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Abstract

Let my,...,7mr be Weibull populations with a common known shape parameter, and
with unknown scale parameters. The goal is to find the population with the largest scale
parameter. From each population, Type II-censored observations are available at two
stages, where censoring at stage 1 (2) occurs at the g-th (r-th) failure. Two-stage pro-
cedures with screening at the first stage are considered which are optimum permutation
invariant in terms of the risk with respect to a large class of loss functions. For the proce-
dure with a fixed subset size at stage 1, the least favorable paraieter configuration under
the indifference zone approach is of the slippage type, which makes it feasible to control
the infimum of the probability of a correct selection. Some extensions of the results are
discussed at the end. '
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1. Introduction. .

Suppose we wish to find the most reliable of k types of components. M1y--+ Tk, SAY.
Let the failure times follow a Weibull model with density w.r.t. the Lebesgue measure,
confined to the positive real line,

(1) f(z]6;) = ab;z* Lexp(—0;z%), z >0, )

——

where a > 0 is fixed known, and 6, /% 5 0 is the unknown scale pa.ramétér associated

with m;, ¢ = 1,..., k. Thus our goal becomes to find that one m; which is associated with
the smallest 8;, ¢ = 1,...,k. We may assume that it is unique, to keep the presentation
of our material simple. This is not a serious restriction, since in case of ties, we may be
content with the selection of any of the most reliable components, and our results hold in
this case analogously. -

We shall consider 2-stage selection procedures, with screeﬁing at the first stage, as
discussed in Miescke (1984), which are based on Type II-censored Tailure times observed at
both stages. In the following, all failure times considered are assumed to be independent.
To describe the sampling process from the k populations 7y,..., 7, it is sufficient to do
so for one particular population =;, say. <

At stage 1, n; > 0 components of type =; are tested simultaneously until the ¢-th
failure occurs. If this type of component is not screened out at stage 1, m; > 0 components
are added, or —m; > 0 components are withdrawn, and then the n; — ¢ + m; components
are further tested simultaneously until the r-th failure at this stage occurs. Hereby we
assume, by obvious reasons, that ¢ > 1, r > 1, n; > ¢, and n; + m; > g+ r. It should
be pointed out that both ¢ and r do not depend on i. We shall see later that this is very
crucial to gain permutation invariance in our decision problem, which in turn provides the
basis for finding optimum permutation invariant decision procedures.

The next step is a reduction by sufficiency. Because of the assumed.independence
of all failure times, this can be done as well for one particular ‘population, ;, say. Let
Ui1,Us,2,...,U;q denote the ordered failure times to failure q of m; at stage 1. Likewise,
let V;1,V5,2,...,V;,, denote the ordered failure times to failure r of ; at stage 2, measured
from U; g onwards. Let

q
Us=) U+ (n: — U,
j=1

r ~— .
(2) W:ZVZ-‘,’;A—(n,--i—mi—q—r)V}f‘,.,and -
=1
;=U+V;.

Then the distributional properties of U;, V;, and T; can be summarized as follows.
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Lemma 1. For every population ;, the following holds.
(2) U(V;) is sufficient for 0; at stage 1 (2), and T;
is sufficient for 0; at both stages combined.
(b) U; and V; are independent.
(c) 20;U;(20,V;,26,T;) is chi-squared
distributed with 2q(2r,2q + 2r) degrees of freedom -

Proof: Most of these facts are well known. Thus we outline the proof only briefly. The
statement concerning U; in (a) follows from looking at the likelihood function at stage 1,
as it is done in Tsokos and Rao (1979). The statement concerning U; in (c) is proved
in Gnedenko et al. (1969), sec. 3.3, for the case of a = 1, and it can be extended to
the case of any other value of « immediately. Finally, by considering, instead of the
original failure times, the a-th powers of the same, which are exponentially distributed
with scale parameter 0; ! the proof can be completed by using the lack of memory of the
exponential law or, more precisely, the strong Markov property inherent in the sampling
process described in terms of these exponential random variables, as it is discussed in Feller
(1971), section I.6. T

Returning to the joint consideration of our & populations, all facts stated so far can be
carried over in a natural way, since (Ui, Vi, T3), i =1,...,k, are independent random vec-
tors. For notational convenience, let in the following U = (Ug,...,Ug), V.= (Vy,..., Vi),
and I = (Tt,...,Tx). Next we introduce a class of 2-stage selection procedures for the
given decision problem.

Definition. A 2-stage selection procedure acts as follows. After all observations at stage 1
have been made, a non-empty subset s C {1,...,k} is selected. All population 7; with
1 & s are discarded. If s = {7}, say, the final decision “m; is the most reliable type” is
made. If s contains more than one element, stage 2 is entered. The sampling process
is continued for all 7; with ¢ € s as described before, and then for some j € s the final
decision “r; is the most reliable type” is made.

Let L(9, (s,%)) be a real-valued loss which occurs at § = (01, ..,0k)sf s is selected
at stage 1, and the final decision is in favor of 7;, 1 € s C {1,..:,k}.-We assume that it
is integrable such that the associated risk function exists. Moreover, let it be permutation
- invariant as defined in Gupta and Miescke (1984), and let it favor the selection of more

reliable components in the following way: ‘

(3) L(9, (s,7)) < L(9,(5,5)) if
(a) ,)Es=3§ 0; <6;,or -
(b) s\{s} =3\{s}, 6:<6;,o0r .
() i=7, s\{u}=5\{v}, 0,<09,, for some v € sandv € 3.

It can be seen that under such a loss function, the decision problem is invariant under
the group of permutations. This justifies restricting our further considerations to 2-stage
selection procedures which are permutation invariant. A rigorous definition of this class
can be found in Gupta and Miescke (1984). The optimum rules within this class are, as
we shall see later, of the following form. ’



Definition: Let R:(0,00)* — {1,2,...,k} be a symmetric, Borel-measurable- function.
Let us consider R(U) as a decision rule to determine the size of the subset to be selected
at stage 1. Then P(R) is the 2-stage selection procedure which selects at stage 1 in terms
of the R(U)-largest U;’s, and makes the final decision at stage 2 in terms of the largest
observed Tj.

Optimality of P(R) among all procedures which employ the same subset-size rule
R will be shown in Section 2. Further properties of P(R) will also be discussed there.
Of special interest is the case of a constant R, B = t, say. This” will be considered
in Section 3 under the 0-1 loss function, which is zero if and only if the most reliable
type of component is finally selected. The risk, or probability of an incorrect selection,
respectively, of P (t) will be shown to have a natural least favorable parameter configuration
in the indifference zone approach of Bechhofer (1954), which makes it feasible to control
the infimum of the probability of a correct selection, denoted by Ps(CS|P(t)), on a certain
subset of the parameter space. Finally, in Section 4, extensions of our results to p-stage
selection procedures will be described, and some open questions for further research will

be presented. -

2. Optimality of the Procedures P(R). .

The first of our results establishes optimality of procedure P(R) within the class of

all permutation invariant 2-stage selection procedures which employ the same subset size
rule R.

Theorem 1. Let R be a subset-size rule, and let L be a loss function, with properties as
described in Section 1. Then for every permutation invariant 2-stage selection procedure
P which employs R at stage 1, we have

(4) R(Q’P(R)) < R(9,P), b€ (0, °°)k’

where R(0, P) denotes the risk, i.e. expected loss, of P at §. "

Proof: U and V, respectively, can be considered as two random vectors which are gener-
ated through ' T

q q-tr
(5) . Ui=)Y Cijy Vi= D Cig, i=L...,k
j=1 =g+l T

where the C; ;’s are generic random variables which are mutually independent. For i €
{1,...,k} and j € {1,...,q+r}, 20;C;; follows a chi-squared distribution with 2 degrees
of freedom, i.e. C; ; has the following density on the positive real line:

—~—

(6) g(z|6;) = |Bilezp(fiz), = >0, 6;=—0: -

Tt can be seen now that almost all assumptions which are made in Gupta and Miescke
(1984) are fulfilled, where the underlying exponential family of densities is of the form

(7) h(z|0) = c(0)ezp(fz)d(z), z€R, 8€QCR.
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If d were log-concave, i.e. if the exponential family were strongly unimodal, our proof
would be completed by applying Corollary 2 of Gupta and Miescke (1984). However, the
function d in (6) is the indicator function of the positive real line, which is obviously not
log-concave.

A careful examination of the proof of the key Lemma 2 in Gupta and Miescke (1984)
fortunately shows that if the family (7) has the positive real line as a common support,
then all results in that paper remain valid if every n-fold convolution of d is log-concave
on the positive real line. And since the n-fold convolution of the indicator function of the
positive real line at = > 0 is equal to "1 /(n — 1)!, which is indeed log-concave for n > 1,
the proof of this theorem is completed.

The next result establishes uniqueness of the optimum procedure P(R), and some
consequences. Let Dr(R) denote the class of all permutation invariant 2-stage selection
procedures which employ R at stage 1, and let Dy = {P|P € D;(R), R subset-size rule}.
For a moment, let us also consider the larger classes D(R) and D, say, where the procedures,
including their subset-size rules at stage 1, are not necessarily permutation invariant, i.e.
symmetric for brevity. s

Theorem 2. Let L be any loss function with properties as described in Section 1. Then
the following holds.

(a) For every symmetric subset-size rule R, P(R) is the unique optimum procedure in
Dr(R) in the sense (4). Moreover, P(R) is admissible in D(R).

(b) If there exists a minimax procedure in Dy, which employs Ry, say, at stage 1, then
P(Ro) is minimax in Dr, and both procedures are minimax in D.

(c) The class {P(R)|R subset-size rule} is essentially complete in Dj.

Proof. Let L be a loss function which has the assumed properties. Let R be a symmetric
subset-size rule, and let § € (0,00)*, where not all of the 8;’s are equal, be fixed. Then
it can be shown, as in Gupta and Miescke (1984), that P(R) is the unique Bayes rule
in D(R) with respect to the symmetric prior which gives probability mass 1/k! to each
of the k! permutations of § = (0,,...,0;). Since.the Bayes risk.is equal‘to R(8, P(R)),
the first parts of (a) and (b), as well as (c), follow from Theorem 1. THhe second part of
(a) holds since a unique Bayes rule is always admissible. The second part of (b) follows
from Blackwell and Girshick (1954), sec. 8.6 and the fact that the group of permutations
is finite. This completes the proof of the theorem.

The last result in this section confirms the intuitive conjecture that sampling of more
information improves the optimum procedure. Let P(R;n,m,q,r) be the procedure P(R),
which employes R at stage 1, where ¢ > 1, r > 1, n = (n1,...,nk), n; > g, m =
(my,...,mg), m; +n; >q+r,i=1,...,k, may now be variable. Then we can state the
following. -~ -

Theorem 3. Let L be any loss function, which does not depend on n and m, with
properties as described in Section 1. Then for every symmetric subset-size rule R, the risk
of P(R) at 8 does not depend on n and m. Let it be denoted by p(0; R,q,r), say. At every
g€ (o, oo)k, where not all of the §;’s are equal, it has the following properties.

(8) p(Q;R’qar)>p(Q;R)Q+1,T)a ifni>q7 n,-+m,->q-|—r,z'=1,...,‘k,
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(9) o(6; R,q,7) > p(0; R,q,r +1), ifni+m;>q+r,i=1,...,k, =
(10) p(0;R,q,r) > p(0; R, +1,r —1), ifn;>gq,i=1,...,k. R

Proof. Let L and R be given as stated in the theorem. P(R) utilizes all of the relevant
information contained in the observations through U and T at stage 1 and stage 2, re-
spectively. In view of Lemma 1, it is seen that the joint distribution of U and T does not
depend on n and m. Hence the risk function of P(R) has the same property.

Because of the similarity of arguments, we give only a proof Ter (10). First it is
important to note that P(R) remains to be the unique Bayes procedure with respect to
any symmetric prior within the class D(R), if all procedures were included in D(R) which
make use of the available observations of all of the 7;’s at stage 2, but which still restrict
final selections to those 7;’s which have been selected at stage 1.

If now P{R;n ,m,q + 1,7 — 1) is considered to be based on all available failure times
up to the (¢ + 1)-th and the (r — 1)-th failures at stage 1 and stage 2, respectively, then
P(R;n,m,q,r) can be considered to be based on the same observatlons The latter would
just ignore the k (q + 1)-th failure times at the subset selectioft.at stage 1. The former
is the unique Bayes procedure with respect to the symmetric pI‘lOI‘ on-all permutations of
any fixed € (0,00)¥, as long as not all of the #;’s are equal. For every prior of this type,
risk and Bayes risk coincide for each of the two procedures, and thus (10) is seen to be
true. This completes the proof of the theoremnt.

Remark. If L would depend on n and m, it would naturally be non-decreasing in n;
and m;, ¢ = 1,...,k. In this case, of course, one would take n; = --- = nj = ¢ and
m; = --- = my = r as the best allocation of components to be tested. In a more
complicated approach, L could also be non-decreasing in the time until a final deécision is
made. This would lead to an opposite requirement of sufficiently large n;’s and m;’s. We
shall not discuss further such more difficult problems.

The final topic to be considered here is the choice of a suitable subset-size rule R
for the decision at stage 1. This is a very challenging problem, indeed. Clearly, there
does not exist any Ry, say, such that P(Rp) is optimum in terms-of the risk, uniformly in
8 € (0,00)*, within the class D;. On the other hand, in a Bayes-approa.ch the optimum
choice of R would depend heavily on L and on the chosen prior. Therefore, it seems to
be justified to consider in more detail the natural rule P(t), say, where R =t is constant,
t€{2,...,k —1}. This will be done in the next section.

3. Properties of the Procedure P(t).

For a fixed t € {2,...,k — 1}, let P(t) be the following 2-stage selection procedure.
At stage 1, the t 7;’s are selected which are associated with the ¢ largest U;’s. Then, at
stage 2, the final decision is made in favor of that one 7m; which is-assoctated with the
largest of the ¢t T;’s from the =;’s which have been selected at stage 1. -

A natural way of implementing the procedure P (t) is to employ the so-called “indiffer-
ence zone approach”, which is due to Bechhofer (1954). It allows to control the probability
of a correct selection, i.e. of finding the best m;, over a range of parameter configurations,
where the best 7; is sufficiently better than the other £ —1 7;’s. Thus let us adopt in the
following the 0-1 loss function, which is 0 (1) if the best 7; is (is not) finally selected. One
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minus the risk, i.e. the expected loss, is then the probability of a correct selectlon which

will be denoted by Py(CS|P(t)), 4 € (O, oo)k, in the sequel -
Let A > 1 be fixed. For § € (0, 00)%, let 0[1) < - -+ < O}z denote the ordered values of

01,...,0;. Then let

(11) Q(A) = {8]8 € (0,00)%, Ab;) < 8, i=2,...,k}.

The next result states that the probability of a correct selection with-procedure P(t) can
be controlled on 2(A). More precisely, if a value P* € (1/k,1) is predetermmed then
values for ¢ and r can be found such that the infimum probability of a correct selection
with procedure P(t) is at least P* if § is restricted to Q2(A). It will also be shown that the
parameter configuration, at which the infimum occurs, i.e. the least favorable configuration
(LFC), is of the “slippage”-type.

Theorem 4. For every t € {2,...,k—1},and A > 1,
(12) _ Inf{Pe(C’S|P(t))|0 € N(A)} = Pe(C'S|P(t))
where e = (1, A;A,...,A) with k coordinates. S

Proof. The probability of a correct selection for the procedure P(t) at 8 € Q(A) with,
say, 01 = 0[3), has the form

&L
s

(13) PQ(CS|P(t)) = Z Pi{Ug <U; L& s, 1 € s; U_-,' +V:—,' <Uy+Vy, J€ §},

where here in the sequel, s = 3U{1}, if both s and 5 appear simultaneously in an expression.

Let B; = 0,V;, i =1,...,k, be auxiliary random variables to be used in the following.
It is easy to see that a lower bound to (13) is attained if for j = 2,...,k, V; is replaced
by B;/A6; in the events appearing in (13). Since the distribution of the random vector
W = (B1/01 — By /A01,B1/0; — Bg/Aby,...,B1/0; — Bx/Af;) is seen to be permutation
symmetric, this lower bound can be represented by an integral over {a = {a1,...,0:—1) |
a1 < az < ...a;_1}, where the integrand is a product of the joint densrty~ of the ﬁrst t—1
coordinates of W at a and the following function of a.

Z ZPQ{‘UZ<U1.', L&s, 1€s;

2<i1 <2< <1<k ©
5'_—"{"'1 )i2:'--1it—1 }

(14) ~ U, <Ur+ ), J=1,...,t—1},

where in the second summation, ¢ runs over all (¢ — 1)! permutations of (1,2,...,t — 1).
To show now that (14) is nondecreasing in 5, ..., 0, it suffices to prove it for 8. To do
so, we first replace in (14) all probabilities by the corresponding condff.ior&afl probabilities,
given Uy = yq,...,Ux—1 = yx—1, where we may assume without loss of generality that
Y2 <Y3 <...<yg_p holds. Let b; =y, +a;, j=1,...,t —1. Then we get

ZPQ{Uk,Uk—t < Uk-t+1,U1; Uk—t+1 < bo1),---»
g
(15) Up—1 < byt—1)|U1 = y1,+ ., Uy = yp—1}
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+ZPQ_{Uk—t+1 < Uk, Ur; Uk <bo(1),Uk—t42 S bo(2)se-ey
[+3 oA

Uk—1 < bo-1)|Ur = y1,..., Ur—1 = yr_1}.
In case of yx_++1 < y1, this reduces to

—

ZPQ{UI(:, Uk—t+1 < bo(1) Uk—t+2 < bo(2)5- - -
4 -
(16) Uk—1 < bot—1)|U1 = y1,- .-, Uk—1= Y1},

whereas in case of y; < yg—t+1, it reduces to

o ZPQ{Uk,Uk—t <Us; Ug—t+1 <bo(1),---»
o -

(17) Uk—1 < bo(t—1)|U1 = y1,-- -, Uk—1 = yx_1}-

<
Since now both, {16) and (17), are seen to be nondecreasing in 0k',.t}}‘e'proof of the theorem
is completed by noting that P.4(CS|P(t)), 7 > 0, does not depend on 7.

It should be noted that Theorem 4 holds also for ¢ = 1 and for ¢ = k. But P(1) and
P(k) are actually 1-stage selection procedures. Procedures of this type have been studied
extensively in the past, and an overview of the literature in this respect can be found in
Gupta and Panchapakesan (1979).

A very natural and interesting question is now to find sufficient conditions under which
a 2-stage procedure of the type P(t) performs better than a 1-stage procedure. This could
be done, for example, on the basis of a common total number of failures. To be more
specific, let us assume that there exists an integer d > 2, say, such that k = dt. Thus, if
P(t) is based on g failures at stage 1 and on r = dq failures at stage 2, respectively, then
the total number of failures becomes k(q) +t(dg) = k(2q), and P(t) can be compared with
the optimum 1-stage procedure, P;, say, which is based on 2¢ failures from my,..., 7.

If the k — t largest 0;’s tend to large values-compared to thet sm_a,llgé‘tqu_-’s, then it is
not difficult to see that the P(CS) of P(t) will be larger than the P(CS) of P;. However,
at other parameter configurations, P; may be the better procedure. It appears thus to be
more promising to compare the infima of probabilities of correct selection on 2(A), which
are both attained at § = (1,A,...,A). The answer to the stated question would then of
course depend on A. No results in this respect are known.

-

4. Some Extensions. : _

A natural extension of the topics of the previous sections is to consider p-stage selection
procedures for p > 2, which are based on ¢; failures at stage ¢, ¢ =1,..+,p, where the
selected subsets at consecutive stages are nested. For permutation invariant subset size
rules Ry > Ry > +-- > Rp_1, let P(Ry,...,Rp—1) denote the procedure which selects
at stage ¢ in terms of the R;-largest sufficient statistics for stages 1 through ¢ combined,
it =1,...,p, where R, = 1. As in Gupta and Miescke (1984), if the loss function is
generalized accordingly, it can be shown that all final decision rules, including those which
are made whenever an R; turns out to be 1, as well as the subset selection at stage p — 1,
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are optimum in an analogous way to (4). And it can be shown that P{Ri,...,Rp—1) is
the unique Bayes procedure with respect to every i.i.d. prior among all procedures which
employ Ry,...,R,_y, if the loss at stage ¢ depends only on the parameters of the actually
selected populations at this stage. In this case, the procedure turns out to be admissible
in D(Ry,...,Rp_1), the natural generalization of D(R).

The situation becomes more favorable if Ry = ¢y,...,R,—1 = t71 are fixed, where
of course t; > t3 > .-+ > t,_y holds. The procedure P(ty,.. ‘tp 1) can be shown
to be the unique Bayes procedure, with respect to every symmetric prior, within the class
D(t1,...,tp—1). Thus it is also, uniformly in §, optimum p-stage procedure in an analogous
way to (4) within the class Dy (tl, «+.»tp—1). The proof of these facts is essentially the same
as in Gupta and Miescke (1984), where one has only to take care of the slight technical
modification concerning the function d in (7), which has been discussed at the end of the
proof of Theorem 1. One problem, however, remains open: The least favorable parameter
configuration in 2(A) under a 0-1 loss, or more specifically, for— the proba,blhty of finally
selecting the best population, is not known for p > 2. T

Finally, some comments about ¢, the shape parameter of the underlying Weibull
family, have to be made. We could have allowed from the very beginning that 7y,..., 7k
have known shape parameters a;,. .., ok, which are not necessarily identical. If U;, V;, and
T; were defined as in (2), but now with ¢; instead of a, # = 1,..., k, then all subsequent
results would still be true because of the facts stated in Lemma 1. However, we did not
follow this idea since the statistical relevance of selecting the population with the smallest
0; would become rather questionable.

A more interesting problem would be the following. Suppose that mq,...,7; have a
common shape parameter «, which is unknown. Great difficulties arise in this situation,
mainly because a reduction by sufficiency, as it was done before quite successfully in (2),
is no longer possible here. The maximum likelihood approach, as.it was.utilized in the two
papers of Kingston and Patel (1980), would lead in D(t) to a procedure which is almost
identical with P(t). The only difference is that at stage 1, « is replaced by the maximum
likelihood estimator &;, and at stage 2, e in U; and V;, ¢+ = 1,...,k, is replaced by the
overall maximum likelihood estimator &,, which is based on all observed failure times. It
is not known how good this procedure actually is.

-

If a bound e, < o (or a* > a) were known, this would not be of any help. Since if we
used P (t) with e, in (2) as a substitute for the unknown a, the resulting procedure would
perform at the actual a worse than if o, were the right shape parameter. This is a direct
consequence of Theorem 1. Therefore, a bound of « is of no use if we wish to control the
probability of a correct selection from below.

The most promising problem, however, appears to be the search for conditions under
which a 2-stage procedure P(t) is preferable to a 1-stage procedure P, which employs the
same total number of failures. It has been formulated at the end of Section 3.
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