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The problem of finding classes of estimators which dominate the
usual estimator X of the mean vector u of a p-variate normal distri-
bution (p > 3) under general quadratic loss is analytically difficult in
cases-where the covariance matrix is unknown. Estimators of p in this
case depend upon X and an independent Wishart matrix W. In the
present paper, integration-by-parts methods for both the .multivariate
normal and Wishart distributions are combined to yield unbiased es-
timates of risk difference (versus X) for certain classés of estimators,
defined indirectly through a “seed” function h(X,W). An application
of this technique produces a new class of minimax estimators of .

1. Introduction. Assume that a p-dimensional (p > 3) random vector X = (X7, ..., X,) is

observed which is normally distributed with mean vector u and positive definite covariance
matrix ¥. It is desired to estimate p by an estimator 6 under the quadratic loss

(1.1) L(8; ., 3) = [tr(QE)] 71 (6 — 1)'Q(6 — ),

where @ is a known positive definite matrix and ¢r(A) stands for the trace of the matrix
A.

Since Y is assumed unknown, a random matrix W is observed along with X. It
is assumed that W is statistically independent of X and has a _p-dimensional Wishart
distribution with parameter T and degrees of freedom n,n > p+1. Estunators 6=246 (X W)
of p are evalua.ted in terms of their risk

R(6;,X) = E[ L(§(X,W); u,X) |.
The above situation can occur, for example, when i.i.d. observations, Y7, . , Yy are
taken from a p-dimensional normal distribution with mean vector x and covariance matrix
¥, and the data are reduced by sufficiency to

N N j
X=N1'YY, W=N'Y(-X)Vi-X), ~

=1 =1

——
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in which case E=N"1¥, n=N —1. v =7

Regardless of whether or not ¥ is known, and for any Q, the optimal equivariant
estimator 6o(X,W) = X of p is minimax. However, beginning with the landmark paper
of Stein (1956), a large body of research has been devoted to establishing broader and
broader classes of estimators which dominate 6 in risk, often substantially. For the most
part such research has concentrated upon cases where 2 is known (in which case W is
not needed), or known up to a positive scalar multiple 0. The most successful analytic
technique in these papers has been Stein’s (1981) 1ntegrat10n— by-parts identities for the
normal distribution, which permit construction of unbiased estimators of risk difference
(versus 6o = X) for competing estimators.

Some attention has also been given to the case @ = £¥~!, ¥ unknown. However, this
is a quite special situation (invariant loss), and also violates the assumption made in this
paper that Q is a known matrix. Under the assumption that ¥ is diagonal (or has known
eigenvectors), Berger and Bock (1976, 1977) and Shinozaki (1977) have found estimators
which dominate 60 in risk under losses (1.1), Q arbitrary. s

The case of completely unknown X has been the most resistant.t6 solution, even though
it would clearly be of practical importance to find estimators of y which are superior
to 8o (and thus minimax) in such situations. Berger et al (1977), Gleser (1979) and
Berger and Haff (1983) have succeeded in developing estimators which dominate 6, in risk
when no restrictions on ¥ (or Q) are made. However, in the first two papers proof of
risk domination depended upon the results of a simulation—a somewhat unsatisfactory
demonstration. Berger and Haff (1983) provide a completely analytic proof of dominance,
but for a fairly narrow class of estimators. Their method of attack depends upon Haff’s
(1977, 1979a, b, 1980) and Stein’s (unpublished) integration-by-parts techniques for the
Wishart distribution, but they do not obtain unbiased estimates of risk difference. :

The present paper uses the integration-by-parts techniques for the normal and Wishart
distributions in a new way. In Section 2, it is shown how to start with a “seed” func-
tion h(X,W) = (h1(X,W),...,hp(X, W)) and use this function to construct estimators
6(X,W) of u having an unblased estimator of the (weighted) risk difference :

tr(QE{R(8; 4, Z) — R(bo; 1, )}

versus 6o = X. In Section 3, the new method is applied to provide a completely analytic
proof that a certain intuitively appealing class of estimators dominates &g in risk.

2. The General Method. To reduce notational complexity, in the remainder of this paper
it is assumed that

(2.1) | Q=1, L

where I, is the p-dimensional identity matrix. As is verified in greater detail in Berger and
Haff (1983), estimators §*(X, W) for the case of general @ can be obtained from estimators
6(X,W) for the case (2.1) as follows:

(2.2) (X, W) = (T")Y6(T'X, T'WT)),
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where T is any solution of @ = TT’. An estimator §(X,W) dominates 8o =X in risk in
the case (2.1) if and only if 6*(X,W) defined by (2.2) dominates X in risk-when the loss
function (1.1) is defined by general Q.

For any (scalar, vector, matrix) function F(X,W), the notations

EX[F(X’W)]’ EW[F(X’W)L

respectively denote expectation of F(X,W) taken over X (with W‘ﬁxed) , and over W
(with X fixed). When expectation jointly over both X and W is meant, no subscripts on
E will be used. Since X and W are assumed independent, ’

——E[F(X,W)] = Ex{Ew[F(X,W)]} = Ew{Ex[F(X,W)]}

provided one of the above expectations (E, Ex Ew, Ew Ex) exists. _

Let T =T (W) be a p X p matrix function of W = ((wi;)). I T =1(t:;)), define

P
Oti; dti;

*T(py = § § I,
DTy 4 Qwy; T Ow;;

v i#j

Under conditions on T'(W) specified in Haff (19;79b), it can be shown [see Equation (2.4)
in Haff (1980)] that the following identity holds:

Ew[tT(Tz_l)] = 2Ew[D*T(%)] + (n A l)Ew[tT(W_lT)].

Rewriting this equation in the form to be used in this section,

n_l_'{ Bwl[tr(TE™")] - 2Bw [D* Ty, ]}

(2.3) Ewltr(W™'T)] = — p—

Let a 4 ' T

h(X, W) = (h1(X, W), ha(X, W), ..., he(X,W))’

be a p-dimensional vector-valued function of X and W. Define

(2.4 T =T(X,W) = (X = w' (X, W)W = (X — ) [Wh(X,W)]".
Using the second representation of T'(X,W) in (2.4), it is easy to shox_ﬁf thaE
(2.5) v D*Tyy = (X, W)(X — u), -

where r(X, W) = (ry(X,W),...,rp(X,W))" and

SWh(X,W)): | 1 > B(Wh(X,W));

Bw,-,- 2 oy 3w,-_,-

(2.6) ri(X, W) = , i=1,...,p.
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_ Here, for any vector U = (u1,...,up) the notation (U); denotes u;, the ith component of
U. Alternatively, for future applications, it may be useful to note that .
1 122
lJ . — . —
(2.6") r(X,W) = (p+ V(X W) + 3 Z 2_:

j=1k=1

wr; ] chj(l + 6ij),

where 6;; is the Kronecker delta. This can be shown using the fifst representation of
T(X,W) in (2.4). o

It now follows from (2.3), (2.4) and (2.5) that when h(X,W) allows the regularity
conditions underlying Haff’s identity (2.3) to be met for T(X,W) defined by (2.4),

E[W(X,W)(X — )] = Ex{Ewltr(W 'T(X,W))]}

(2.7) = BT W)ET) ~ 2 (W)X - W)}
Let
(2.8) W) = (W) + s (X, W).
From (2.4) and (2.7),
B (X, W)(X = )] = m—— Bltr(T(X, W)= )
= n—_;—_—lEW{EX[h’(X, wWYWE X — )}

However, if h(X,W) satisfies the regularity conditions for the integration-by-parts identity
for the multivariate normal distribution [see Stein (1981), Berger and Haff (1983)},

(2.9) Ex [ (X, W)WE (X — )] = Ex[tr(W VAW,
where .
VA(X,W) = ((3_”%1@))
Consequently, - -
(2.10) E['(X,W)(X — p)] = F;—_—IE[tr(W VA(X,W))].

Equation (2.10) is the key result needed to prove the following theorem.”

THEOREM 1. Let h(X,W) satisfy the regularity conditions needed to establish the

identities (2.7) and (2.9), and let ¢(X,W) be defined from h(X,W) by (2.6) and (2.8).

Define the estimator ,
§(X, W) = X — t(X,W).
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Then if §( X, W) has finite risk, .-

(2.11) tr(Z)[R(6; 1, &) — R(bos 1, X)] = E[M(X,W)],
where
(2.12) M(X,W) =t'(X,W)t(X,W) — (

LU Vh(i(;W)).

Proof. First, note that 6(X, W) to have finite risk, it is sufficient that E[t'(X, W)t(X,W)] <
co. By a standard argument (remember that @ = I,),

tr(S)[R6; 1, T)) — R(bo; 0, T)] = B[t/ (X,W)e(X, W)] — 2B[¢'(X, W) (X — )]

The assertion of the theorem is now a direct consequence of (2.10). q.e.d.

Theorem 1 describes an admittedly indirect way of arriving:at ani estimator §(X, W)
for which one can determine an unbiased estimate of risk differénce: The big advantage
of this approach is the unbiased estimate of risk difference, which can simplify verification
of minimaxity. The disadvantage of the approach is that one starts with one possible
adjustment X — h(X,W) to X, but winds up with a different adjusted estimator X —
t(X,W). This complicates searching for good (minimax) estimators. To apply Theorem 1
to a given estimator §(X,W) = X — ¢(X,W), one must solve the set of partial differential
equations defined by (2.6) and (2.8) for h(X,W), and then check that h(X,W) satisfies
the required regularity conditions.

3. A Class of Minimax Estimators. Let

b(W)

(3.1) h(X,W) = [WTX

] w-lx,"

where b(W) is a positive scalar function of W -which is contim:rdusly_;diffé?r\gntia.ble as a
function of the p(p + 1)/2 free elements of W. Define the matrix

o - (2200

where 9* is the symmetric partial derivative:

d log b(W .
d* log b(W) 34_“ , =7

_ 3 -
o*w;; | 19logb(W) . . -7
J Q—W, 1% 3. -

Using the fact that when W1 = ((w*™))

Qukm _ _wki,wjm _ wmiwjk, z;é 7,
awij _wkzwzm, 7 = ]',
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it can be seen that L

O_(x'w-1X) = (X'WN)i(X'W); (2~ 6).
ow;;
Consequently,
. . hw—1 N
AWh(X,W)|; _ X,;b(W) (X'W~1X) ob(W) @ (X'W—IX)}
Oow;; (.X’W_IAX)2 b(W) ow;; ow;; < 7
_ X]b(W) dlog b(W) n (2 — &,;j)(X’W_l),;(X’Wil)j
(X’W_IX) awi,- (X'W_IX) )
It then follows from (2.6) and the definition of U(W) that
- b(W)
It is also straightforward to show that -
: 2w
(3.2) trW VA(X,W)] = tr[V(Wh(X,W))] = (p—25(W)

X'W-1X )
Finally, it is not difficult (see Berger and Haff, 1983) to show that h(X,W) satisfies the
regularity conditions assumed in proving The6rem 1.

Hence, consider the class of estimators

(3.3) ' §(X,W) =X —t(X,W)

where

(34) X, W)=(1+ n—_—%)h(X,W) o _i_ . [ X,”V(VW_)I X] U)X
1

T h—p-1)(X W-IX) {(n— p_+_1)W—1?{_fr 2 U(W)}(}

- e

By Theorem 1,

(3.5) (D[R ) — R(Goi, D)) = E[M(X, W)]
where
(3.6) M(X,W) = ¢ (X, W)t(X, W) — (;L_—i;—l)tr[WVh(X,W)].

Since for z,y any p-dimensional column vectors (z # 0) and ci, ¢2 :a.ny two scalars, the
Cauchy-Schwarz inequality yields ~ .

—

(c1z + c2y)'(c1z + cay) = ¢? z'r+2eree Ty + c2y'y
< les]? @z +2 |ea] [e2l (22 y'y) 7 + lea|*yy

ik
y'y\?
|01|+|cz|<z,x) ] ,

6
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it follows directly from (3.4) that T

(X, WX, W) <

b2 (W) X'W 2 X <o o x
(n—p— 1)2(X'W—1X)2 {(" —pH1)+2 [ X'W—2X } } '

Assume that

(3.7) U'W)UW) <W2 -

in the ordering of positive semi-definiteness for matrices. It thus follows that

(3.8) .“_t’;(X,W)t(X,W)g b*(W)(n—p+3)2 erw—zx].

(n—p—-12(X'W-1X)| | X'W~-1X

However for all X, o -

X'wW—2x 1 .

max W) =y

(39) XWX S

where Amax(A), Amin(A4) denote the largest and smallest eigenvalues, respectively, of a
symmetric matrix A. Consequently, it follows from (3.2), (3.6), (3.8) and (3.9) that

b(W) (n—p+3)%W)
= p—)XWIX { " p =D (¥) 2P 2)} :

(3.10) M(X,W) <

THEOREM 2. If b(W) satisfies (3.7) and also

20 —2)(n—p—1),
b(W) < (n o+ 3)2 Amm(vv),

then the estimator §(X, W) defined by (3.3) and (3.4) dominates‘ﬁo(X,‘VI{.)f:»—;X in risk.
Proof. This is a direct consequence of (3.5) and (3.10). q.e.d. '

To show that the conditions of Theorem 2 are not contradictory, so that the class of
estimators 6(X,W) in Theorem 2 is not empty, consider choosing

() = Amin(W), > 0.

It is shown in Berger and Haff (1983) that for this choice of b(W),

where g is the characteristic vector of W corresponding to Amin (W), ¢'g = 1. Hence it is

easily seen that
! = —— _gd <W™2,
U'W)U(W) = 1 w9 =

min
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Thus, when (W) = ¢Amin (W), the conditions of Theorem 2 are met when — ~

< 2p=2n-p-1)
=T (n-p+3?

Of course, other choices of b(W) are possible. For example, we can use

(W) = cltr(W 1)1 .

—

The class of estimators covered by Theorem 2 is closely related to (subsets of) the
classes of estimators considered by Gleser (1979) and Berger and Haff (1983). Indeed,
the estimators discussed in Theorem 2 can be regarded as adjustments to special cases of
estimators considered by these authors. Results concerning minimaxity of adjustments to
the more genéral estimators considered by Gleser (1979) and Berger and Haff (1983) can
be established using the methods of Section 2. One can also consider the minimaxity of

adjustments to estimators of the form -
L)

b(W) ~1 T
XWX

although the analysis is more complicated, and the resulting adjusted estimators are less
attractive in form. However, the purposé ‘heére has been to illustrate application of the
methods of Section 2. A comparison of the analysis and results here to the arguments
and results in Berger et al (1977), Gleser (1979) or Berger and Haff (1983) should give
convincing evidence of the usefulness and relative simplicity of the methods of Section 2.

X —

Acknowledgement. I am grateful to the Associate Editor and a referee for helpful comments
that strengthened the exposition and conclusions in this paper.

REFERENCES

(1] BERGER, J. and BOCK, M. E. (1976). Combining independent normal mean esti-
mation problems with unknown variances. Ann. Statist. 4, 642-648.

[2] BERGER, J. and BOCK, M. E. (1977). Improved minimax estimators of normal
mean vectors for certain types of covariance matrices. In Statistical Decision Theory
and Related Topics II (S. S. Gupta and D. S. Moore, eds.). Academic Press, N.Y.

3] BERGER, J. , BOCK, M. E. , BROWN, L. D. , CASELLA, G. and GLESER, L. J.
(1977). Mlnlmax estimation of a normal mean Vector for arbitrary quadratlc loss and
unknown covariance matrix. Ann. Statist. 5, 763-771.

8



4]

(5]

[6]

7]

8]

9]

[10]

[11]

[12]

BERGER, J. and HAFF, L. R. (1983). A class of minimax estimators of-a normal
mean vector for arbitrary quadratic loss and unknown covariance matrix. Statistics
and Decisions 1, 105-129. T '

GLESER, L. J. (1979). Minimax estimation of a normal mean vector when the covari-
ance matrix is unknown. Ann. Statist. 7, 838-846.

HAFF, L. R. (1977). Minimax estimators for a multinormal precisioﬁ~matrix. J.
Multivariate Anal. 7, 374-385.

HAFF, L-R. (1979a) Estimation of the inverse covariance matrix: Random mixtures
of the inverse Wishart matrix and the identity. Ann. Statist. 7, 1264-1276.

HAFF, L. R. (1979b). An identity for the Wishart dlstrlbut,lon W1th applications. J.
Multivariate Anal. 9, 531-542.

HAFF, L. R. (1980). Empirical Bayes estlma.tlon of the multivariate normal covariance
matrix. Ann. Statist. 8, 586-597.

SHINOZAKI, N. (1977). Simultaneous estimation of the means of independent vari-
ables with unknown variances. Keio Math. Sem. Rep. 2, 75-79.

STEIN, C. (1956). Inadmissibility of the usual estimator for the mean of multivariate
normal distribution. Proc. Third Berkeley Symp. Math. Statist. Probability 1, 197-206.
University of California Press.

e

STEIN, C. (1981). Estimation of the mean of a multivariate normal dis{:fivgutipn. Ann.
Statist. 9, 1135-1151.



