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Lognormal regression model with unknown error variance is considered.
We give a class of estimators of the regression coefficients vector
improviﬁéfhpoq;traditiona] estimator when the number of independent
variables is at»1eaSt three. The relationship between tﬁege estimators
on one hand.and James-Stein type estimators of the normal-mean and

improved estimators of the normal variance on another hand is discussed.
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1. Introduction
In this paper we consider a lognormal regressiom model which 1is
often used to describe a production process in economics (see Dhrymes

(1962), Goldberger (1968), Zellner (1971)). Namely, we assume that

z, = log y, = 8y Xsq teent 8 Xgp toegs 1= Ty...5n (1.1)

where x's are given values of independent (exp]anatohy) vé%iab]es,
6's are unkhown regression coefficients, and ¢'s dre fhdebendent
normal errors each with zero mean and unknown variance 02. The
observations y's in (1.1) typica]iyrgépresent economic output at n
successive time moments.

Under this model the minimum variance linear unbiased
estimate of 6 is the least squares regression estimator
6 = (XTX)'1XTZ. We assume that the design matrix X has full rank k.

It is well known that 6 has multivariate normal distribution with

mean ¢ and covariance matrix 022 where ) = (x )']. Also the .

scaled residual sum of squares

T
(

(2-X8) T (Z T %8)/0% = §%/6°

has x2 distribution with n-k degress of freedom. -
In the problem of predicting next value of y or that of
evaluating regression coefficients it is often of interest to estimate

E exp(ei) = exp {ei + bicz} rather than Eéi = 61' For instance in



the Health Insurance study mentioned by Duan (1983) one needs to make
conclusions about mean do]]ér expenditures, not log-dollar-expenditures.
Thus we consider here the estimation problem of the parametric vector

o + 02 % b, where b is a given vector, on the basis ofinorma]

g

observation U with mean & and covariance matrix czz. It‘}% also
assumed that statistic 52 such that Sz/o2 has X2 distribution is
available._

The-1oss,funct10n L is considered in this paper has the form

-

L (6,038) = |]6 - £]]2 = [|s - 6 - osb|[%. - (1.2)

s

A1l our results are also ture for more general quadratic loss

Zwi(di -0y - ozbi)2 where W, are positive weights.

Traditional estimators & of & have the form

5(U,S) = U + S2d

for some vector d. It is easy to see that under (1.2) the best
choice of.d is d = d0 = vb/(v + 1) where v-1 is the number of
degrees of freedom of X2-distribution. Thus we shall study the

admissibility of estimator

5,(U,S) = U + s25b/ (vH1). -



Notice that we can and will assume that » = I. Indeed.éhev
inadmissibility of 8, in the case £ = I is equivalent to inadmfssi-
bility of 5, for arbitrary £. (If an estimator 6](U,S) is better
than 60 for £ = I, then z'% él(z%U,S) improves upon 60 for;arbitrary
positive definite ). The inadmissibility of 85 will be‘B?oveh_fpr
k > 3.

Notice that the admissibility of this estimator even for k = 1
is not eJidenty, In fact the natural estimator of 02, Sz/(v+1) is
not admissible when 6 is unknown (see Stein (1964), Brown¢(1968),
Brewster and Zidek (1974), Strawderman (1974)). Rukh;h (1986) proved
that 8, is inadmissible when k = 1 by showing that Steiﬁ‘s necessary
condition for admissibility is not met. However explicit improve-
ments over 8, are not known when k = 1. Analogously
to the estimation problem of a normal mean, the traditional estimator
is inadmissible when k > 3, and we demonstrate this fact by con- |
structing a class of procedures with uniformly smaller risk. The
main difficulty is that our problem is not invariant under usual

groups of transformations and that the risk is not a %ﬁncthn‘oﬁxmaxima1

invariant as in many other multivariate estimation problems.

2. Inadmissibility Result

In this Section U denotes normal random k-dimensional vector with
unknown mean 6 and covariance matrix 021, and 52/02 is a éhi-square
random variable with v-1 degrees of freedom. To estimate pafémetric
vector o + ozb, where b is given, we consider a class of estimators of

the form



8(U,S) = (1—r52/|[ u || 2) U+ S2(1 - o(]| U |} /S))b/(v+1)).(2.1) -

where r is a constant and ¢ is a positive differentiable function.

Theorem. Estimators (2.1) improve upon 8, for Toss fanction (1.2)

if 0 <r < 2(k-2)/(v+1) and ¢(Z) = ¢(Z)(1 + ZZ)'C, c > 0, where ¢ is a

nonincreasing function

0 < y(Z) < D/A,

with

R

D = D(C,\)) = min{Z/(2+c),

[B((v+7)/2+c,3) B((v+3)/2,2) - B((v+3)/2+c,3) B((v+4)2,2)]

/B((v+3)/2,2) B((v+7)/2+2c,%)}, - (2.2)

and A = A(r,v) is defined by (2.7).
Proof. One has for an estimator (2.1)

R(6,038)

k
=Y E_(U, 2
1

2 2
oolUs = rSTU/ITU 1% -e)

+ b 2 e, (SP(1-6)/(wH) - o)



k

2 2 2
+ 2; biEg (Us=rSTUL/|[U |1 - 8,)(S7(T=6)/(v+1)-0")
=R+ [ b || %Ry + 2]b.0.. ‘_-— (2.3)

Integrating by parts (see Efron and Morris (1976), Stein (1981))
one obtdins

2 4

_ 2 ] 2
R, = o%k-2rE, (Us=0,)U/[| U || ° E, S

2. 4 12
. r Eecifuﬁ|y Ey S

= Pl (r2(s1) - 2r(o-)(-2))E ;1| U ]| 72

with n = 8/0.

It follows that

i
0 <r < 2(k-2)/(v+1)

and the optimal choice of r is

r=ry = (k=2)/(v+1)



Now we consider the last term in (2.3).

one obtains

1t

Notice that with

U]

so that

Q. = rEeO

4 2
rEg UsoST/LII U |

E

o

(1,

8o

3

(U,

i

v+l)

-1

- estu/f o 2 -

- 0,)5%/(v+1)

E U U |

~ .

ei)(52(1-¢)/(v+1)3§2)

(vi1)]

3

)

a normalizing constant f(||U || )

En] {S¢'/U} =

En] {L(v+H

o3

FLU ) ] DOo)sY
0

vil)

-1

2 -2
E Ul U]

£l u D

)s2-s*19/03,
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(2.4)
full f s (Il U |f /s)ds
0
w2 -s2)2
le s([1U || /s)ds
[(r+1)52-v-1]. -

2rs% - U o) -

Integrating by parts ..



Thus R(6,036 )/o2 is a quadratic polynomial in ¢, and

R(6,0:8) < R(e,c;éo)

if

X 2 2
—f(v+1)” Z by E 1U;S Zoll U 1 "2 ((r+1)5%-0-1)]

<1112 P @k-2)-r(w#1)) £y [l U7

s

< E LT/ 0m)-)? - (82(1-0)/ (1) -1)?T

Because of Cauchy-Schwarz inequality

k
2 -2 2 2
E; b UsSTell U 1T ((re1)S7-v-1)] )
s (v2-1 U () sz-v-1)2Eﬁ]s4¢ |
2 2 4 -2
= |Ib | ° (v+1)+2v) E_1ST0E 111U ||

so that (2.5) would follow from the following inequality

(2.5)



£ 5% < 2r(20-2)r () (1) (r2(F1)020)
N En152¢(52—52¢/2-v—1) r
or for all n |
i?;n152¢(52—AS s-v-1) | (2.6)
where )
A=i o+ (r2(v2+1)+2v)(v;i)2/[2r(2(k-2)-r(v+1))]. (2.7)

To prove (2.6) we use the approach of Strawderman's paper (1974)
where a class of functions ¢ satisfying to (2.6) for A = 3 has been
found. Analysis of Strawderman's proof of Theoremul shows that
functions ¢ specified in the condition'of'OUr‘Theoremfmeethcqﬁaition

(2.6).

3. Discussion

Theorem of Section Zﬂ;hows that an 1mpr$vement upon traditiona]
estimator U + Szb/(v+1) of 6 + ozb is obtained by combining_Stein—
James improvement (1-rSZ/H Ui 2)U over U as an estimator of ® and

Strawderman's improvement 82(1-¢) over 82 as an estimator of 02. It

seems to be natural to expect that such a combination will be an improve-



ment itself. However this is far from being true in general,-namely, .
a linear combination of improved estimators of 6 and 02 will not always pro-
vide a better estimator of the combination of 6 and 02. (For instance,
0+s2(1-4)b/(w#1) is not better than U+s2b/(v+1) for any ¢ when k = 1,
see Rukhin (1986)). The key fact which guarantees the 1mp}oved-eharac-
ter of estimator (2.1) is uncorrelatedness of Stein-James estimator
(1-rS2/ U] )U and S/ (u+1)-0® which is essentially formula (2.4).
Also notice that the technique of solving differentia] inequalities
which arise from the unbiased estimates of the risk fynct{Sn does not
work in our:case. Indeed let § = 60-2h, where h = h(dls)_is a smooth
vector-function. Then

2 2

072, [(55-8)°-(8,-2h-£)°] = 4E, Dh
where
oh = -(v-3) [0 2522 fh s R
k .
F Lyt T Ebgls 52 by - 2.

However it can be shown that the differential inequaTity Dh > 0
does not have any nontrivial solutions.

Of course for practical use of estimators (2.1) statistician has to
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specify the origin and the scale unit so that s will differ‘fromﬂéo_‘
and the improvement of & over &, will be substantial (see Berger (1982)
for the case b = 0). For this purpose a wider class of better esti-

mators may be needed.

Some other loss functions, like,

.-LT(G,O;S) = 2 (6-‘ - exp(e_i+b_igz))2

are also of interest. Notice however that the best uhbiaséd estimator

is badly inadmissible even when k = 1 (see Rukhin (1985)).
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