) log(e™) (Ho(w» o 9> 4.

Ap—3 1‘(’2’)‘ ep—3 log(e—_‘ll

Proof of Theorem 5.1. First consider a lower bound on EC;(€,p). By Proposition 3.2
there is a set of at least I(e 4 elog(e 1)) ~(?—1) disjoint cappairs of radius € such that two
points in different cappairs are a distance at least 2¢ log(e~!) apart. Choose X(0) without
loss of generality to be at the center of one of the caps, and remove this cappair from the
set under consideration. The expected time taken to hit the remaining cappairs is a lower
bound on ECj, (€, p), since if W) (f) has not visited one of the remaining pairs, then it has
not been within a distance € of either of the two centers, thus it has not been within € of
all points or their opposites. Now g_, the minimum expected time to h1t a cappalr from
X(0) or from inside another chosen cappair, is given by

f(cos{e(1 + 2log(e 1)), cos(e)).

v

~

1
Let z(r) = (1 — (1 — r?)log® V1 — r%) * . For € reasonably small,

cos(e(1 + 2log(e™ ') < z(cos(e)),



f(cos(e(1 + 2log(e™1)), cos(e)) > f(x(COS(E)),cos(e))_‘ .
J(z(cos(€)), cos(€)) is given by (4.5a) as

SO

=3

’\(3’{7?3) rl(f(”zj)l) (1 - c<1>52(f-1)> ? (1 o (log(l —-1(:052(5))‘).‘> as e 0,

whichis 2T L) 1 (1+0 (=) )-

Alp—3) T(§) 2 et

Everything needed for Theorem 2.7 is now available. The time taken by Wy(¢) to
come within € of all points of ¥, or their opposites is larger than the time taken to visit
the P

I(e + elog(e~1))~(p—1) S

-

chosen cappairs. Using the elementary fact that =N, =‘log(N_)-—i_—-O(1), Theorem 2.7
says

ECy(e,p) > Azﬁ L(E5) 1 <1+;)(—1—>) tog (I (e + elog(e™) ")

(p—3) T'(§) e—3 log(e—1)
which is 1
V7 p—1T(5=) log(e™?1) log log(e™?1)
2 _ >
s T o (O e for p > 4
as asserted.

Next consider an upper bound on ECs(€,p). By Proposition 3.2 there is a set of at
most

v

¢ \—(p—1) - o . .

cappairs of radius ¢/ log(e~!) that cover I,. Place concentric cappairs of radius

about the center of each of these cappairs. If W) (t) visits one of these large cappairs, then
it simultaneously comes within € of every point, or its opposite, in the smaller concentric
cappair. Thus if Wy (¢) has visited each of the cappairs, then it has been within ¢ of all
points of ¥, or their opposites. To use Theorem 2.7 ., is needed. The maximum expected
time taken to hit a cappair of radius 6 is f(0,cos(6)), which is found from (4.4) to be

il F(ﬁz__l) = 2(5\\ 3
o5 ar (ewm) | (rot-es@)?).
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Thus EC3(e, p) is less than _ M

2vT_T(2f)
Alp—3) T(%)

2y T(E) 1, 1 loglog(é?i)
X(p—3) T(2) e3P Dleele )(HO( log(e~1) )>

as required. |
Theorem 5.2 is proven the same way.

Now consider the case p = 3.
Theorem-5.3. On X3,

(1 - ccl)s2(6) ) = (140 (1- cos?(5)) ) (108(6) + O(1)).

This is

2 < liminf E]Cz'z_(e,_p_) < limsup A—Eczli(ﬂ.-g 8. .
log“(e—1) log“(e1) s '
Theorem 5.4. On X3,
4§limianE—Cz’}—(—’—p—)‘<l Mgle.
log*(e~1) log®(e~1)

Proof of Theorem 5.3. For an upper bound the same argument as the case p > 4 is
used. Concentric cappairs of radii ¢/ log(e~!) and e—¢/ log(e~!), Theorem 2.7, Proposition
3.2, and (4.4) give the result.

The best lower bound is obtained by choosing disjoint cappairs of radius €+ \/_ /2 and
concentric cappairs of radius €. In (4.4) let r = cos(€) and z(r) = cos(e + /€), so a(r) =
sin(e — 1/€)/sin(€¢). Thus the lower bound can be shown to be

2 lo L log [ — v - -
X 08 Ve g (e++62%)° : e
which is the assertion of the theorem. -

6. Discussion

An obvious question is: when will the bounds obta.lned by this method be tight?
Intuitively, they will be tight whén p_ and p are close together; when the expected time
taken by the process to hit a small cap is about the same whether the process starts quite
near the cap or far from the cap. A process is rapidly mixing, in the sense of Aldous
(1983a), if its distribution is close to its stationary distribution (assiming one exists) in
a short time. For Markov chains, a short time is a number of transitions that is small
compared to the size of the state space. For a continuous process, the analogous idea is
that the process is rapidly mixing if it is close to its stationary distribution before if has
come close to a non—negligible portion of its state space. Intuitively, the bounds given in
Section 2 will be tighter for more rapidly mixing processes. Processes in high dimensions
naturally tend to be rapidly mixing. Brownian motion on X, for p > 4, is unlikely to hit
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a small cap in a short period of time, even if it starts fairly near the cap. There are too
many directions for it to wander off in. On X3, Brownian motion is less rapldly mlxmg,
leading to bounds that are not asymptotically tight.

It may be possible to give tight bounds for the expected time ta.ken by Brownian
motion to become dense on X3, with extra effort. This paragraph discusses what the
correct answer probably is. Returning attention to (2.8) and (2.9), it is clear that better .
bounds could be obtained by considering the distance between X(S;—i) and A,;. This is
not an easy problem, but the technique was successful [Matthews (1985)] in getting the
asymptotic distribution of the time taken by certain random walks on Z3' to visit every
element of the group. The problem on S3 boils down to the following: In the proof of
Theorem 2.3 consider the expected time taken by Brownian motion to visit a set of M
small disjoint cappairs. For small §, how are the last M cappairs situated on S3? If they
are in a few climps, then the lower bound given would be hard to improve. However, if
the are fairly spread out on the sphere, the with high probability X(S;_1) and A, will
be fairly far apart, allowing u_ to be replaced by a larger number. . Intuitively, this is
probably the case. However a proof is hard to come by. Thus, there-is a good suspicion
that in the case:of Brownian motion on Sz, the upper bound s the correct asymptotic
expected covering time, and it is the lower bound that needs to be improved.
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