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T ABSTRACT

The problem of selecting exponential populations better than a control ﬁri_c%er a simple ordering
prior is investigated. Based on some prior information, it is approprigﬁe t‘;o set lower bounds for
the concerned parameters. The information about the lower bounds of i;ile concerned parameters
is taken into account to derive isotonic selectiibhﬂi'ules for the control known case. An isotonic
selection rule for the control unknown case is also proposed. A criterion is proposed to evaluate
the performance of the selection rules. Simulation comparisons among the performances qf several

selection rules are carried out. The simulation results indicate that for the control known case, the

new proposed selection rules perform better than some earlier existing selection rules.



1. INTRODUCTION -

The problem of selecting populations better than a control under a simple or;i-efing prior has
been studied by Gupta and Yang (1984) for the normal means problem, by Gupta and Huang(1983)
for the binomial parameters problem and by Gupta and Leu (1986) for the cése of two-parameter
exponential populations. Huang (1984) has considered the problem in z: ﬁonparérhetric setup.
Recently, Liang and Panchapakesan (1987) has studied the problem via a Bayesian approach. In
the present paper, under a simple ordering prior, we study the problem of selecting populations
better than a control with the underlying populations having exponential d,i§1?_ributions.

Let y,... ,7rk__bé k independent populations and population x; hag—dens_ihtiy function f(z/0;) =
exp{—(z ~ 0;)} (o, ..)(2), where I4(-) denotes the indicator function of th’ej sei; A. The parameters
9;,¢ =1,...,k, are unknown; however, it is known that 8; < 0; < ... < 0. This is typical, for
example, in experiments involving different dose levels of a drug, where the treatment effects will
have a known ordering. The k populations are compared with a control «,, which is characterized

by the associated density function f(z|0,). Population n; is said to be good if 8; > 0, and to be

bad otherwise. Our goal is to select all good populations.

Let § = (01,...,0%) and let Q = {§|61 < 0; < < 0k} be _t‘}ie parameter space. Let
S;={i,e+1,...,k}fori=1,...,k, and let Sg;1 = ¢. S; can be vie\;ved a;ar: ;cgibn. If action
Si(¢ = 1,...,k) is taken, it means that populations =;,...,7) are selected as good populations.
Action Sgy1 con-'esponds to excluding all the k& populations as bad populations. Since §;,¢=1,...,k
are ordered according to a simple orci;ring prior, it is therefo;'e appropriate to restrict to the action

space A= {51,52,. . ,Skask+l}'

Definition 1.1

a) A selection rule § is isotonic if it selects population 7; and if 6; < 6;, then it also selects popu-

lation ;.
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b) A selection rule § satisfies the P*-condition if infyeq Pp{CS|6} > P* whereP* € (0,1) is a
prespecified value and where CS denotes the event of the selection of any nontrivial subset which

contains all good populations.

We will restrict our attention to isotonic slection rules § which satisfy the P*-condition.

Note that the parameter #; can be viewed as the guaranteed lifetime. Based on some prior

information, we may be able to set a lower bound for §; (for example, 6; > 0). Therefore, it

is assumed thaf 0; > a; for each ¢ = 1,...,k — 1, where the constants a;, 1=1,...,k—1, are

known and satisfy that a; < ag < +-+ < ag—1. In Section 2, we deal Withfﬂ_i:e control parameter
<

0, known case. The information of the lower bounds ¢ = (a4, ... ,'ak_rl) is taken into account to

derive isotonic selection rules. Some properties associated with the selection rules are discussed.
An isotonic selection rule for the 8, unknown case is proposed in Section 3. Simulation comparisons

between our selection rules and some earlier existing isotonic selection rules are carried out and

reported in Section 4.

2. ISOTONIC SELECTION RULES FOR 0, KNOWN CASE

Let X;;, 7 = 1,...,n, be a sample from population #;. Define ¥; = min(X;1,...,Xin), and

A

Vi = min(Yy,,...,Y;) for each m = 1,...,4; ¢ = 1,...,k. When i = k, for simpiiéity, Yk is
denoted by ¥,,. Also, write ¥ = (¥1,...,Y%).

For given constants b; < b <+-- < bg_1 <0, define k k-tuple‘v'ectors by,... ,bx, as follows:

-

5 =(0,...,...,0),

sz(bl,O,...,...,O),

Q,‘ = (bl,...,b.,;_]_,o,...,O),

by = (b1,b2,...,bk—1,0).
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The following theorem is useful for deriving isotonic selection rules for 4, known case.

Theorem 2.1.
a) For the given constants by < by <-++ < bg_1 < 0 and P* € (0,1), there exist positive constants

d; =d;(b1,...,bk-1),2=1,...,k, such that -

(2.1) Pb.{f’m > dpy for somem=1,...¢} = P*

foreachi=1,...,k. Also,0< dy <dy < --+ < dj < o0.
b) Let the constants d;(bs,...,bx—1), ¢ = 1,...k, be implicitly defined in (2.1). Then, for each

1=2,...,k, di(by,... ,bk-—l) is increasing in by,...,b;_1, and independent of b;,...,bx_1. That is,

the increment of b; has influence only on d;.4,...,ds. o

Proof: See the Appendix.

<.

Derivation of Isotohfc Selection Rules

It is assumed that based on some prior information, we are able to set a lower bound for 4;,
say 0; > a;, for each 1 =1,...,k — 1. Here, the constants ay,...,a;_; are known and satisfy that
a; <az L:-- < ag_q. If a; > 0, for some ¢, then by the simple ordering prior, we are sure that
populations m;, ;4 1,...,7 are good populations. Thus, without loéé of generality, we assume that

ax_1 < 6,. For the known control parameter 6, and the constants g = (al,_:.d.:,_&ak@:l) , define &

k-tuple vectors 8},,1=1,...,k, as follows:

80 = (a1 —0,,...,ai_1 —0,,0,...,0),

—~ -~

Q;;O = (a'l - 0030'2 h 00, vy Qp—1 — 90,0).

For a given P* € (0,1), from Theorem 2.1, there exist constants 0 < d; < ds <+ < di < 00
such that for each i =1,... k,
(2.2) Py {V, > dp, for some m=1,...,i} = P*.

3



Let A(Y) = {i|¥; > 0, + d;}. We propose a selection rule 61,0 as follows: | -

Sminagy T AX)# 4,
(2.3) sl,g(if)={ Ay HAR)

Sk+1 otherwise. -

By the fact that d; < d3 < --- < dj, we see that 51,9 is an isotonic selaction rule:

Probability of A Correct Selection

For the given lower bounds g, let

01(e) ={8 € QI6, < 01},

Qu(a) ={0e€Q8i_1<0,<8;,a;<8;,5=1,...,i 21}, i=2,...k,
and Qxy1(e) ={0€ Q|0 < 0,, a; <0;, 5=1,...,k—1}.

Let Q(g) = UF10;(a). Then Q(g) is a restrictedrﬁé.rameter space, and 2(a¢) =Q whena; =---=

ar_1 = —oo. Note that

(2.4) inf Py{CSlhig}= min inf Py{CS|61g}.
. a ~ ~ ~ ~

ge 1<i<k gei(g)

For § = (61,...,0k) € Qu(a), P{CS|61,4} = P{¥ m > 00+ dy, for some m = 1,...7} which is

increasing in 8, for each 7 =1,...,k. Hence, e .- oo
(2.5) W20 Py{C5|61,} = Py; {¥m 2 dpn for some m=1,...,i} = P*,

where the second equality is obtained from (2.2). Then, by (2.4) and (2.5), we have

infgen(g:) Pg{CSlS]_,g,} = P*. -

Computation of (dq,...,.d;) Values

First, from (2.2), d; is chosen such that

(2.6) , - Py (V1 2 di} = P".

4



while the left-hand-side of (2.6) equals to exp(—knd), therefore, ,V
(2.7) dy = (kn)"lenP*".

From Lemma A.2, the constants d;, ¢ = 2,...,k, are determined so that (2.8) holds for each

1=2,...,k: -

—

(2.8) Pf,?o{?m <dpforallm=1,...,i—1, and ¥; > d;} =[1—-exp (n(a,-_l - 00))]P*.
Note that- -

Pys {¥m ;_dm forallm=1,...,i~1,and ¥; >d;} .
-
= Py (P <dm forallm=1,...,i~ 1, and ¥; 2@_}__ g
(2.9) = Ppy, {Frmiie1 < dm for all m=1,...,i = 1} Py {Fi > di}
= Pgs {Vmii—1 < d for all m= 1 ,i—1}exp (— n(k — i+ 1)d;)

=ciexp(—n(k—i+1)) (say).

In (2.9), the first equality is obtained due to the fact that 0 < d; < --- < dy < oo and by the
definition of f’m:_.,- and Y;. The second equality is obtained based on the independence property
between (IA’m:,:_l, m=1,...,4—1) and Y;. Note that the probability ¢; = Py: {Ym:i_l < d, for

al m=1,...,7 — 1} is independent of the value d;. Thus,
(2.10)  di=I[n(k—i+1)]"Hn [c,-/{ [1 — exp (n(ai_1 -‘oo))]p*}].

Therefore, from (2.7) and (2.10), the»d,-, (t=2,...,k), values can be obtained iteratively.

Properties Related to the Selection Rules. §; g -

Property 2.1. (Inclusion Property)

a) Let §; = (fu1,-.. G1x) and § = (921, ..., §2x) be two observed vectors such that §i; < §s; for
all j =1,...,k. Then, for ¢ being fixed, 61,4(§:) C 61,2(§2)-
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b) Let a = (au, e ,a]_,k_]_) and ag — (agl, e ,az,k_l) be two (’C - 1)-tuples S'U,Chjhafr a4 S a2y

for all j=1,...k— 1. Then, 61,,(Y) 2 61,4,(¥).

Proof: The proof of part a) is straightforward.
For the proof of part b), since a;; < ag; for all j =1,...,k — 1, by part-b) of Theorem 2.1,

di(a1) < d;(gs) for all § =1,...,k. Then by the definition of the selection Tule 61,4, we conclude

that 61)91(}:,) 2 611%2 (Y)'

Let S' denote the random size of bad populations included in the selected subset and let
Eq [S ‘[51,9] be the associated expected size applying the selection rule §; g while § is the true state

-
of nature. . L.

Property 2.2 For 8, being fixed and each § € Q,
a) Py{CS|61,4} is decreasing in a; for each a; e ( = 00, min(6;,0,)), and
b) Ey[S°|61,q] is decreasing in a; for each a; € ( ~ oo, min(8;,6o)),

where —co < a; < ag <--- < ap_1.

Proof: First note that for § € Q; = {§ € Q|6;_1 < 8, < 6;},

(2.11) Py{CS|b1,4} = Pg{f’m > dm + 0, for some m=1,...,1i},
and
- i-1
(2.12) " Eg[S'|61,4] = ZPQ{Y’"' >dmp + 0, for some m=1,...,r}.
r=1

——

Next, we see that for any § € 0, andforeachj =1,...,k, Pg{l?'m > dmpm+b,forsomem =1,...,7}is
decreasing in d,,, for all m = 1,..., 7. By Theorem 2.1 b}, d,, is increasing in apforr=1,...,m—1,
and independent of @,,,...a;x_1. Thus PQ{}A’,,,, > d,, + 0, for some m = 1,...,5} is decreasing in

a, for each r = 1,...,k — 1. The above fact with (2.11) and (2.12) together lead to the results.



Property 2.3. ( Least Favorable Configuration on §;( a)) -

T o —

For g being fixed, and for each i = 1,...,k, we have: infyeq,(a) Ps{CS|61,0} ';"PQ;{C"S]&;Q}
where 0 = (a1,...,8i-1,00,--.,0,).

Proof: This can be obtained directly from the expression of (2.11).

—

Property 2.4. For g being fixed, supgeq,(g) E[S'|61,] > (¢ — 1)P* for all ¢ I,...,k+1.
Proof: 1t is trivial for ¢ = 1. For ¢ = 2,...,k+ 1, from (2.12), for § € Q;(a)
RS i1
- EQ[Si‘|g51,g,] =ZP2 {Y,,,, >dy+0, forsomem=1,... ,r}
o r=1
.
, . i—1 L e
(2.13) < Z Py~ {Ym >d, + 0, for some m=1,. .».ﬁ,*r}'
r=1

s

1—1
ZZPQ* {f’m:;_l >d,, + 8, for some m = 1,...,7'}
r=1

where §* = (07,...,0;), 07 = 6 for 1 < j < i~ 1 and 8} = max(dk + 80,0;) for i < 5 < k, and
therefore §* € Q;(a).

Let Qi(a,dx) = {8 € Qi(a)|0; > di + 0 for all 1 < j < k}. Since for each r = 1,...,7 — 1,

Py~ {Vmii—1 > dm + 0, for some m = 1,...,r} is increasing.in 87 for all j.=1, ... ;= 1, thus,
sup Ey[S‘|61,0] = sup  Ey[S'|61,q]
9€0:(a) 0€0:(q,dx)
i1 R i -
(2.14) = Z PQ;(dk){Ym:i—l >dy +0, forsomem=1,...,r}
r=1 -
i1 k—i+1 ' -~ .

LN

— - S .
where §;(dx) = (fo,...,00,00 +dk...,00 +di). Nowforeachr=1,...,¢ -1, -~

Pgl.(dk){f’m:,-__l >dy +0, forsomem=1,...,r}

(2.15) > Py, {Ym > dm +8, for some m=1,...,r}
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ZPgo(r){?mde+00 for some m=1,...,r} o
= pP*

where §, = (0, ...,0,) and §,(r) = (a1,-..,8r-1,00,...,0,).

Therefore, (2.14) and (2.15) together imply that supyeq,q) Fo[S 161,a] > (i — 1)P*.

—

3. ISOTONIC SELECTION RULE FOR 4§, UNKNOWN CASE

When 8, is unknown, sampling from the control population 7, is needed. Let Xo1,...,Xon be

a sample from 7, and let Y, = min(Xo1, ... ,Xon). Since §, is unknown, we do not know the values

of the differences a; — 0,,1 =1,...,k — 1. It seems not possible to take.the Va;di'antage of the lower
<

bounds g to derive selection rules. Thus, a simple isotonic selection rulé.is_.p_roposed as follows.
For the given P*, for each i = 1,...,k, let &} = —1en[(1 — P*)(k - ¢+ 2)/(k — i + 1)]. Let
A* (I:/, Y,)={i ]l?', >Y,—d}} . We propose a selection rule ;1 as follows:
S i a9 if A*(Y,Y,) # ¢
. min A*(Y,Y,) =) ’
(3.1) 61(Y,Y,) = {

Sk+1 otherwise.

Properties related to the selection rule §; are given below as Remarks.

Remarks

1. The way to define the selection rule é; is equivalent to letting a; =-a2 = --- =ap_1 = —00.

2. Based on the choice of the constants, dj, ..., d}, it is easy to show that infgeq PQ{C'S|6f} = P*.
3. The selection rule §; is isotonic and has the inclusion property described in Property 2.1a).
4. (Least Favorable Configuration on Q;) For each ¢ = 1,. YA _
——— e,
g,ieng.- Py{CS|67} = Py:{CS|61}, where §; = (~o0,..., —00,00, ... ,00).

—~ -~

where ; = {§ € Q0;_1 < 0o < 0,}. -

5. For 0, being fixed, though unknown, for each ¢ =2,...,k+ 1,
Eg:[S|67] < Ey[S'|67] < lim Egse()[S'|67] for all § € O,

8
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i1 k—i+1 i-1 k—i+1

Y s e ~
where §; = (—o0,...,—00,00,...,00) and §:*(e) = (6o — ¢, ...,00 — ¢, 0,...,00),& > 0.

4. SIMULATION COMPARISON OF SELECTION RULES

Gupta and Leu (1986) have studied several isotonic selection rules for selecting good exponen-

tial population with respect to a control. Let Y* = (Y,...,Y}) where -

* . Ya+Ys+1 Yo+---+ Y
(1) = e T T

}, i=1,...,k

When 4, is known, let B(Y*) = {i|Y;* > 0, + ¢;}, where the constants c;, ¢ = 1,...,k, are

determined so that infgeq, Py{Y,, > 0, + ¢y for some m = 1,...,4} ;: P* for each 7 = 1,...,k.

The vélues of the ;:onsta.nts ¢i;, 1 <1 < k, can be found from Table I of-Gupta and Leu (1986)

through some transformation. They proposed an isotonic selection rule, say 63, as follows:

T

SminB(x*) if B(Y*) # ¢:
(42) 82(Y) =
Sk+1 otherwise.
They also considered another isotonic selection rule, say 63, as given below. Let Y;** =

max(Yy,...,%;), i =1,...,kand Y** = (Y3**,...,Y;*). Let C(Y**) = {i|[Y;** > 0, +n~1tnP*""}.

Then

e

SminC(X'“‘) ) lfC(Y**) # ¢7 v e -
(4.3) 63(Y™*) = :
Sk+1 otherwise.

Note that both the two isotonic selection rules §; and 83 are designed under the situation that
there is no information available about the values of a lower bound for the concerned parameters.
Hence, it can be imaged that these two selection rules might be conservative-in the sense that the
associated probability of a correct selection might be quite higher than the réquired P* level and
there might be more bad populations included in the selected subset.

Gupta and Leu (1986) also proposed some isotonic selection rules for 8, unknown case which

are described as below.



Let B*(Y*,Y,) = {i|Y;* > Y, —c}} where the constants ¢}, { = 1,..., k are determined so that
infoeq; P4{Y,, > Y, — ¢y, for some m = 1,...,7} = P* for all i. The values of the constants cly
t =1,...,k, are available from Table III of Gupta and Leu (1986) through some transformation.

They proposed selection rule, say 6;, as follows:

SminB+(y+v,) if B*(Y",Y,)# ¢, 7 -
(4.4) 6;(Y"Y,) = -
Sk+1 otherwise.

Another selection rule, say 63, which is analogous to 83 and studied by Gupta and Leu (1986)

1s also given below.
Let C*(Y**,Y,) = {i|Y}** > Y,—e}} where e} = n~1£n(2P*) if P* < ; and ¢} = —n~'/n[2(1~
-

P*)]if P* > 1 for all i. Then, -t

Smince(y*+,v,) HC*(Y™,Y,) # ¢,
(4.5) &Y™, Yo) =

-~ -

Sk+1 -7 - otherwise.

For evaluating the performance of a selection rule §, we consider the ratio R(6,8) = Ey [S°6]/
P,{CS|6}. For a selection rule &, we always desire that Pp{CS|6} is large while Ey[S’|6] is small.
Hence, for two selection rules oy and ay, we say that «; is better than ay at § if R(ay,§) < R(a2,§),
and oy is better than o over 2* C Q if R(a;,§) < R(as,d) holds for all § € 2* and the strict

inequality holds for some § € Q*. o con

Simulation Study

In the following, some simulation studies are carried out to compare the performance of fhe
selection rules 81,g 82, 83 and of §;, j = 1,2,3, according to the magnitude of the ratio R(§,).
When 6g is known, two cases have been investigated according to whether some prior information
about the lower bounds of the concerned para;meters is available or not. Whe%r there is no informa-
tion available, we let ay = -+ = a@p_; = —00. This is the situation under which:‘,he two selection
rules 82 and 63 are designed. When 6 is unknown, the three selection rules 6;, 7 =1,2,3, are

designed under the same situation where a; = «+- = ax_; = —o0.
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The simulation process was repeated 1000 times. The relative frequency of a correet selection
is used as an approximation to the probability of a correct selection. The relati‘\'e'”fréquency of the
number of bad populations included in the selected subset is treated as an approximation to the

expected size of bad populations included in the selected subset. The ratios R(e, @) is approximated

by the ratio of the above two relative frequencies. -

The Monte Carlo simulation has been carried out for the case ¥ = 4. The common sample size

n is chosen to be seven and P* = 0.95. We also chose 84 = 6y and 0; < 0, for ¢ = 1,2,3. Thus,

there are three bad populations. For each case, all the considered selection rules are applied to

the same data. The simulation results are tabulated in Table I and Table iIi'fl‘he numbers in the

-

parentheses are the standard error of the corresponding estimates.

Discussion qf »!:he Tables
Let ﬁg{C’S|5}, EQ[S‘|6] and R(6,4) denote estimates of Py{CS|6}, Ey[S’|6] and R(5,8), re-
spectively. For 8 known case, from Table I, simulation results indicate the following evidences.
1. Isg{CS|51,gl} < ﬁg{C’S]&,gg} < PQ{CS|52} < PQ{CS|63} for all § under the study. Also,
except for selection rule 81,q,, for each of the other three selection rules, the corresponding

IA-"Q {CS|6} are larger than the prespecified level P* = 0.95. When the values of parameters

~i

01, 65, and 03 are close to the control 8y, the vél{le ;>f ﬁg {C’S |51,g,1} is st'ﬂi close to P*, while}
ﬁg {CS|é2} and IAJQ {CS|6s} are quite higher than P*. This evidence indicates selection rules
62 and &3 al-"e conservative.. -

2. EQ[S‘|51,91] < EQ[S‘|51,92] < EQ{S‘|52] < EAQ[S‘IS;;] for all § under the study. When the values
of the parameters 8, 0, and 03 are far from the control 8y, the estimatted E‘g [S°|6] are small

for all selection rules under study. However, when the values of 01, 8> and 83 are close to 8,

the values of Eg [S ‘|51,g,-], 7 = 1,2 are still small while the value of E'ﬁ [S°|83] becomes large.

11



3. Except for the configuration where § = (0.2,0.2,0.2,1), R(51,gj,Q) < R(6,, 9) < 37(53,0) for
all § under study.
Note that the selection rule 61,q, is designed under the situation where no information is
available about the values of a lower bound of the concerned parameters. This situation is the
same as that under which both the two selection rules 6, and 63 are desi-gfled. The simulation

results of Table I indicates that for all § under study, the performance of 6;,q, is better than that

of 52 and 53. i

For 63 unknown case, from Table II, the simulation results indicate that when the values of 6,
02 and 03 are far from the control parameter g, the performance of 83 is ‘i)é_t:ter than the others.
-
However, in other situations, either §; performs best or §; performs beét:., depending on the values
of the concerned parameters. |
It is also interesting to find that, from Tagié farid Table II, for any parameter configurations

under study, the performance of §; is better than that of §;, for ¢ = 1,2,3. This result may be due

to the fact whether 8¢ is known or not.

12



Table 1.

T

Table of the estimated P, {cs|6}, B, [S°]6] and R(S, 8) for 8o known case where @, =1'(0'2’_Q,'2’ 0.2), .
" a2 = (—o0, —00, —00), and fp = 84 = 1. )

61»91

61:92

82

83

(61, 82, 83)

P{cs}

B[s']

R

P{cs}

B[S kR

P{cs}

E[s

R

P{cs}

B[s')

};2

(0.2, 0.2, 0.2)

0.9460
(0.0072)

0.0030
(0.0017)

0.00317

0.9520
(0.0068)

0.0030
(0.0017)

0.00315

0.9520
(0.0068)

0.0030
(0.0017)

0.00315

0.9520
(0.0068)

0.0150
(0.0061)

0.01576

(0.2, 0.2, 0.5)

0.9470
(0.0071)

0.0350
(0.0058)

0.03696

0.9530
(0.0067)

0.0350
(0.0058)

0.03673

0.9550
(0.0066)

0.0370
(0.0060)

0.03874

0.9550
(0.0066)

0.0490
(0.0083)

0.05131

(0.2,0.2, 0.8)

0.9510
(0.0068)

0.2260
(0.0132)

0.23765

0.9590
(0.0063)

0.2280
(0.0133)

0.23775

0.9650
(0.0058)

0.2320
(0.0136)

0.24042

0.9670
(0.0057)

0.2420
(0.0143)

0.25026

(0.2, 0.5, 0.5)

0.9470
(0.0071)

0.0360
(0.0061)

0.03802

0.9530
(0.0067)

0.0360
(0.0061)

0.03778

0.9550
(0.0066)

0.0430
(0.0072)

0.04503

0.9550
(0.0066)

0.0820
(0.0115)

0.08586

(0.2, 0.5, 0.8)

0.9510
(0.0068)

02320
(0.0138)

0.24400

0.9590
(0.0063)

0.2340
(0.0138)

0.24400

0.9650
(0.0058)

0.2550
(0.0150)

0.26425

0.9670
(0.0057)

0.2710
(0.0159)

0.28025

(0.2, 0.8, 0.8)

0.9510
(0.0068)

0.2650
(0.0165)

'0.27865

0.9600
(0.0062)

0.2690
(0.0166)

0.28021

0.9710
(0.0053)

0.4180
(0.0218)

0.43048

0.9760
(0.0048)

0.6070
(0.0258)

0.62193

(0.5, 0.5, 0.5)

0.9470
(0.0071)

0.0360
(0.0061)

0.03802

0.9530
(0.0067)

0.0360
(0.0061)

0.03778

0.9550
(0.0066)

0.0430 -
(0.0072)

0.04503

0.9560
(0.0065)

0.1740
(0.0197)

0.18201

(0.5, 0.5, 0.8)

0.9510
(0.0068)

0.2320
(0.0138)

0.24395

0.9550
(0.0063)

0.2340
(0.0138)

0.24400

0.9650

(0.0058) .

0.2550
(0.0150)

0.26425

0.9680
(0.0056)

0.3550
(0.0217)

0.36674

(0.5, 0.8, 0.8)

0.9510
(0.0068)

0.2670
(0.0168)

0.28076

0.9600
(0.0062)

0.2710
(0.0169)

0.28229

0.9720
(0.0052)

0.4390
(0.0232)

0.45165

0.9760
(0.0048)

0.6790
(0.0286)

0.69570

(0.8, 0.8, 0.8)

0.9510
(0.0068)

0.2720
(0.0174)

0.28602

0.9600
(0.0062)

0.2760. .0.28750
(0.0176) T

0.9740
(0.0050)

0.6150
(0.0307)

0.63142

0.9830
(0.0041)

1.0940
(0.0382)

1.11292
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Table II.

T —

Table of the estimated IE’Q {CS|é6}, Eg [S°|6] and R(5,8) for 8p unknown case where-fg = 8; =1, -

&1

bz

b3

(01 ’ 02) 03)

P{Ccs} E[$

R

P{CS} E[S

R

P{cs} E[S]

R

(0.2, 0.2, 0.2)

0.9550 0.0310
(0.0066) (0.0058)

0.03246

0.9550 0.0330
(0.0066) (0.0062)

0.03456

0.9550 0.1250
(0.0088) (0.0165)

0.13889

(0.2, 0.2, 0.5)

0.9550 0.2010
(0.0066) (0.0134)

0.21047

0.9560 0.1720
(0.0065) (0.0128)

0.17992

09560 0.2360
(0.0065) (0.0185)

0.24686

(0.2, 0.2, 0.8)

0.9570 0.8570
(0.0064) (0.0134)

0.89561

0.9580 0.8190
(0.0063) (0.0139)

0.85491

0.9580 0.8360
(0.0063) (0.0173)

0.87765

(0.2,0.5, 0.5)

-6:9550 0.2740
(0.0066) (0.0191)

0.28691

0.9560 0.3170
(0.0065) (0.0213)

0.33159

0.9560 0.4470
(0.0065) (0.0254)

0.46757

(0.2, 0.5, 0.8)

0.9570 1.0650
(0.0064) (0.0205)

1.11285

0.9580 0.9930
(0.0063) (0.0203)

1.03634

0.9580_ 0.9600
(0.0063) (0.0209)

1.00209

(0.2, 0.8, 0.8)

0.9580 1.6900
(0.0063) (0.0241)

1.76409

0.9580 1.6600
(0.0063) (0.0241)

1.73278

*0.9600 1.6580
(0.0062) (0.0219)

1.72708

(0.5, 0.5, 0.5)

0.9550 0.2960
(0.0066) (0.0214)

0.30995

0.9560 0.4460
(0.0065) (0.0285)

0.46653

0:9560 0.7880
(0.0065) (0.0369)

0.82427

(0.5, 0.5, 0.8)

0.9570 1.1440
(0.0064) (0.0251)

1.19540

0.9580 - 1.1310
(0.0063) (0.0267)

1.18058

0.9580 1.2230
(0.0063) (0.0304)

1.27662

(0.5, 0.8, 0.8)

0.9580 1.8860
(0.0063) (0.0294)

1.96868

09580 1.8240
(0.0063) (0.0286)

1.90397

09600 1.8110
(0.0062) (0.0280)

1.88646

(0.8, 0.8, 0.8)

0.9580 2.4800
(0.0063) (0.0344)

2.58873

09590 2.4750
(0.0063) (0.0337)

2.58081

0.9600 2.4990

2.60313

(0.0062) (0.0323) -
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APPENDIX v T

The proof of Theorem 2.1 can be completed through the considerations of the following lemmas.

First note that the constant dl(bl, ...,bk—1) can be determined as follows:
(A1) P* =Py {V1 > di} = [1- G(dy)]* —

—

where G(z) = (1—exp{—nz})I(o,c0)(z). Hence, the determination of the value of d; iéjndependent
of the parameters by,...,b5—1. |
Lemma A.1. -dif{by,...,bg—1) > dy foreachi=2,... k.

Proof: Suppose that for'some ¢ > 2, d; < dy. Then, from (2.1) and (A.1), _ »
P* = Pb_{f’m > dy, for some m =1,2,...,iF
~ <
> Py {Y; > di}
=[1-G(d))*F

> [1 - G(dy)]* = P*
which is a contradiction. So, d; > d; for allt =2,...,k.

Lemma A.2. Suppose that for some (2 < ¢ < k), there exist constants 0 < dj < dp < -+~ < d; <
oo such that

Pb_{f’m > d,, for some m=1,2,...,5} = P*

for each § = 1,2,...,%7. Let ) ' e

(A2) Aj = ij{f/m > dy, for some m=1,...,7 — 1} and
(A.3) - B; = ij{f’m <dpforallm=1,...,5—1and f’a > d;}.

-

Then, A; = exp{nb;_1}P* and B; = (1 — exp{nb;_1})P*.

Proof: By the increasing property of the constants dy,...,d;, - -
Aj:Pb_{}A’mdeforsomemz1,...,j—1} -
vi
j-1

=Y Py (Vm<dmforalm=1,...,r—1, Y, >d,},
1 ~t

r=
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where .

ij{f’m <dgforallm=1,...,r—1, Y, > d.} T

= ij{x‘fm,,_l <dgpforalm=1,...,r -1, Y,>d,}
2 o
= ij{ mir—1 < dm forallm=1,... r—1}- [H (1-G(d — b)) — G(d,)]F7+1

J'—]_ ‘—_ -
=Py Vmr—1 <dmpforallm=1,...,r = 1}-[[[ (1 - G(d, - b))][1 — G(d,)]*-7+

=Py {Vmr—1<dpforallm=1,...,r—1, ¥, > d,}-[1 - G(d, — bpn—1)]/[1 - G(d,)]

= ij_l{‘f’m <dpforallm=1,...,r— LY, >d,}- exp{nb;_1}.

Hence, S
i1 . 1
A; =exp{nb;_1}Y Py {Vm <dmforallm=1,..,r"1, %, >d}
r=1 ~" -

= exp{nb,-_l}PbJ__l{f’m > dy, for somem=1,...,7 ~1}

<

= exp{nb;_1}P*
where the last equality is obtained by the definition of di,...,d;. Therefore, B; = P* — A; =

(1 — exp{nb;_1})P*.

Now, for fixed b1,...,b;—1 and di,...,d;, define

(A4) Al () = P,IZ-'+1{?’"' 2 dm for some m=1,...,7}, ..
and
(A.5) " Biy(5:) = Py, {Ym < dm forallm=1,...,i and Yiy1 > di},

where b; 1 < b; < 0. If Af_H(b,') 4 B;‘_H(b,-) > P*, then there exists some constant d; 1 > d; such
that Pb,+1{ffm > dy, for some m = 1,...,i+ 1} = P*. Hence, to claim that d;y1(b1,...,bk—1) >

di(b1,- . -,bx_1), it suffices to show that A}, ,(b;) + B}, ,(b;) > P* for all 0 > b; = b;_;. Let

(4.6) h(b:) = A 1(bi) + B (b:) — P*
= Pb'_+1{l?'m > d,, forsomem=1,...,i+1} — P*

16



where d;, = d,, for each m =1,...,7 and d},, = d;. It is easy to see that h(b;) is incredsing in b;.
Hence, it suffices to show that h(b;—1) > 0. By applying a discussion similar to that used for the

proof of Lemma A.2, we have A;-*_l_l(b,-__l) = exp{nb;_1}P*. Hence,

h(bi_1) = (exp{nb;_1}P* + Bf ;(bi_1)) — P* -
(4.7) = (exp{nbi—1}P* + Bjy1(bi-1)) — (4: + B:)

Lemma A.3. Suppose that 0 < di1 < d2 < --- < d; be chosen so that (21) is true for each
T <
ji= 1,7. ..,t. Let B1 and B}, ,(b;) be defined in (A.3) and (A.5), res;pectiyely. ‘Then

By (b:) = [1 - G(d:)]*{G(d1 - be)} %L.;XP(nbi) > QuslC(dy) — G(ds-1)]},

7=2

and

) i—1
By = [1 - G(d;)[*"M{G(d1 — bi_1) + exp(nbi_1) D Qi—1,;[G(d;) — G(d;-1)]},

1=2

where S - ) “wf _

(A.8) © Qij =Py {Vmu_1 <dm forallm=1,...,5-1}, 2<j<i

Proof:

Bp (b)) = Pg_ﬂ{f’m <dmgforallm=1,...,4, Yiy1 > di}
= PQ.-+1{Y’"'" <dpforallm=1,...,4, Y11 > d;}
(since 0 < dy < -+ < dy)

=[1-G(d)]** Py, {Ymi <dmforallm=1,...,3},

17



where _ . -
P,Z‘_“{Yfm:,- <dmpforalm=1,...,4} S

d .
= /y PQ.-+1{Y""" <dpforalm=1,...,1, Y; = 4;}dG(y; — b;)

i =b;

3 d; .
= G(dy - b)) + Z/ Py, Vmici<dpforallm=1,...,5 -1, ¥; = 9;}dG (y; — b;)
j=2vdi—1 ~

——

= G(dy - b;) + ZPL,._H{Y,,,:,-_I <dpmforallm=1,...,5-1}-[G(d; — b;) — G(d;_1 — b;)]

=2

= G(dy = b;) + exp{nb;} > Py (Vi1 <dm forall m=1,...,5 — 1} - [G(d;) — G(d;j—1)].
- =2 ~
Hence,

B, 1(b) = [1 - G(d)I*{G(ds — i) + explnbi) 3 Qus[G() — C(ds_1)]).

j=2 -
The proof for B; is analogous to that for B} _H(b,-) and hence the detail is omitted here.

=L

Lemma A.4. h(b;—;) > 0.

Proof: 1t is equivalent to showing that B} ' 1(bi—1) — B; > 0. By the definition of IA’m:j, for each

{f’m;i_z <dpforalm=1,...,5-1} C{f’m,i_l <dmforallm=1,...,5—1}.

Therefore,
Py {Vmi—a<dmforallm=1,...,5— 1} o
(A9) ) < Pb__l{f’m,,-_l <dpforalm=1,...,5-1}

< Pb..{YA—m:i—l < d,, for all m = ]_”]__ 1}

Py

= Qij- _
In (A.9), the last inequality is obtained due to the fact that for j < ¢, Q;; = Pb’.{f,';r‘i:i—l < dy, for

al m=1,...,5 — 1} is decreasing in b;_; and b;_; < 0. So,
i—1
h(bi-1) > [1 = G(d:)**G(d:){G(d1 — bi-1) + exp{nbi-1} ) _ Qi;[G(d;) — G(d;j—1)]}
J=2
> 0.

18



Proof of Theorem 2.1. _ N

By Lemmas A.1, A.4 and induction method, the proof of part a) is complétvéli."'

Proof of part b). For the way the value of the constant d; is determined, we can find that
d;(b1,...,bk—1) depends only on bi,...ybj—1. -

Now, for each j, consider the two j-tubles (39, ... ,b(;-) and (83,... ,b;‘-T;vhere b’g = b} for all
r=1,...,7— 1, but b? < b3, and <y <---< bg. For bcl),...,bg__:l being fixed and constants
Cm, 1 <m< J.-—i—_l satisfying 0 < ¢; < ¢3 < -+ < ¢;41, the probability qu l{f’m > ¢y, for some

m=1,...,75-+ i} is an increasing function of bo where b?_,_l = (83,..., J 1 b_,?, y-++,0) (k-tuples).

-

Therefore, in order to achieve the P* value, we must have

(4.10) i1 (8], ..., 89) < djta (b, .-, 85).

In general, consider the two (k — 1)-tuples (b9 S <. < b_, < 0) and (1 <bi<---<
k—1 < 0) satisfying b_? <bjforall j=1,...,k—1. Let
= (%,...,6%_,),

92 = (b?’ e 762—27 bl’::—l)
B = (83, b0 bk ii1s eyl y) T

b* = (b,...,b5_1)-
By the result of (A.10), we have dj(éz) < dj(b**Y) foreach i = 1,...,k—1; § = 1,...,k. Hence,

the proof of part b) is completed.

ACKNOWLEDGEMENTS

This research was supported by the Office of Naval Research Contract N00014-84-C-0167 at
Purdue University.

19



BIBLIOGRAPHY _ o L~ T

. Gupta, S. S. and Huang, W. T. (1983). On isotonic selection rules for bi;ld;rl"fél péblﬂétibns
better than a standard. Developments in Statistics and Its Applications, (A. M. Abouommoh,
E. A. El-Neweihi, E. E. A. Aly and M. A. Al-Osh, eds.), 89-112. -

. Gupta, S. S. and Leu, L. Y. (1986). Isotonic procedures for selecting ﬁ;ulatiopg better than
a standard: two-parameter exponential distributions. Reliability and Quality Control (A. P.
Basu, ed.), I\Iqrth-Holland, 167-183.

. Gupta, 8. S. and Yang, H. M. (1984). Isotonic procedures for selecting populations better than

a control under ordering prior. Statistics: Applications and Newpirecﬁons. Proceedings of
the Indian Statistical Institute Golden Jubilee International C'onfér.g_nce- (J. K. Ghosh and J.
Roy, eds.), 279-312. "

. Huang, W. T. (1984). Nonparametric isotoni: sélection rules under a prior ordering. Design
of Experiments: Ranking and Selection. (T. J. Santner and A. C. Tambhane, eds.). Marcel
Dekker, New York, 95-111.

. Liang, T. and Panchapakesan, S. (1987). Isotonic selection with respect to a control: a Bayesian

approach. Submitted for publication.

20



