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SYNOPTIC ABSTRACT

A selection and ranking procedure based on sample medians for Tukey's
genera]izedrsymme;ric lambda populations is considered. Also,the properties
of the proposed procedure such as asymptotic relative effiéfgncies (ARE) are
studied. Tables of constants necessary to carry out-th;'progedures,along
with ARE's of the proposed procedure,are computed and tabhiated. The
performance of the procedure is studied-under both a slippage-configuration
and an equi-spaced configuration . An application of the lambda distribution
for approximating some constants used in selection and ranking problems

for some well-known symmetric distributions is discussed.
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1. INTRODUCTION

Tukey's generalized lambda distribution (hereafter called lambda
distribution) was suggested by Tukey (1960) as a wide class of symmetric
distributions. It has been generalized by Ramberg and Schmeiser (1972,
1974) so as to include both symmetric and asymmetric distributions. Let

F(.) denote the cdf of a lambda distribution and let F'1(-) be its inverse.

Then for 02 p < 1 and x € R,

- Y Y
x=Fp)=e+gip ! - (1-p) %), .

where 6 and g are location and scale parameters, respectivély, and Y1 and

Y, are shape parameters. If Y = yzartben the lambda distribution is
symmetric. Originally, Ramberg and Schmeiser (1972, 1974) generalized

and used the lambda distribution for the purpose of generation of continuous
unimodal symmetric and asymmetric random variates. Moberg, Ramberg and
Randles (1978) have used the lambda distribution for Monte Carlo studies to
check the robustness of the adaptive M-estimator for the selection problem
under the indifference zone approach formulation. However, as can be seen
from Table 5 in Section 5, the lambda distribution can be used to ;Eproximate
many continuous theoretical distributions and empirical distributions. Also,

compared with other families of distributions, the lambda family of distributions

-



is known to be simple, flexible and easy to use as well as it is quite broad
and general. Ramberg et al. (1979), Mykytka and Ramberg (1979):7ém0ng‘ others,
have considered fitting an appropriate lambda distribution to a set of data.
Hogg, Fisher and Randles (1975) have studied the (empirical) power of the
adaptive distribution-free test by using the lambda distribution for various
combinations of skewness and kurtosis. Joiner and Rosenblatt (1971) have
studied the problem of the distribution of ranges of samples from the Tambda
distributign. It has also been shown by Sohn (1985) that the lambda distribution
can be used to dbﬁroximate the distribution of the sample mean of some
symmetric continuous distributions which are not infjni;gly_aﬁvisib1e. For
example, Goel (1974) has derived the distribution of the sample mean from a
logistic population as a series by Q§iqg the method of characteristic functions
and has provided tables for the cdf for n = 2(1)12 at points 0.00(0.01)3.89

and n = 13(1)15 at points 1.2(0.01)3.89. By using the lambda distribution, the
cdf of the logistic sample mean can be computed easily. This was done- by

Sohn (1985). Comparison of the two sets of tabulated values shows that the

maximum difference is less than 0.00155 for all values of n. This maximum

difference occurs at the point x = 0.6 for all values of.n. _Eqr*x_z 1.0,
the difference decreases as x increases and for x € [1.2, 3.89],'t%é maximum
difference is less than 0.0007 for all n. The above discussion shows that
the distribution of the sample mean of a logistic population can be approxima-
ted very well by using the Tambda distribution.

For statistical selection and ranking problems, the usé of the Tambda
distribution as a model provides results applicable to sever;1 pé}ametric
distributions, at least to get good approximate results and, of course, for

the lambda distribution itself. Furthermore, by changing the values of the



parameters of the lambda distribution, we can examine the performance of the
selection procedures and thus can 1nyestigate the robustness bfﬁthe statistical
selection procedures.

It is well-known that for a symmetric distribution the sample median is
an unbiased estimate of the location parameter and is robust in the presence
of contamination from heavy-tailed distributions. Hence selection procedures
based on sample medians, under the formulation of the subset selection approach,
have been'déVe]oped for several distributions. Gupta and Leong (1979) have
considered a prdéédure for selecting the largest Tocation parameter for the
case of Lap]age distributions. Gupta and Singh (1980) ;gve_gtudied the same
problem for normal distributions. Lorenzen and McDonald (1981) have proposed
and studied procedures based on samgle}pedians for the case of logistic
distributions.

In this paper, we are concerned with developing statistical selection
procedures based on sample medians for selecting the population associated
with the largest unknown location parameter among k symmetric lambda
distributions with different (unknown) location paraﬁeters. In Sections 2
and 3, statistical selection procedures are.proposed anqﬂthejr properties
and performance are investigated. A numerical example is given'iﬁNSection
4. Applications of the lambda distribution to the statistical selection and

ranking problems for various parametric models are made in Section 5.

oS

2. FORMULATION OF THE PROBLEM

Let mysmpse.ism be k(> 2) independent populations which are characterized
by observable random variables X1,X2,...,Xk, respectively. Lef‘Xi follow a
symmetric lambda distribution F(xlei, 8, v), where 0 is a location parameter, g and

v are known common scale and shape parameters. Without Toss of generality, we



assume that Var(X.) =1, i = 1,2,...,k, where v
Var(X.) = L N [P(Y+1)]2 | (1)
i 2 ) 2v+1 T(2vy+2) '

Let Xij’ Jj=1,2,...,n be n independent observations from Tis i=1,2,...5k,

respectively. Let o = {g|p = (e],...,ek) € Elk} be the paFéﬁeter'§pace and
let o5 = {8 € ofe; =...= 6, }. Let 8[17 = -+ = Ok denote the ordered o,'s.
The popu]atign associated with e[k] is called the best population. Also Tet
T(4) denoééftheipgpu1ation corresponding to 6[1]. It is assumed that no

prior knowledge is available for the correct pairing be;weén;the sets, 0. and
(i) i=1,25...,k. Our goal is to define a procedure’toﬁsg]ect a nontrivial
(nonempty) subset including the best population so as to satisfy the basic
P*-condition, i.e., ;zg Pe(CSlR)_i P*; -where CS stands for a correct selection

(which means selection of any subset which includes the best). For convenience, let

n=2ml (m>1), and let Xi: be the sample median of - Let X[]]: m+] =

m+1

s. Also let X( be the

X[z]: ] S e 5-X[k]: mt1 be ordered Xi: n+1

sample median corresponding to 6[1]. Now we propose the following selection

i): mtl

rule RT:

Rr: Select n, if and only if X, ., E.X[k]; me1 - do°

where do(z_U) is chosen so as to satisfy the P*-condition.
Let f(-) and F(+) denote the pdf and cdf of Xi under 9 € 2p- Then the

following theorem holds.



Theorem 1. For the rule RT’

inf P_(CS|R;) = inf P (CS|R;)
ocn 2 T e, @ T

0 ,
_ (2me1)! 7 ke -
o i-%iﬁ%@-fw IF(x+d0)(m+1’m+1)[F(x):Im
- [1-FOO T () dx, @

where Ix(a,b) is an incomplete beta function with paramgterS*a and b.

Proof. The proof follows immediately by using the generaf theory developed

in Gupta and Panchapakesan (1979). < .

Corollary 1. By equating the right-hand-side of (2) to P*, one can

obtain values of d0 = do(k,m,P*) for various values of k, m and P*.

Values of dj = do(k, m, P*) are given in Table 1 for m-=‘P(i}5,
k = 2,3(2)9,10,11, P* = 0.90, 0.95 and for (8, y) = (-0.0466, -0.0246),
(-0.0870, -0.0443), (-0.1389, -0.0667) and (-0.2306,_50.1045), where the
corresponding values of kurtosis are 4.6, 5.0, 5.6 and 7.0, respectively
and the common variance is 1.

Table 1 approximately



3. PROPERTIES AND PERFORMANCE OF THE PROPOSED PROCEDURE RT -

For any rule R, let ¢1(y1,...,yk) be the probability that 1) is selected
given the observations Y; of the statistics Yi’ i=1,...,k. The ¢, are called
the individual selection probabilities. Let p, = E[¢1(Y1,...,Yk)], where the
expectation is with respect to the distribution of ¥ = (Y1i:;;,Yk). Then P
denotes the probability that () is selected by the rule R.‘ .-

Definition 1.

(a) The rule R is strongly monotone in (1) if p; is nondecreasing 1in e[i]
when all other components but e[i] of o are kept fixed qnd’p{ is nonincreasing

in e[j] for each j # i when all components of 6 other than e[j] are kept fixed.

(b) For & € 2, R is said to be monotone if p, 2Py for 1 < i <J <k.
(c) Fore €aandl <i <k, Ris said to be unbiased if P; 2 Py-

Note that strong monotonicity for all i = monotonicity = unbiasedness.

" {d) R is said to be invariant (symmetric) if
¢i(y],..T,yi,...,yj,..-,yk) é ¢j(y]g-o.,yja---,yisj--,yk)o (3)

Now we have the following theorem.

Theorem 2. The rule RT has the following properties.

(a) The proposed selection procedure R is strongly monotone in
“(i)’ for all i = 1,2,...,k; hence RT i; monotone qnq gnbigseq.
(¢) The procedure R is imvariant. |

Let S denote the size of the subset selected by the ﬁu]e RT' Then the

—~

expected subset size, Ee(SlRT), is given by

v _
Eg(SlRT)-= L Pr{w(i) is selected}

i

K . :
? G(x+d0+e[i]-6[j])dG(x)., ) (4)
#



where G(-) is a cdf of Xi- 1 under ¢ € 2g- We have the following-result.

m+

Theorem 3. For given k and P*(1/k < P* < 1),

sup E_(S|R) > sup E,(S|R.) = k[ 6K~ T(x+d )dG(x)~ kP*. (5
een & 1~ 0€q, e T {m o4B(x)7 - (9)

Now under a slippage configuration, that is, 6[1] = ... = e[k-1] =
e[k]-d, where § > 0, the asymptotic relative efficiency (Aﬁﬁ) of the
<
proposed rule RT relative to the means procedure RG; wh?cb'w111 be

defined later, will be discussed.

Definition 2.

Under any given configuration of g let S' be the number of non-best
populations selected. For 0 < e < 1, let n1(s) and n2(€) be minimum numbers

of observations so that

E(S'IR) <es  i=1.2, (6)

for procedures R] and R2. Then the ARE 6f-the rule Rzi;é1ativert0»R] under

the configuration ¢ is defined by



n](s) . . L~

ARE(Ry,R;|8) = Tim L, CL
2 ] - €¢O n2 E S ( )

provided that both procedures R] and R2 satisfy the P*Acbhdition. In
the sequel, without loss of generality it will be assumed that »

‘ = - - - - . . ‘R 1 B i
6[1] cen 6[k-1] e[k] § = 0. Also, the procedure g is q§f1ned

by

Rg: Select =, 1if and only if Xy z_mgx Xj - des

where X,'s are sample means and dg 1s @ nonnegative constant chosen

} S e
so as to meet the P*-condition. Then the following tireorem holds.

Theorem 4. Under the slippagE"Cthiguration as defined above,

ARE(R;, R.|8) = 4£2(0)

T°
- 22, (8)

Proof. Proof is along the Tines of the proof in Lovenzen and Hebonald (1981)

and hence is omitted.

Table 2 provides ARE(RTzNRglé) for various values of
g and y for the following values of kurtosis u4/u§-= 1.8, 3.0, 4.2,
5.0(1.0) 9.0, with uy = 1., where M is the i-th central moment.



Table 2. Values of ARE(Ry, Rgle) .-

u4/u§ 8 Y ARE(RT, RGIQ)
1.8 .5744 1.0000 .3299
3.0 1974 .1349 6450 -
4. Coesox102 -.0%3m10°2 823 -
.0 -.0870 - .0443 .9068
6.0  -.1686 - .0802 .9886
) 7.0 -.2306 - .1045 1.0532
8.0 - .2800 - .1233 1.0867
9.0  -.3208  -.1350 1.1503-

It is known that (see Gupta and Singh (1980), Lorenzen and McDonald
(1981), and Gupta and Leong (1979)) for the slippage configuration, ARE's
of the median selection rules for the normal, logistic and double expo-
nential distributions are 0.6366, 0.8225 and 1.0000, respectively.

On the other hand, for values of kurtosis 3.0, 4.2, and 6.0

for the lambda distribution, the corresponding values of ARE(R RG{S
are 0.6454, 0.8235 and 0.9886, respect1vgjy: These d1fferences are
mainly due to the approximation by 1ahbda distr1but1oés w1th pardrie-
ters £ and vy for the corresponding distributions. Also one can see‘
that when the tail of the underlying distribution. becomes heaVier,
ARE(RT R ]e) increases and thus the rule RT becomes as eff1c1ent as

the procedure RG and the rule RT is more efficient than the rule RG

for very heavy-tailed distributions. o
Now the performance of the rule RT will be discussed in

terms of PQ(CS|RT), EQ(S'IRT) and PQ(CSIRT)/EQ(S'IRT). One can easily

verify the following:
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For ¢ € @,

1 k-1
Po(CSRy) = ‘2"‘"‘”' n1 , (m+1,m+1)
(m)< 0 = F[— {£Y-(1-t)" Yrdg+erq-6r41]

-[t(1-t)"at, - (9)

k — ,

EQ(S,RT) = 121 Pg{“(i) is selected|R.} -
i = P,(CS|R.) + E_(S'|R,) (10)

and i

]F[JB— ('lt)}+d 1970 57 ]
(m+1,m+1)[t(1-t)IMdt. (11)

Here two configurations are considered, i.e., a slippage config-
uration 6 = ... =06 = 8p, -6 and an equi-spaced configuration
"0 (k=11 7 °[k] aui-ep J

1] T B[eye = ... = 6[1]-(1-1)6 6[k]f(k-1)6, where § > 0. Under a

slippage configuration, equations (9) and (11) can be rewritten

as
1 . .
P (CSIR.) = ﬁgﬂilll. Ik°1 T ’ 1, i SRR | I
9 Ry Y éF[]g {tY-(1-t)Y}+a+d0](m+ m+1) [t (7-1)]"dt | (12)
and '

Ey(S"IRp) = (ks 1)Mj me1 me1)

m)2 0 F[] (t¥-(1- t)Y}+dOJ

.1 - (m+'l,m+'l)
F[- (t7-(1-t)+dg=6T" -

- [t(1-t)T"at. (13)
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Values of PQ(CSIRT), EQ(S'IRT) and PQ(CSIRT)/EQ(S'IRT) under both

a slippage configuration and an equi-spaced configuration afé‘tomputed for
= 0.1(0.2)0.5, m = 3,5, k = 5,7, P* = 0.90, 0.95 and (8,v) = (-0.0466, -0.0246),
(-0.2306, -0.1045). These are given in Tables 3 and 4. From these tables, -

the following conclusions can be drawn: —

(1) As the value of kurtosis increases, the value of P (CSIR [Eg(S! |Ry)

increases and hence the proposed rule RT can be more effect1ve (eff1c1ent)
as the peakedness of the d1str1but1on‘becomes Targer.

(2) Values of P (CSIR )/E (s’ IR ) for P* = 0.90 are uniform1y larger
than those for P* = 0.95 for all comb1nat1ons of va1ue$‘of k m and §

for slippage conf1gurat1ons and also for equi-spaced conf1gurat10ns.

One cou]d ant1c1pate th1s because. an increase in the value of P* would tend to
cause RT to select more non-best popu]at1ons compared with the

improvement on Pe CS|RT

These tabulated values may give some idea on the optimal choice of the value
of P* in the sense of - (approximately) maximizing the value of Pe(CisT)
and- (approximately) minimizing the values of E' §'{R ) s1mu1t;neous1y

(3) An increase in either §'or m: resu1ts in a decrease 1n E (S IR )s

however, the expected value of S' is more sens1t1ve to a change in §. As

5 becomes 1arqer, 1t decreases substant1a11y for Both conf1gurat1ons

o ot b St S =
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4. AN EXAMPLE -7

To illustrate the use of the proposed procedure we consider an
example with real data. The data are taken from Edwards and Hsu (1983).
Seven brands of water filters were tested for their ability to filter
microorganisms from the river water. A high count of microorganism
cultures grown for 24 hours on a given filter defines it as good. Three
observations were made on each of the seven brands. The data are
as folTaws.

Filter Sample Observations ‘ Mégian”
5 139,133,124 133“
7 127,125,114 125
1 117, 97, 70 97
3 112, 95, 87 95
2 108, 87, 72 87
6 66, 65, 61 65
4 68, 54, 53 54

We assume that the data belong to the genera]izéd syﬁhéfrfé lambda
distribuﬁion family with common values of the scale and shape parameters
B8, v, respectively. In order to have the variance in each brand equal to
unity, we assume the variance of each brand -is 176 (note the usual pooled
estimator of the common variance leads to this number approximately), and
hence each observation is divided by 13.27. By changing:Va1ués of 8 and v,

the results of using the selection procedure RT are summarized as follows:
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p* (85 v) dy-value Selected Subset
0.90 (-0.0466, -0.0246) 1.7380 15,7}
(-0.1389, -0.0667) 1.6905 {5,7}
(-0.2306, -0.1045) 1.6448 f5,7}
0.95 (-0.0466, -0.0246) 2.0462 15,7}
(-0.01389,—0.0667) 2.0000 {6,7F
(-0.2306,-0.1045) 1.9540 {5,7}

Here with (8, v) = (-0.0466, -0. 0246), (-0.1389, -0 0667) and
(-0.2306, -0 1045), lambda distribution has values of kurtos1s 4.6, 5.6,
7.0, respect1ve1y. From the above table, one finds that the procedure RT
selects the same subset for’reasonab]e perturbations in the values of (8,v)

thereby affecting the nature of the tails. This points to the ‘robust' behavior

of the selection rule RT against the underlying assumptions of various symmetric

distributions.
$ APPLICATIONS OF THE LAMBDA DISTRIBUTIONS

In this section, some applications of the lambda distribution for

the evaluation of the d-values of subset selection rules are illustrated.

e

Here we restrict our attention to the symmetric case. As mentioned
in the introduction, rules are illustrated. The Tambda distribution
can be used to approximate theoretical continuous symmetric distribu-

tions if values of locat¥on, scale and shapé parameters are hhosen properly.

Table 5 shows values of scale and shape parameters_s and v,

respectively, with which the lambda distribution can be used to

approximate some well-known symmetric distributions with Hy = 1.
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Table 5. Values of g and y for v

some well-known distributions

distribution u4/u§ B8 Y
uniform 1.80 .5774 1.0000 _
normaT 300 .1975 1349 ]
logistic 4.20 -.0659x1072  -.0363x107°
_ALaplace 6.00 -.1686 -.0802
-y with 5 df 9.00 -.3202 -.1359
t with 10 df  4.00 .0261 01487 <"
t with 36 df 3

.20 1563 b6 -

<.

Now we consider an approximation of values of dG of the procedure

RG defined in Section 2 for the normal model. If.one wants to use

the selection rule RG’ one needs values of dG and these values are

provided by many authors (for example, Gupta (1956), Gupta {1963 ),

Gupta, Nagel and Panchapakesan-( 1973), among others). But by using

the lambda distribution one can obtajn_apprpximateiya1ues of~dG, denoted by
qQ

G’ by solving the equation

[P od)dF(x) = pr, L O (14)
where F(.) is a cdf of the lambda distribution with a scale parameter
8 = 0.1975 and a shape parameter y = 0.1349. In the following table,
values of dG come from Gupta, Nagel and Panchapakesan ( 1973) and

values of dé'are evaluated from the equation (14).



Table 6. Values of dG and dGl - '
PPk dg dz
0.90 2 1.8125. 1.8126 -
5 2.5997 2.6024 - i
9 2.9301 2.9339
0.95 -2 2.3262  2.3279
5 3.0551 3.0596
T 9 3.3678 3.3728
0:99 2 3.2899 3.2031
5 3.9196 3.9227 -
9 4.1999 4.2015 -

<

From Table 6, we see that fHéFVé1ues of dé are fairly
close to those of dG' These agree to at least two decimal places.
Furthermore, values of dé are conservative (larger than values of dG);
hence the P*-condition will not be violated if one uses dé-va]ues in
place of dG-values.

Now we consider another approximation of the d-values of the sub-
set selection procedures based on sample medians for ‘the 1091§;}c
distribution and compare those values with values from tables of
Lorenzeh and McDonald ( 1981). We know that a Togistic distribution
can be-approximated by a lambda distribution with a scale parameter
8 = -0.0659x10"2 and a shape parameter y = -0.0363x10"2. In the
following table values of dt come from the table of Lorenéen and

McDonald ( 1981) and values of da are based on the approx{aétjéﬁ

by using the lambda distribution.

15



Table 7. Values of dt and da

16

Px 0.90 0.95
m
k d, d, d, d, )
2 | 2 0.879 0.879 1.137 1.137 -7
5 1.274 1.273 1.510 1.510 -
7 1.377 1.376 1.609 1.609
5 2 0.599 0.598 0.771 0.771
| s 0.863 0.863 1.019 1.018
- 7 0.931 0.930 ] 1.083 1.083
7 1 2- 0.514 0.513 0.661 0.661
5 0.740 0.739 0.872 0.872
| 7 0.797 0.797 0.927 0.928.
9 2 0.457 0.457 0.588 0.587
5 0.657 0.657 0.775 0.774
7 0.708 0.708 0.823 0.822

From Table 7, we can see that the approximation by using

the lambda distribution works fairly well.

The values agree with each

other at least to two decimal places and for many cases they agree up -

to three decimal places.

Based on the comparisons made so far it can be concluded that

approximations based on the lambda distribution with ppeperfyajﬁés

of scale and shape parameters work very well and we may not need

tables for selection procedures for different distributions.

More gehéra]]y, for any (parametric) statistical inference problem,

one may use the lambda distribution model to get approximate good

results. This advantage may be useful for developing package programs

for selection and ranking problems, since tables of con§?aqy§ for

selection procedures céh“be-prepared for ranges of VaTues of (B,y) of

practical interest.
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TABLE 1: Values of do for the Procedure Ry

(Bs Y) = (-0-0466s

m p*
1 0.9
0.95
2 0.90
0.95
3770.90
0.95
4 0.90
0.95
5 0.90
0.95

(oo Nan] QO (e Nen)

2

.0970
.4282

.8606
.1148

.7305
. 9440

.6455
.8330

.5846
.7537

3

1.3599
1.6788

1.0640
1.3064

0.9021
1.7046

0.7966
0.9739

0.7210
0.8806

-0.0246), kurtosis = 4.6

.6026
.9139

.2492
.4836

.0571
.2520

.9325
.1027

.8434
.9963

(8, v) = (-0.0870, -0.0443),

m px
1 0.90
0.95
2 0.9
0.95
3 0.9
0.95
4 - 0.90
5 0.95

)

— O

OO OO jes N

2

.0798
.4085

.8451
.0960

.7165
.9267

.6328
.8171

.5728
.7389

3

1.3399
1.6575

1.0455
1.2853

0.8852
1.0849

0.7811
0.9557

0.7067
0.8636

—_ R —)

OO

.5813
.8924

.2285
.4609 -

.0380
.2305

.9148
.0825

.8270
.9774

—

—

— O

— O

.7380
.0462

.3511
.5821

L1417
.3334

.0064
L1734

.9098
.0597

9

.8317
.1382

.4210
.6500

.1996
.3893

.0567. ,
.221% 1.2413 1.2585

.9549
.1030

10 1

178696 19033
2.1755 2.2088

1.4491 1.4740
1.6774 1.7017

1.2227 1.2433
1.4117 1.4316

1.6768 1.0946

.0.9725 0.9883

1.1204 1.1357

kurtosis = 5.0

.7166
.0252

.3295
.5589°
.1216
3111

.9876
.1524

.8923
.0400

9

.8107
.1180

.3990
6266

.1788
.3665

.2373
.2003

.9367
.0826

10 11

1.8488 1.8827
2.1557 2.1893

1.4270 -.1.4518

1.6539. .1,6782

1.2018
1.3887

1.22271
1.4085

1.0572
1.2195

1.0748
1.2365

0.9545
1.0998

0.9702
1.1150

—~— -
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p*

.90
.95

oo

0.90

.90
.95

.95

.90

0
0
0.90
0
0
0.95

Table 1 (continued)

(B, v) = (-0.1389, -0.0667), kurtosis =

—

.0589
.3845

.8264
.0732

0.6997

co o

.9059

.6175
.7979

.5586
0,

7210

(.Bs Y) =

.0231
.3427

0.7947

oo -

OO oo

.0345

.6714
.8706

.5917
.7656

.5349
.6911

— O

oo (e Nen)

O

()

.3156
.6315

.0231
.2597

.8649
L0611

.7625
.9336

.6894
.8430

3

.2736
.5861

.9851
.2159

.8306

1.0209

[eo N e/ QOO

L7312
.8965

.6605
.8086

— O

oo

R p—— )

— O

o

.5553
.8661

.2035
4334

.0149
.2045

.8135
.0582

.8071
.9546

5

.5101
.8196

.1608
.3862

.9759
.1604

.8576

1.0172

[N

.7739
.9164

—_0 — — N —

— O

— O

[N an]

.6905
.0000

.2828
.5064

.0973
.2840

.9500
.1093

-8712
.0160

7

.6448
.9540

.2587
4820

.0560
.2380

.9270
.0840

.8357 .
.9758

— O

— O

— D)

— O

— O

9

.7849
.0934

.3506
.5727

.1537
.3388

.9980
.1558

.9148
.0580

0.2306, -0.1045), kurtosis =

9

.7395
.0489

.3266
.5488

J111
.2917

.9744
.1300

.8780
.0166

5.6

10

1.8233
2.1315

1.4001
1.5996

1.1764
1.3609

1.0335-

Y.1745
L

0.9323
1.0749

7.0

10

1.7782
2.0877

1.3541

1.1338
1.3134

0.9935
1.1486

0.8949
1.0330

1.5759

-~ O

—_— =¥ R R ) ny —

—

11

.8575
1656

.4023
.6234

.1965
.3805

.0344
L1910

L9477
.0900

11

.8127
.1225

.3785

~H000

L1531
.3327

.0104
.1650

.9099
.0475
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Table 3. Performance of the Rule RT under the slippage

-

21

configuration, 6 = (6,6,...,0+3), where & > 0. -
(g, vy) = (-0.0466, -0.0246), kurtosis = 4.6
p* 0.90 0.95
5§ k_m__ P(CS)  E(S')  P(CS)/E(S') P(CS) E(S') _ P(CS)/E(S')

0.1 5 3 .9291  3.5597 .2610 .9661 3.7766  .2558
5  .9357  3.5462 .2639 .9698  3.7684 .2573
7 3 .9295  5.3580 .1735 .9663  5.6758 .1703
-5 .9363  5.3438 1752 .9701  5.6670 1712
0.3 5 3 ..9668  3.425 .2823 .9854  3.6937 .2668
5 .9765  3.3466 .2918 .9901  3:6408 .2720
7 3 .9674  5.2103 .1857 .9856s_ 5.5859 .1765
5 .9772 _ 5.1191 .1909 .9904 5.5253 1793
0.5 5 3 .9857  3.1912 .3089 .9941  3.5364 .2811
5 .9926  2.9772 <. ..3334 .9972  3.3759 .2954
7 3 .9862  4.9349 .1998 .9943  5.4048 .1840
5 .9929  4.6655 .2128 .9923  5.2078 .1915

(8, vy) = (-0.2306, -0.1045), kurtosis = 7.0

p* 0.90 0.95

s k m  P(CS)  E(S') _ P(CS)/E(S') P(CS) E(S') _ P(CS)/E(S')

0.1 5 3 .9306  3.5566 .2617 . .9668 . 3.7752-~  .2561
5 9380  3.5411 .2649 .9708 _ 3.7656 " .2578
7 3 .9310  5.3551 .1738 .9669  5.6744 .1704
5 .9385 _ 5.3382 .1758 9711 5.6642 1714
0.3 5 3  .9688  3.4053 .2845 .9861  3.6830 .2677
5 .9790  3.3107 .2957 .9911  3.6184 .2739
7 3 .9693  5.1892 .1868 .9863  5.5748 1769
5 .9795  5.0777 .1929 .9913 _ 5.5004 .1802
0.5 5 3  .9871  3.1332 .3150 .9946  3.5009 .2841
5 .9938  2.8719 .3460 .9976  3.3005 .3023
7 3 .9874  4.8677 .2028 .9947  5.3651 .1854
5 .9941  4.5331 .2193 .9977 _5.1165 .1950
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Table 4. Performance of the Rule Ry under the equally-spaced .
configuration, 8 = (6,6+8,...,0+(k-1)8), where 6 > 0

(8> v) = (-0.0466, -0.0246), . kurtpsis = 4.6..

p* 0.90 0.95

5 m P(CS)  E(S')  P(CSIEGS'T PGS EG'T PICSIZE(SY)
0.1 5 3 .9550  3.4127 .2798 9794 _ 3.6812 2661
5 .9633  3.3275 .2895 9837 - 3.6205 L2717
7 3 .9653  4.9594 .1946 .9844  5.4077 .1821
5  .9723  4.7363 .2054 .9882  5.2354 .1887
0.3 5 3 .9875  2.4713 .3996 9948  2.9066 .3423
5 9921 2.0643 .4806 .9969" - - 2.4834 .4014
7 3 .9914  2.8956 3024 9964 3.4703 2871
5 .9947  2.3105 .4305 .9979  2.7799 .3590
0.5 5 3 .95  1.5375  .6476 .9983  1.8930 .5273
5  .9979  1.1687 .8538 .9992  1.4495 6894
7 3 .9970  1.6943 .5884 - .9988  2.0555 4859
5 .9986  1.2889 7748 .9995  1.5700 _  .6366

(8, v) = (-0.2306, -0.1045) ;  kurtosis = 7.0

P 0.90 0,95

5k m_ P(CS) E(5'T_ _P(CSIZENS'Y PICS) E(S')  P(CSIZE(ST)
0.1 5 3 .958  3.3907 . - .2822 ~ .9801 _.3.6687 2672
5  .9656  3.2891 2936 .9846 - 3.5952 . .2739
7 3 .968  4.9027 1972 . .9849  5.3726 1833
5 .9747  4.6358  .2103 - .9889  5.1623 1916
0.3 5 3 .9884  2.2362 4231 .9950  2.7849 .3573
5 .9931 _ 1.9029 5219 9972~ 2.3131 4311

7 3 .9919  2.6909 .3686  .9966 " 3.2497 3067 |
5 .9953  2.1131 4710 .9981  2.5533 .3909
0.5 5 3 .9960  1.4010 7109 .9984  1.7399 5738
5 .9982  1.0443 .9559  .9993  1.3055 7655
7 3 .9973  1.5479 6443 .9989  1.8907 5283
5 1.1558 8642 .9996  1.4181 .7048
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