Unequal Weights in the Two-Way Analysis of Variance

by

Myra L. Samuels
Purdue University

Technical Report #85-31

Department of Statistics
Purdue University -

- November 1985



Unequal Weights in the Two-Way Analysis of Variance

by
Myra L. Samuels
Purdue University

. - ABSTRACT
In a two-factor analysis of variance, the population marginal means for Factor A are
usually defined by assigning equal weight to each level of Facfor B. It is argued that the
advantages of using unequal weights have been under-appreciated. Unequal weights may
lead to more natural interpretation of results. Furthermore, analysis using unequal weights
can yield considerable gains in efficiency when the cell frequencies are unbalanced.

1. INTRODUCTION

Consider a two-way fixed-effects analysis of variance with two factors, A and B, where
factor A is of primary interest and factor B is regarded as a nuisance factor. A commonly
used analysis strategy is to test for interaction between factors A and B and, if no inter-
action is detected, to proceed to test for the A effect within the full model (that is, the
linear model including the A X B interaction term). Two facts concerning this analysis
strategy are:

Fact 1. The strategy requires that the data -analyst specify Weights ‘t‘t;kbe used in the
analysis. :

Fact 2. The use of equal weights can be seriously inefficient if the cell frequencies are
highly unbalanced. -

Fact 1 is recognized in the literature (see Steinhorst 1982 and references therein), but
Fact 2 has been neglected. It would appear that the use of unequal weights is widely
regarded as an obscure tool to be applied only in special situations. Textbooks give the
subject little if any space. Statistical computing packages use equal weights by default and
some do not permit the use of unequal weights. Steinhorst (1982) points out that unequal
weights may sometimes be appropriate; he does not discuss the question of efficiency.
Further, Steinhorst expresses the opinion that the choice of weights should not depend on
the observed cell frequencies.

The purpose of this paper is to indicate the advantages—increased efficiency and better
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interpretability—of using appropriate unequal weights, and in addition to-afgue that in
certain situations the choice of weights should depend on the observed cell frequencies.

2. EXAMPLES

To fix ideas, consider a medical experiment to compare two treatments for a particular.
disease. Patients are to be randomly allocated to two treatment groups (Factor A), and
a response variable Y will be measured for each patient. Sex (Factor B) is considered a
nuisance factor. The following are two typical scenarios which lead to a two-way analysis
of highly unbalanced data. o

Scenario 1. The investigators know that the male:female ratio is 9:1 in the population of
interest (patients with the disease); consequently the randomization is stratified by sex to
reflect this sex ratio.

Scenario 2. Patients are randomized to the two treatments without regard to sex. The
statistician first analyzes the data ignoring sex. However, he notices that (either by chance
or perhaps because of differential dropout rates) the sex distribution differs in the two

treatment groups; to be on the safe side, he also tries analyses with sex in the model.

We now provide the above scenarios with-artificial data sets to show how the use of
equal weights can lead to seemingly paradoxical results.

Example 1. Suppose that the investigation of Scenario 1 includes 100 patients and yields
a within-cell mean square MSW = 1600 and cell means as follows (cell frequencies are
shown in parentheses):

(Factor B) .
Sex
Male Female .
L | 38 s [T -
(Factor A) (45) (5)
Treatment ) 310 300
(45)  (5)

-

The statistician who tests for the effect of Factor A using the “usual” method (for
instance, Type IV SS’s in SAS GLM) would obtain the following significance probabilities:

—

P =.0022 in the additive model
P = .0638 in the full model

Because the cell means show no interaction at all, the estimated treatment difference is the
same (+25) in both analyses; and yet the P-value differs by more than an order of mag-
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nitude. The statistician might be puzzled that testing without the additivity assumption

is so very much weaker; after all, it only “costs” a single df for error.- . .
O

Example 2. Suppose that the investigation of Scenario 2 yields the following data:

(Factor B) _
Sex — .
Male Female -
1 325 325
(Factor A) (45) (5)
T - Treatment , 300 300
h (35)  (8) -

-

Again suppose that the full-model analysis is the “usual” one with ‘equal weights. If the
within-cell mean-square is MSW=1600, the following significance probabilities would be
obtained:

<L

P =.0021 ignoring sex
P = .0022 in the additive model
P = .0289 in the full model

Because the observed cell means do not show any sex effect at all, the estimated treatment
difference is the same (+25) for all three analyses; the inclusion of sex in the model has
only a mild effect if it is included additively, yet it is extremely costly if it is included in
the full model. cee

o e O

In the next section, the puzzles confronting the statisticians of Exaniples 1 and 2 will
be clarified by showing, not that the full model is somehow wrong for them, but that the
“usual” version of the full model is seriously inappropriate for their purposes.

3. HOW WEIGHTS AFFECT THE ANOVA

Let the random variable Y;;; represent the kth observation in the (2, §)th cell; assume

that .
Yije = pij + €55k, t=1,...,a; J=1,...,b; k=17..,n.

—

where the {e;;x} are independent normal random variables with mean zero and common
variance o2. It is well-known (see, for example, Searle, Speed, and Henderson, 1981) that

if the full model is written as
pi; = p+ a; + B + g, (1)
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then the parameters {a;}, {85}, and {~;;} are not estimable unless constrained by side
conditions. Suppose that we write the side conditions as follows:

Z v;a; =0, Z w;B; =0,
1 J
Dovw =0, Y wimg=0,
7 :

1

where {v;} and {w;} are positive weights satisfying
: Zv,~=1; ij:l.
1 7

The null hypothesis of no effect of Factor A can be stated as

Hy: ay=03=...=a,. -

Let us consider a more natural parameterization; let

A; = E witi;;” 0 1=1,...,a.
J

The parameters {A;} might be called “weighted population marginal means” (WPMMs),
after Searle, Speed, and Milliken (1980), who proposed the term “population marginal
mean” for the case of equal weights. The least-squares estimate of A; is ’

A; = Z wi; Y i,
J

i

where Yij is the observed mean in the (7, )th cell. - - .-

-

The null hypothesis H4 can be restated in terms of the WPMM’s as
HA: A1=A2=...=Aa. (2)

Note that the weights {v;} have no impact on H,4; but changing the weights {w;} changes
the meaning of H,4. This formulation of H,4, which was proposed by Scheffé (1959), is a
very natural one. The hypothesis H4 asserts that Factor A has no effect, after “adjusting
for”, or “taking account of”, Factor B. It is cructal for this interpretation that the weights
{w;} do not depend on i. (If the weights depend on i—as they may; for -example, in the
hypotheses H; and H; identified by Speed, Hocking and Hackney (1978)-or the hypothesis
tested by the WEIGHTS BETWEEN ARE SIZES statement in BMDP4V— then the
WPPM’s are in no sense “standardized” with respect to Factor B.) The “usual” analysis
(for instance, that implicit in SAS GLM Type IV SS’s) uses equal weights



In a purely additive situation the weights are irrelevant. Specifically, let us state the
hypothesis of no interaction as -

Hap: 7ij =0, t=1,...,a; J7=1,...,b.

It is easy to show that if H4p is true for one set of weights {v;} and {w;}, then it will be
true for any set; also, the usual F-test for H4p is independent of the weights. If H4p is
true, then the va.lues of contrasts in the A;, and consequently thetruth or fa151ty of Hyu,
do not depend on the choice of weights.

To test Hy4 in the full model, the statistician must choose weights {w;} (or opt for the
“usual” equal weights). In discussing the choice of weights, we still consider the following
two F-statistits. The full-model F-statistic is of the form

_ MSA 3)
- MSW s o

<

where MSW is the within-cell mean square (with df = £Xn,; — :zb),_and MSA is the mean
square for Factor A within the full model (with df = a — 1); the value of MSA depends on
the weights {w;}, but the value of MSW does not. The additive-model F-statistic is
_ Msa "
-~ MSE

where MSE is the residual mean square (with df = £Xn;; — a — b+ 1) after fitting the
additive model, and MSA* is the mean square (with df = a — 1) for Factor A within the
additive model.

Suppose that in fact interaction is absent, that is, H4p is true; in this case the
hypothesis H4 does not depend on the weights, and one may ask which choice of weights
in (3) provides the most powerful test of H4. The answer is _particularly simple in the
important special case of proportionate cell frequencxes that is, if the-cell frequenc1es {ni;}
satisfy the conditions

Nij = FjNit, t=1,...,qa; 5=1,...,b, (5)

where n;y = Zj nij. (Proofs are in the Appendix.) g

Proposition 1 Assume that (5) holds and that H,4p is true. Then the power of the F-test
(3) of the hypothesis H4 is maximized for weights proportional to-the <cell frequencies,
namely, -

wj = Tj. (6)

Further, the standard error of any estimated contrast in the {A;} is minimized by use of
the weights (6). The relative efficiency of the analysis using weights (6), relative to using
equal weights, is: :



RE(optimal wts : equal wts) = b—lz—z (;) s (D
. 7
j

O

Of course, if interaction is absent one could use the additive-model F-test based on
(4) which is more powerful than any test based on (3). The difference between these
two approaches is not very great if the cell frequencies are proportionate, as the following
proposition shows. o

Proposition 2 If the cell frequencies satisfy (5), then the values of MSA using the optimal
weights (6)-is-equal to the value of MSA*. Similarly, in calculating a confidence interval
for any contrast in the {4;}, the results from an additive analysis and from a full-model
analysis with weights (6) would differ only with respect to the.estimate of o and the
associated df. ‘ :

e |

Example 1, revisited. In light of Propositions 1 and 2 let us reconsider the position of
the statistician in Example 1. His full-model. P-value was inflated because it was based on
equal weights; the P-value for the F-test based on the optimal weights (w; = .9, w, = 1)
is P = .0024; the relative efficiency of this analysis, from (7), is 471(.97! +.17!) = 2.8;
thus the equal-weights analysis wastes nearly 2/3 of the information in the data.

O

Intuitively, the reason that the equal-weights analysis is so inefficient in Example 1 is
as follows: The cell means for the males and for the females are given equally important
estimation jobs, but the sampling error is large in the female samples (because the n’s
are small), so that the entire estimation is relatively imprecise. When optimal weights are
used, the performance demanded of each cell mean is matched to its capability.

Example 2, revisited. The cell frequencies in Example 2 are not proportionate. The
statistician niight reasonably (as we will argue below) choose weights w; = .8 and w, = .2
which agree with the observed marginal cell frequencies. A full model-analysis with these
weights yields P = .0034, which_is comparable to the additive analysis and to the analysis
ignoring sex.

a

4. CHOICE OF ANALYSIS STRATEGIES -

4.1 Proportionate Cell Frequencies

The typical situation giving rise to proportionate cell frequencies would be a stratified
design like that of Scenario 1. In choosing a strategy for analyzing the effect of Factor A
in the design of Scenario 1, the statistician might reason as follows:
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If in fact interaction is absent (H 4p is true), then the analysis in the additive model
is most efficient, but the analysis in the full model using the optimal 9:1 weights is nearly
as efficient, differing only in the loss of 1 df for error.

If in fact interaction is present (H 4p is false), 9:1 weights make sense because with
these weights the WPPM’s A; and Aj represent the actual population mean responses to.
treatments 1 and 2. Further, it can be argued that the existence of interactions does not
seriously compromise the interpretation of the WPMM’s: after all, irany study, treatment
means are averaged over various extraneous variables, and perhaps sex should be viewed
in that way. In addition, if H,sp is false, testing H4 with the additive-model statistic
(4) would be inefficient because the denominator mean square would be inflated by the
interactions.

Reasoxii?lé in this way, the statistician might adopt, as the best overall analysis strat-
egy, the full-model analysis using optimal weights. Of course, the analysis of Factor A
would naturally be supplemented by a test for interaction and poSEf‘p‘ly also for Factor B.

<

4.2 Non-proportionate Cell Frequencies

In many situations, including that of Scenario 2 as well as many observational studies,
the cell frequencies might be more or less disproportionate, either by chance or because
of differential dropout rates or other distortions with respect to Factor B. The question
of “adjusting” for B in the analysis might arise from a desire for increased power and /or
because B is a potential confounding variable. For instance, in Scenario 2, if the sex distri-
bution in the two treatment groups is very different (in other words, if the cell frequencies
are greatly disproportionate), then one might want to compare “sex-adjusted” treatment
means (that is, A;’s) in order to eliminate bias.

For “adjustment” in the full model, considerations of interpretability of the WPPM’s
do not necessarily lead to weights which are optimal with respect to efficiency. Inter-
pretability presumably should be the more important consideration; for instance, in Sce-
nario 2, the sex-adjustment ideally should use weights which reflect the population sex
ratio.

In some -situations the best source of information about the population distribution
of Factor B might be the current study. In such a case it appears eminently reasonable to
use the information provided by the cell frequencies; often it would be natural to choose
weights proportional to the marginal cell frequencies. Of course, this approach involves an
approximation, in that the sampling error in the weights is ignored, and thus would not be
appropriate if the marginal cell frequencies were small. (Weights proportional to marginal
cell frequencies are not optimal with respect to efficiency unless (5) holds.”See Appendix.)

If the cell frequencies are merely very roughly proportionate the reasoning described
above for the proportionate case will apply approximately, and suitable unequal weights
may be expected to be more efficient than equal weights, and to be nearly as efficient as
using the additive model if the within-cell df are not too small. (With the sample sizes of
Example 2, for instance, weights proportional to the marginal cell frequencies are 91% as
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efficient as the optimal weights.) _ o

Of course, in practice many other considerations besides efficiency fnay influence the
choice of weights; for instance, if several studies of the treatment factor A are to be
compared, common weights should be used for all the studies.

5. IMPLEMENTATION OF WEIGHTED ANOVA

The full-model F-test for H4 with arbitrary weights {w;} and-arbitrary cell frequen-
cies {n;;} is straightforward to compute. The numerator SS for the F-statistic (3) is

(Schefté 1959, page 118):
§5A=Y Uj(di -4

;— A;)?
. : (8)
= BU;A? — (U A;)?/(ZU)),

where .

= wimg)

and - .

A= (sU:A) (30,
(In the case of proportionate cell frequencies, the value of SSA using the optimal Welghts
(6) is the same as would be computed for a one-way ANOVA on Factor A.) If L=} cA
is any contrast in the {A;}, the least-squares estimate of L in the full model is L=YcA
and the squared standard error of I is

53 = (MSW) Z Z(c?wz?j/nij)'

Among programs available in statistical computing packages, BMDP4YV is noteworthy
for the ease with which the user can specify weights {w;}. In SAS GLM. an analysis with
specified {w;} can be requested with the CONTRAST statement. SPSSwx does not permit
the use of unequal weights.

6. EXTENSIONS

In addition to Factors A and B, an investigation may include other factors and/or
covariates Zy, Zs,...,. If it is assumed that there are no interactions between the {Z;}
and Factors A and B, then the discussion in Sections 3 and 4 extends directly. If such
interactions are contemplated in the model, then the problem of choosing weights may be
considerably more complicated, although analogous ideas can be applied.

7. CONCLUSION -

In the two-way ANOVA with Factor B a nuisance factor, analysis with unequal weights
is conceptually simple, is computationally easy, and can greatly increase efficiency; it should
receive more emphasis in the training of applied statisticians and should be included as a
convenient option in computing packages.



APPENDIX _ oo
Proof of Proposition 1 e

It is well-known (Scheffé) 1959, pp. 38-39 and p. 118) that the statistic (3) has a
noncentral F-distribution with non-centrality parameter 62 satisfying

= Z:U,-(A,- —4)?, - (9)

——

where A = (2U;A;)/(ZU;). If Hap is true, then pij can be written as

Hij = p+ of + 67, (10)

where Xaf = 0 and XB; = 0; note that {a;} and {ﬂ*} are defined mdependently of any
weights. Usmg (5) and (10) ( ) reduces to s

0262 = (Gnyy)~ ZnH_(a —-a* o (11)

where a@* = n_T_}*_Z‘nH_af , and

G =Y (wi/ry).

The quantity (11) depends on {w;} only through G, and it is straightforward to show that
G is minimized for the weights (6). Similarly, when (5) holds, the sampling variance of
any estimated contrast is proportional to G. The relative efficiency (7) is the ratio of the
corresponding values of G.

O

Proof of Proposition 2 e o LT

-

Define the vector ¥ = [(az — ai), (aza —ai1),..., (s — a1)]’, where the {a;} are
defined using weights {w,} given by (6) and any Welghts {vi}. The SS for testing H4 in
the full model can be written (Scheffé 1959, p. 40):

SSA=W'B"'¥
where W is the least-squares estimate of ¥ in the full model, and B = o2 Var(\il). The
SS for testing H,4 in the additive model is

—~

SSA* = O B* 1§+ . -

where W* is the least-squares estimate of @ in the additive model, and B* = ¢—2 Var(¥*).
(The value of ¥+ is 1ndependent of the weights.) It is easy to show (Scheffé 1959, pp. 117-

119) that if (5) holds then ¥ = ¥*, which proves Proposition 2.
O



Non-proportionate Cell Frequencies . oo

If @ = 2 then it follows easily from (9) and (11) that é2 is maximized for weights {w,}
proportional to the harmonic means of the cell frequencies; further, it is straightforward to
show that the analog of Proposition 2 is true for these weights. Nevertheless, these weights
are not desirable because the corresponding A; are not readily interpretible if H4p is false.
If a > 3, the weights {w;} which maximize (9) will in general depend on the parameter
point (aj,...,al).

—
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