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Semimartingales and Stochastic Differential Equatibns

I. INTRODUCTION

1. Introduction

The .general theory of stochastic integration has recen?ly—been enjoying a
great deal of interest. No doubt this is partly due to new]y—discovered
applications in applied fields (such as filtering theory, control theory, the
theory of continuous trading in economics, and statistical communication theory)
as well as to applications in theoretical mathematics. An impediment however
to the diffusion of the subject is its high barrier to eﬁtry;; traditionally
one must maste% a large part of the abstract and techhicé}}y_difficult "general
theory of processes" in order to learn even the elementary theory. This is
the approach taken by recent pedagogic f}eatments ([5], [11]1, (171, [23], [28],
and [43]) which to varying degrees follow the historical development of the
subject. (The small book by Letta [27] is a qualified exception).

The approach of these notes is quite different. Recent developments have
made possible an introduction to both stochastic integration and stochastic
differential equations that has virtually no technica] prerequisites. We have
systematically tried to keep our apprdach-bn as fechnicai]y sﬁﬁﬁﬁe’a level as
possib]e; Qur treatment has three principal advantages: (i) it is rapid and
direct: the reader learns about semimartingales and stochastic integrals
immediately; (ii) it is intuitive: for example, the restriction of the space
of integrands to L allows the integral to be expressed as the Timit of sums;
and (i1i) a number of traditionally difficult results (such aé 1Ir.2.2,
III.2.3; III;2.4,...) become startlingly simple and natural. wﬁ}1e a disadvantage

may be a loss of generality, with some work (Chapter IV) one can develop enough



"general theory" to extend our approach to the general case. We do this in

Chapter V.

2. A Brief History.

The Wiener process is a mathematical model of Brownian motion and it has
a.s. continuous paths of infinite variation on all compacts.—~This of course
precludes the possibility of considering the process path by path as a Riemann-
Stieltjes differential. Nevertheless the concept of "dW" had long had an
intuitive mééﬁihg before K. Itd ([21], 1944) found a way to make it mathemati-
cally rigorous. 7I£6 used his integral to construct diffusiens as solutions

of stochastic differential equations: o

X

t t
=Xt éo(s,Xs)dws + éb(s,xs)ds .

This gave a probabilistic method of studying diffusions‘which even today is
still a primary tool. J. Doob ([16],1953) realized that Itd's integral was
really a martingale integral and he proposed a general martingale integral;

but he needed to be able to decompose a submartingale X into a sum X = M + A,
with M a martingale and A an increasing process. P. A. Meyer ([31], 1963)
found the right conditions under which th{s Eoﬁ]d be dong; and‘Tééér K. Ito and
S. Watanabe ([22], 1965) introduced the notion of local martingale, extending
the Doob-Me&er decomposition to arbitrary submartingales: any submartingale

X has a decomposition X = M + A where M is a local martingale and A is an
increasing process. In 1967 H. Kunita and S. Watanabe [24]7, building on earlier
work of Ph. Courrege ([7], 1963), developed an elegant theary. complete with a
change of variables formula. But it was P. A. Meyer ([321, 1967) who made the

crucial realization that if one restricted the space of integrands to predictable



processes then‘the jumps of the stochastic integral process behaved nicely.

Later C. Doléans-Dade and P. A. Meyer ([14], 1970) removed the‘éxtranéous but
simplifying assumption of quasi-left-continuity of the under]yiné fi]trdtfoﬁ,
an assumption whose origins came from connections with Markov process theory.

The theory was now essentially complete, but in 1976 P. A. Meyer pub]ished\
a "course"on stochastic integration [34]. This seminal wofﬁ'broved_many new
and fascinating results about stochastic integration (including, for example,
the existengg_gf semimartingale local time) and it led to an explosion of
interest in the subject. Meyer emphasized the centrality of semimartingales
in his course, and/this together with the work of M. Métjviéﬁland J. Pellaumail
([30], [37]) eventually led to the theorem of K. Bichte12? ([1], 1981) and C.
Dellacherie ([10], 1980), discovered 1ndependent1y. Thisnfheorem showed,
in essence, that semimartingales are the most general reasonable stochastic
differentials. Indeed this theorem is the starting point of these notes, if
not the pedagogical basis.

The theory of stochastic differential equations lagged behind that of
stochastic integration, the first existence and uniqueness results being those
of P; Protter ([38], [39], 1977) and C. Doléans-Dade ([13], 1926) as well
as C. Doléans-Dade and P. A. Meyer ([15],'i9%7j.‘ The qug;tidﬁ‘df stability was
resolved by P. Protter [41] and then it was elegantly handled by M. Emery [18],
[19], and [26], who also developed the semimartingale topology. M. Métivier and
J. Pellaumail used a different approach to stochastic differential equations
([29], 1980), based on a profound martingale inequality. They also independently
discovered the semimartingale topology. The last step was tolretufn the theory

of stochastic differential equations to its Markov process birthplace, and this

was done by E. Cinlar, J. Jacod, P. Protter, and M. Sharpe [6] (see also [40]).



3. The Contents : -

We give here a brief description of these notes. In Chapter II we establish
notational conventions and prove a few preliminary results. We begin Chapter
IIT by defining semimartingales as '"good integrators" instead of the traditional-
definition (e.g. [11] or [28]); our approach here was inspireq—by C. Dellacherie
[10] and we follow in Targe part an article of E. Lenglart [26]. This new
approach is not widespread: the only similar treatment we know of is that of
G. Letta [27]:- We treat stochastic integration with respect to semimartingales
for processe; in L and prove many of their well known prope(ﬁies: the Kunita-
Watanabe inequality, behavior of the jumps, integration §y pé;fs, Ito's
formula, the Fisk-Stratonovich integral, exponential éemf%@rfinga]es, etcetera.

In. Chapter IV we "pay the price" for the simplicity of Chapter III. Our
goal is to prove the theorem of K. B{Ehfé1ér and C. Dellacherie, and to do this
we must develop some of the "general theory". We develop the minimum that we
needy however, and we have tried to keep the proofs on as teéhnica]]y simple
a level as possible. Nevertheless if the reader is willing to stipulate
Theorems IV.1.2 and IV.1.3 stated in the introduction-to the chapter, then
Chapter IV can be omitted on a first reading without Toss for Chapters V, VI, e
and VII; | r | ) -

In Chapter V we extend the space of integrands fromL to predictable pro-
cesses. Whiie ostensibly this larger space of integrands is not needed, for
example, to prove Ito's lemma-or to treat stochastic diffefentiaf equations, it
is needed to consider semimartingale local time, which we present in paragraph

four.

—

Chapter VI is deyoted to stochastic differential equations with semimartingale

driving terms. We establish general existence and uniqueness results (though



not the most general (cf [23]), again because of a desire to keqp to a low level
of technicality). The semimartingale topology is presented and we use it to
study the stability of solutions of stochastic differential equations.
Stochastic differential equations arose from a desire to study Markov
processes {i.e. diffusions) and in Chapter VII we return themrio a Markov frame-
work. The theory of Markov processes is the most technica]{;—overwhelming
branch of Probability theory, but we have presented the necessary notational
conventions in-paragraph two. Our approach follows that of [6] but we have
simplified 1E‘since»we are considering a special situétion. Theorem IV.3.12
extends the classical result of K. Ito: a solution of aq abb;bpriate stochastic
differential eduation is strong Markov if the semimartinQ%}e_driving term has

independent increments (cf [40]). If the increments are only conditionally

“independent, then a weaker result holds (VI.3.5).
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Foundation while working on these notes. I am grateful for the patient
cooperation of my typist, Ms. Eleanor Gerns. Finally, I wish to thank Eimear
Goggin and Richard Stockbridge for having alerted me to numerous mistakes in a

—
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II. PRELIMINARIES AND NOTATIONAL CONVENTIONS ) _

1. Génera1 Definitions and thatiOns

In Chapters III through VI we will always assume given an underlying
filtered probability space: (g, E, Et’ P), where (@, E, P) is_a complete
probability space, and Et is an increasing family of ¢-algehras (gs_gggt if

s < t). Moreover, we assume that EO contains all the P-null sets df'g, and

that (E,) s right continuous: that is, E, = NE, . These are known as
=t =t =u
tzo__—_ u>t

the "usual h&Eothesgs" . Chapter VII involves connections to Markov processes,

and since we use the theory of Dynkin realizations of Magkogigrocesses, we use
the notations of Bluemthal and Getoor [2], and the under;yipg assumptions are
slightly different and are presented there. Indeed all new notations in Chapter =
VII are explained there; the reader need-not be familiar with [2].

A process X is said to be adapted if X, is £y - measurable for each t > 0. A
process X is cadlag if it has paths which are right continous with left limits,

s. ["cadlag" is an acronym from the French “"continue & droite, limites a

gauche"]. The space of cadlag adapted processes is denoted D; an adapted process X

is in L if it has left continuous paths with right Timits. For.a process X in D we

will often be interested in its jumps,and’Wehlét AXt xt Xt ,the*ﬂump at time t, where

Xt denotes Tim X s the left limit at t.
s>t ‘
s<t .-
A stopping time T is a random variable T: @»R, = [0,»] with the additional

-

property that {T < t}€ Et’ each t > 0. We let sAt = minimum (s,t), svt

) ] . T
= maximum (s,t), and we adept the convention X = xtA’T1{T>0} Xt]{t<T}'+

—

+ X1l is the indicator function of a set A. We also write

4{t T 03° where ]A
.

X We assume the reader is familiar with the notions

= Xl eyt Xp (t>T50) -



of martingale and submartingale, as well as Lebesque-Stieltjes integration.

(1.1) Definition. An adapted process X is a local martingale if .there exists

n
a sequence of stopping times " increasing to « a.s. such that XT is a

uniformly integrable martingale for each n.

[l

The stopping time g-algebra E; is defined to be: F, = {Qé E: AMYT<t}e€
It is easy to check that ET = c{HT:HG]D }, which is perhaps a more intuitive charac-
terization. A class of processes contained in L that is used throughout

these notes is:

(1.2) Definition. A process H is said to be simple predictable if H has a

representation: s

n
H, = Hy 1.n, + H, 1 (t)
e Yoy T ok M T

where 0 = Ty < T, 5,.,§,Tn+]<<w is a finite sequence of stopping times, and
where H%Q:ET:, JH1| <~ a.s., each i, 0 <1 < n. The collection of simple predic-
table proces;es is denoted 3.
We can topologize § by uniform convergence (uniform in (t,e)), and we
denote S with this topology by éu . We let L° denote the space of finite =~

random variables, topologized by convergence in probability. --

2. An Elementary Result

A very deep result is that if H is a progressively measurable process¥*,
then T(w) = inf{t: Ht(w)éﬁm},_for A a Borel set in R, is a stopping time (cf.
[8, p. 51], or [9] for a direct proof). We do not here have need of such a general

result, and we can content ourselves with the following theorems. -

—

* that is, the function (s,w) - Xs(w) from [0,t] x @ into R is §[O,t]§9§t/§—
measurable, each t > 0.



(2.1) ?hedf‘erﬁ. If either X€D, 91}(6]1_; if A is an open subset of R; .and if

T(w) = inf{t: Xt(w)e A},

then T is a stopping time.

Proof. Since Et is right continuous, it suffices to show {T.< t}€ Et . But

{T <t} = U {ste A},
s€nn [0,t[

and this isin E.. O

(2.2) Theorem. If X€D; if A is a closed subset of R; and if-
-

T(u) = infit: X (w) € or X,_(w)€n}

then T is a stopping time. N

Proof. Let An = {x: d(x,A) < 1/n}. Then An is an open set, and the result

follows from

{T <t} = {X €ror X, €A}UIN U X €A ). 0
- n seENN [0,t]

We remark that we use the convention inf ¢_= .+ . We will. freely use elementary
facts about stopping times, such as: if S and T are stopping times, then:

SAT, SVT, S+T are stopping times;

S <Ta.s. implies & < &

N3. = & -

N &1 = deur

3. Caveats

We wish to alert the educated reader to two deviations fromthe norm. Our

definition of a semimartingale (III.1.1) is not the traditional one but is, of .



course, equivalent to it. The traditional definition (a process'X is a semi-
martingale if X has a decomposition X = M + A where M is a local martingale and
A is adapted, right continuous, and has paths of finite variation on compacts)
is close to what we call a decomposable process (I¥.1.1) and is shown to be

equivalent to it (IV.1.2 and 1V.4.8).

We have systematically avoided the classification of stopping times, o
predittéb]eprojections, and duail predictable projections (compensations), in
order to keep-these notes on as technically simple a level as possible. For
this reason ;é are led to the resurrection of the anachronistic notion of
naturality in Chapter IV (IV.2.3). Of course the procesi AV}HZdefinition

IV.2.3 is natural if and only if it is predictably measurable, but the proof

of such a result is not necessary to our development and we have not included it.
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III. SEMIMARTINGALES AND STOCHASTIC INTEGRALS B
For much of this chapter, we follow the article of E. Lenglart [26],
which was in turn inspired by the article of C. Dellacherie [10]. See also [42]

1. Introduction to Semimartingales

Given a process X, we define a linear mapping IX: §=+-L0 éé follows:
n R
IX(H) = HOXO + _Z Hi(XT1+] - XTi)’ where HE § has the representation
He = 0j0}+zH1T T.q]
i* i+l

(1.1) Definition: A process X is a total semimartingale if X is cadlag, adapted,

and IX S - L0 is continuous. ;

A process X is ca]]ed a semimartingale if, for each tE [0,o[, Xt

is a total

semimartingale.

2. Stability Properties of Semimartingales

We state a sequence of theorems giving some of the stability results which-ares

particularly simple with our approach.

(2.1) Theorem. The set of (total) semimartingales ig_g_véctok space.

Proof. This is immediate from the definit{bnl : t]

(2.2) Theorem. If Q is a probability and absolutely cont1nuous w1th respect to P,

then every P-semimartingale (total) X ig_g_Q-semimartihga1e (tota]).

——

Proof. Convergence in P-probability implies convergence in Q-probability. Thus

the theorem follows from the definition of X. O

(2.3) Theorem. Let(Pk)k>] be a sequence of probabilities such’ that X i is a
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. Pk-semimartingale for each k. let R= 7§ kak, where A 2 0, edch k, and
' o k=1 T - T T

(o]

= 1. Then X is a semimartingale under R as well.

A
kzl k

Proof. Suppose Hné:i such that H" converges to H under R. Then H" converges to

H for all P, with A > 0. Therefore IX(Hn) converges to IX(HSLin Pk-probabi]ity;for

k
all such k as well. This then implies IX(Hn) converges to IX(H) under R. 0O

(2.4) Theorem.--Let X be a semimartingale for the filtration (3%)¢ip' LEE'(Qt)tzQ

Eg_g_subfiltrationagf (3%)t>0,‘3uch’that X is adapted to the G -filtration.

Then X is a G -semimartingale. %

Proof. Since 3(§) is contained in 5(3) , this again fo]]dWs from the definition. O

(2.5) Theorem. Let X be a cadlag, adaptéa process; let (Tn)'be a sequence of

s . .. n . ' . .
positive r.v.increasingto » a.s.; and let (X') be a sequence of semimartingales such

T - T -
that, for each n, X" = (X") " . Then X is a semimartingale.

Proof. We wish to show Xt is a total semimartingale, each t > 0. Define

-+ oo](

Tn>t). Then P{IIX(H)I > c} 5_P{|Ixn(H)] 3_c}hf P(Rn < ).

But P(Rn < w) = P(Tn < t) , and since Tn increases to « a.s., P(Th 5:t) ~ 0 as
N > . Thus if Hk tends to 0 in éu’ given ¢ > 0, we choose n so that -~ ~

< w) < ¢/2, and then choose k so large that P{IIXﬁ(Hk)I > C} < ¢/2. Thus,

—

P(R,

for k large enough, P{|Ixt(Hk)[ >C}<e. O

(2.6) Corollary. Let X be a process. If there exists a sequence tTn) of stopping
T -
times increasing to « a.s., such that X n is a semimartingale, each n, then X is

also a semimartingale.
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3. Elementary Examples of Semimartingales . -

(3.1) Proposition: Each adapted process with cadlag paths gf_fin{te variation on

compacts (of finite total variation) is a semimartingale (a total semimartingale).

Proof. It suffices to observe that |I,(H)| < |8}, é |dXs| i;where é[dxsl

denotes the Lebesque-Stieltjes total variation. O .

(3.2) Proposition: Each square integrable martingale with cadlag paths is a

semimartingale

Proof. Let X be a §quare integrable martingale with XO = 0,-and let HES. It

suffices to observe that E{(IX(H))Z} .

"
m
—~
P
Hi~135

| A

1112 £ T
HISECY (X - X
s i

]
—A N

o~ 3

2 2 :
| [H] |5 E{ (X - X7 )} = ||H]|® E{X
U0 i U T

| A

M2 E(). B

(3.3) Corollary. Each cadlag, locally square integrable martingale is a semimartin-

gale, -

Proof. Apply Proposition (3.2) together with Theorem (2.5). . O

(3.4) Corollary. A local martingale with continuous paths is a semimartingale.

- Proof. Without loss of generality we assume X, = 0. Let Rp = inf{t: Ithz_p}.
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R -
It is easy to check that X P is a bounded (and hence square-integrable) martingale

for each p. Also Rp increases to & a.s. as p increases to . Thus X is a locally

square-integrable martingale and hence a semimartingale by Corollary (3.3). O

Note that, in particular, the Wiener process (i.e., Brownjan motion), which-

is a martingale with continuous paths, is a semimartingale. =

(3.5) Definition. We will say an adapted process X with right continuous paths is

decomposable if it can be decomposed. Xt = XO + Mt + At’ where MO = AO =0, Mis

a locally sddé;é integrable 1ocal martingale, and A has paths of finite variation

on compacts. ' .

<
(3.6) Corollary: A decomposable process is a semimartingaie.-

Proof. This is Proposition (3.1), Corollary (3.3), and the result that semimartin-

gales form a vector space. [J

Let X be a process with stationary and independent increments. It is well

known that any such process X has a modification with cadlag paths. We therefore

assume X has cadlag paths. Define Jt = sZt AXS]{!AXSI > 11 and we set

Y, = X, - Jd,. (AXt = X, - X Then the Lévy theory (e.g. [ 1]) of such processes

t t t t-)' .
tells us that both J and Y are again processes with stationary-and independent
increments, and that Y has a finite mean. The stationarity implies the function
t - E(Yt) is affine. Thus X, = {Y, - E(Yt)} + {E(Yt)_+ Ji} » where Y, - E(Yt)
t) + J; has paths of.finite variation
on compacts. Thus X is a semimartingale by Corollary (3.6). O

is a locally bounded martingale and where E(Y

A process with stationary and independent increments is a_time homogeneous
strong Markov process and also, as we have just seen, a semimartingale. A1l such

Markov processes that are semimartingales have been characterized ([61]).
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4, Stoch_astic }'I:nitégrals . -
Let I represent all adapted processes with cadlag paths. On.D we put.the

topology of uniform convergence on compacts in probability, abbreviated "ucp."

. ,
That is, for a process Y€D, let Yt = sup |YS|. Then Y" converges to Y in ucp if
T os<t -

N, % . . S . .
1¥?LY)t; converges to 0 in probability for every t > 0. Note~that this topology is

E{min (1,(Y—Z):} defines a topology compa-

ne~18

Me%rizab]ei the metric d(Y,z)=

N | —
=

n=1
tible with ucp and thus makes (D,ucp) into a complete matric space.
Let L denate 511 adapted processes in L with left continuous paths a.s. Also

bL denotes all processes in L with uniformly bounded path;;

(4.1) Theorem; The space S is dense inl under the ucp topology.

Pfdof. let YEL. Let Tn = inf{t: |Y£[ s'n}. Then Tn is a stopping time and Y=

Tn

Y 1 n are in b L and converge to Y in ucp. Thus b L is dense inl. Thus
. (T > 03
withdut loss we now assume YEb L. Define Z by Z, = 1im Y . Then ZED is the
u->t

cadlag modification of Y. For e > 0, define u?t

€ ._
TO-O o B

TE

- ) €
py1 = inf{t: t> T and |z, - ZTSI > e}

. . - € . . . . .
Since Z is cadlag, the Tn are stopping times increasing to = a.s. an n increases.

et 75 =57 Trreqep, -
"oy T [Tl

each ¢ > 0. Then Z: are bounded and converge uniformly to Z as ¢ tends to 0. Let

€ + )7 1 e 0 and' the preceding implies U® converges uniformly

€

U
£
n Tn ]Tn, Tn+1]

= Iylio3

on compacts to Z_ =Y.
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Finally, define

n
N,e _ .
Yo' = YO]{O} + .E] Y

1
= €

and this can be made arbitrarily close to Y€ bL by taking ¢ small enough and n

large enough. O

—

(4.2) Definition: For HES and X a cadlag process, define the (1inear) mapping

JX: S -+ D by:
n T. T.
Ty i+] i
JX(H) —.HOXO + 2 Hi(X -X)
- =1
for H with representation g ]
-
n R

4ok ]

.1 :
i=1 T T Tyl

Hie J?Ti and 0 = T0 < T]< "'<Tn+T < o

stopping times.

(4.3) Definition: For H €S and X an adapted cadlag process, we call JX(H) the

stochastic integral of H with respect to X.

Wle use interchangeably three notations for the stochastic integral:

(4.4) 9y (H) = [H AX = H-X.

X( s

(4.5) Inggrgm{ Let X be a semimartingale. Then the mapping Jy: éucp J-DUCP is

continuous.

Proof. . éucp denotes the spacéﬂgzendowed with the~ucp topology. Since we are only
dealing with convergence on compact sets, without loss of generality we take X to be
a total semimartinga]et It suffices to show that if Hk converées*és 0 (ucp), then
one can extract a subsequence kn such that JX(Hkn) converges to O ucp. First suppose

Hk tends to 0 uniformly and is uniformiy bounded. Let
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¢ = infts [(HX),] > 63 .
Then P{(Hk-x)*g_a} = pe(ex)” k> 8}
tAT

< PHEah " > 8

)
B 23T S G I S S T
[0,7"] ) N
K
= P{]J ,(H"1 )| > 8}
Xt [0,7¢]

which tends to 0 by the definition of total semimartingale (1.1).

Therefore we have for ¢ > 0, t > 0, that there exists a:E;such that if HE S
L )

with | [H]|, < c; then P{J,(H)}; > 6} < /2. For Fixed t we can find k such that

t
P(Rn < ®) < e/2 where

k
. n
R = inf{s: IHsAt| > cl.

n
k R
Moreover by the left continuity one has |(H ") "| < c. Thus:
kn * kn *
P{(H "X)t > &} < P{(H .X)R > 6§} P{R < «}
<e/2 + /2 = &,

and the continuity is established. O

We have seen that when X is a semimartingale, the integration operator JX is

continuous on. S, __(4.5), and also that

Sucp éucp is dense 1nILucp (4.1), hence we

extend the integration operator JX from S tolL by continuity.

(4.6) Definition: Let X be a semimartingale. The continuous linear mapping

JX:U_uc *’Ducp obtained as the extension of JX: S +Dis ca]]gd the stochastic

Y
integral. -
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5. Properties of the Stochastic Integral

Throughout this paragraph X will denote a semimartingale and H will denote an
element oflL. The stochastic integral defined in paragraph 4 will also be denoted
JX(H) = H.X = fHSdXs.

T
).

(5.1) Theorem. Let T be a stopping time. Then (H-X)T = H][OQT] « X = He(X

(5.2) Theorem. The jump process A(H-X)s is indistinguishable from HS(AXS).

Proofs: Both properties are clear when H€S, and thus they follow when H€ LL by
passing to the Timit (convergence in ucp). O
Let Q denote another probability Taw, and let HQ-X denoté;the stochastic

<

integral of H with respect to X computed under the law Q.

(5.3) Theorem. Let Q << P. Then Hy-X is Q-indistinguishable from HP-X.

Proof. Note that by Theorem (2.2), X is known to be a Q-semimartingale. The
theorem is clear if HES, and it follows for HE IL by passage to the 1imit in the
ucp topology, since convergence in P-probability implies convergence in

Q-probability. O

(5.4) Corollary. Let P, be a sequence of probabilities such that X is a P -semimar-

tingale for'each k. Let R = J NP where A 2 0, each k, and\“Z A = 1. Then
k=1 S

HoeX = Hp +X, P

R ) K a.s., for all k such that Ak > 0.

Proof. If 3 > 0 then P << R, and the result follows from (5.3).. Note that by

(2.3) we know that X is an R-semimartingale. [3J

(5.5) Corollary. Let P and Q be any probabilities and sUppose;X'ig_g;Semimartingale

both Hp-X and Hy-X.
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Proof. Let R = E%Q-. Then H,-X is such a process by Corollary §5.4).” O

R

¢ )t be another filtration such that H isin both IL(G) and

[L(&) , and such that X is also g_@-sémimartfnéé]é.' Théh Hq’.x = Hsfx'

(5.6) Theorem. Let (G

Proof. WL(G) denotes left continuous processes adapted to the -filtration

((f;,C }t>0 . Since HEW(G)NIL(3) , we can find He S(G) NS(Fyconverging to H in

ucp, and since the result is clear for Hnézi, the full result follows by passing

the Timit. [

(5.7) Lemma. If the semimartingale X has paths of finite variation on compacts,

then H-X is indistinguishable from the Lebesgue-Stie]tjeS:inEEQfa], computed path
<

by path.
Proof. The result is evident for HeS. Let H'e S converge to H in ucp. Then the}e
\v,n *
exists a subsequence Ny such that T1im (ka - H)t = 0 a.s., and the result follows
n, -w
k

by interchanging Timits, justified by the uniform a.s. convergence. [

(5.8) Theorem. 'Let X, X be two semimartingales, and let H,HEIL. Let

A= {w: H.(w) = H.(y) and X.(w) = X.(w)}, and let B = {w: t - Xt(w) is of finite

variation on compacts}. Then H.X = H.X'on A, and H.X is equal to a path by path

Lebesgue-Stieltjes integral on B.

Proof. Without loss of generality we assume P(A) > 0. Define a new probability law
Q by Q(a) = P(AIA). Then under Q we have that H and H-as well as X and X are
1ndistfnguishab1e. Thus HQ-X ;»Hd-i} and hence H-X = H-X P- a.s. on A by (5.3),
since Q << P.

As for the second assertion, if B = Qthe result is merely Lemma (5.7). Define
R by R(A) = P(A|B), assuming without loss that P(B) > 0. Then R << P and B = @,

R- a.s. Hence H,. X equals the Lebesgue-Stieljes integral R- a.s. by (5.7), and

R"
the result follows by (5.3). O
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The preceding theorem and following corollary are known as the local

~ behavior of the integral.

(5.9) Corollary. With the notations of (5.8), let S,T be two stopping times with

S < T. Define

{w: Ht(w) = Ht(w); Xt(w) = Xt(w); S(w) <t < T(w? T

C:
D= {w: t > Xt(w) is of finite variation on §(w) <t < T(w)} . «
Then H-X' - H-Z(S - X - FXY on C ggg_H-XT ~ H-X equals a path by path Lebesgue-

Stieltjes integral on D.

Proof. Let Y, = X_ - X Then H-Y = H.X - H-X> , and ¥ does not charge the
<

t tnS -
set [0,5] , which is evident, or which - alternately -'cah.be'viewed as an easy

consequence of (5.8). One now applies (5.8) to Y to obtain the result. [

(5.10) Theorem (Associativity). The stochastic integral process Y = H.X is itself

a semimartingale, and for G&ll we have

GeY = Ge(HeX) = (GH)-X.

Proof. Suppose we know Y = H:X is a semimartingale. Then G.Y = JY(G Y. If G,H
are in S, then it is clear that JY(Q) = JX(G+1). The”associativity then extends
toll by eaitinuity. S -

It remains to show that Y = H-X is a semimartingale. Let (Hn) be in S
converging in- ucp to H. Then H. X converges to H-X in ucp. Thus there exists a

n ,
subsequence (nk) such that H k-X converges a.s. to H-X.

% _ ™ -k
Let GES and let Z " =H “<X, Z =H-X. The Z " are semimartingales converging
pointwise to the process Z. For GE€S, JZ(G) is defined for any process Z; SO we

have -
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n
lin 6.z © L

n, —»»

k

[«
N

P
[p]
S

il
o
N

n

n
= 1im Ge(H

K.x)

Mk
= Tim  (GH <)X
n, > -

k —

n
which equals Tim JX(GH

n, >

k
Ji(G) = JX(GH)_for GE S.

k) = J,(GH), since X is a semimartingaie. Therefore

y

Let Gn converge to G in éu' Then GnH converges to GH 12|Lucp’ and since X

is a semimartingate, 1im J-(G_) = lim J, (G H) = J,(GH) = d,(G). This implies 7t
Z'7n Xt n X A

N->o n-—>

is a total semimartingale, and so Z = H.X is a semimartinga1é.‘ O

(5.11) Theorem. Let X be a locally square integrable local martingale, and let

HeLL. Then the stochastic integral H.X is also a locally square integrable local

martingale.

Proof. We have seen that a Tocally square integrable martingale is a semimartingale

(3.3), so we can formulate H.X. Without loss of generality, assume XO = 0.
T
k

Also, if Tk increases to « a.s. and (H-X) is a Tocally square integrable martin-

gale for each k, it is simple to check thaf'H;X~ifse1f is:gne;"'Thus-without loss
we assume X is a square integrable martingale. By stopping H, we may further
assume H is bbunded, by 2. Let H”e S be such that H" converges to H in ucp. We
can then modify Hn, call it Hﬁ* such that H" is bounded by ¢, ﬁnE’ég and H"

converges uniformly to H in probability in [0,t]. Then



2

k -
n T. T.
= ~ + 2
EC(A"x)%) = E{_zi.H?(Xt1 T x5 -
'I:
kn
2 2 2
< 27E{ (X - X5 )
<L U,

< 2E(X2),

and hence (ﬁn.X) are uniformly bounded in L2 and thus uniformly integrable. Passing

t
to the 1imit then shows both that H.X is a martingale and that it is square

integrable. O

The next result (Theorem 5.13) shows that the stochastic integral in our frame-

work (thanks to the smooth paths of the integrands) has a:simﬁie interpretation
-

as a limit of sums.

(5.12) Definition. Let o denote a sequence (finite or infinite) of stopping times:

0=Ty<T 5—"'5»Ti <... o is called a random partition.

We say a sequence of random partitions o = Tg 5_T? < ees

In
—

—ty
(A
o+
(D
>
[
w
—+
(@)

the identity if sup TE < » a.s., and
— anc¢

(i) lim sup ™ = w a.s.
k
n k

s I T
(11) [lo,ll = SEP (Tk¥]-TE)converges t0 0 a.s.

For Y a process and ¢ a random partition, Tet Y° = Y01{0} + ] Yy ]]T T
T AT T

It is easy to check that
YOdX_ = Y. X + T Y (xTif] xTi)
/ s s '0"0 % Ti - >

for any semimartingale X, any optional process Y.

(5.13) Theorem. Let X be a semimartingale, and let Y be an adapted process with

paths that either have right limits and are left continuous, or are cadlag. Let

(on) be a sequence of random partitions tending to the jdentity. Then the processes
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'Tn. n -

Y X, + YooY (X'1+] - X 1) tend to the stochastic integral (Y )-X in uep.
0% T 4 n Lo od0a 1L UEP
;

Proof. (The notation Y_ means the process whose value at s is given by (Y=)s

= 1im Y, ; also, (Y_.), =Y
ws Y ='0
UsS

0° by convention). We prove the theorem for the case

where Y is cadlag, the other case being analogous. Y cadlag 1hp11es<Y,€lL. Let

YKG:; such that Yk converges to Y_ (ucp). We have:

g ¢}

R k K oky k
feyv. - Y-\”)chx_s»= JOo = Y gaxg + e - (v Mygdxg +((Y9) Moy ) .

The first term on the right side equals JX(Y_ - Yk), and sincé:JX is continuous
-

1'nll.ucp and since Y. - Yk + 0, we have j(Y- - Yk)sts N O(ch). The same reasoning»

applies to the third term, for fixed n, as k + ». Indeed, the convergence to O
of [(Yk)Oh - ch] as k » » is uniform 1n-;.

It remains to consider the middle term on the right side above. For fixed k
and w, the integrand (Yt(w) - (Yk)Zn(w)) converges to 0 uniformly on compacts;
moreover since the Yk are simple predictable we can write the stochastic integrals
in closed form, and since X is right continuous the integrals (for fixed (k,w))
f(Yk - (Yk)on)stS tend to 0 as n >~ ». Thus one merely chooses k-so large that
the first and third terms are small, and then for fixed k; thé—h{ddfe term can be

made small for Targe enough n. [J

6. The Quadratic Variation gffé_Semimartingale.

The reason for the name "quadratic variation" is justified by Theorem (6.2-i1).

This seemingly innocuous process has a central role not just in the stochastic

calculus, but also in modern martingale theory (the Eipspaceé, BMO, and the

Burkholder-Davis-Gundy type of inequalities).
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(6.1) Definition. Let X be a semimartingale. The quadratic variation.process of

X, denoted [X,X] = ([X,X]t)t>0, is defined by:

[X,X] = X% = 2[X_dX (X,_ = 0).

0_:
The next theorem gives some elementary properties of [X,X]. (X is assumed to be a

given semimartingale throughout this paragraph.) -

(6.2) Theorem. The quadratic variation process of X is a cadlag, increasing, adapted

process. Moreover it satisfies:

(1) [X;iia ;_xg and A[X,X] = (aX)

2

(i1) lf_on is a sequence of random partitions tending Eéfﬁhe identity, then
-

T T8 | e
ey 0o
1

with convergence in ucp, where dh is the sequence

n n . .
0= T0 5_T1 < e 5_;2 < ..., Where T? are stopping:-times.

" Proof. X is tadlag, adapted, and so also is fX_dX by its definition; thus [X,X]
is cadlag, adapted as well. Recall the property of the stochastic integral:

A(X_<X) = X_aX.

Then (aX)% = (X, - X )% = K& - 2X X+ XC_ -
_2 2
= x2 ol ax (X - Xg).
2
= w(X) - 2X_(aXg),

from which part (i) follows.
For part (ii), by replacing X with X=X - XO’ we may assume XO = 0. Let

R, = sup T?. Then Rn < » a.s., and thus by telescoping series:
i
n n -
i+l
L . T T .

converges ucp to X°. Moreover, the series ) X n(X - X ') converges in ucp to
i T,

i
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[X_dX by Theorem (5.13), since X is cadlag. Since b2 - a2 - 2a(b-a) =”(bfa)2,

n n n -n n
LTS ILE UL PVLE % B N
and since X n (X -X ) =X (X" - X "), we can combine the two series con-

T

vergences above to obtain the result. Finally, note that if s < t, then the approxi-
mating sums in part (ii) include more terms (alt nonnegative),-so it is clear that
[X,X] is nondecreasing. (Note that, a priori, one only has [X—,X]S < LX XD a.s.,
with the null set depending on s and t; it is the property that [X,X] has cadlag

paths that atlows one to eliminate the dependence of the null set on s and t.) O

(6.3) Definition. »Let X and Y be two semimartingales. The bracket product of
X and Y is defined by N ‘
[X,Y] = SLx+Y, X+¥] - [X,X] = [Y,Y])

(6.4) Proposition. The bracket produét [X,Y]’gf;two semimartingales has paths of

finite variation on compacts, and it is also a semimartingale.

Proof. By definition, [X,Y] is the difference of two increasing processes, hence
its paths are of finite variation. Moreover, the paths are clearly cadlag, and

the process is adapted. Hence by (3.1) it is a semimartingale. O

(6.5) Theorem (Integration by Parts). Let X,Y be two semimartingales. Then:

XY = [X_dY + [Y_dX + [X,Y].

Proof. By the definitions we have

[X,Y] = g (X#¥)% = 27(X_+Y_)d(x+¥) - XZ - ¥2 + 2px_dX + 2fY_dY},

and the result follows from the bilinearity of the stochastic integral fHdX in

(H,X). O -

~-

(6.6) Corollary. A1l semimartingales gg_g;giﬁeh fineféd pfobabi]ity spacé fofm

an algebra.
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Proof. We have already seen that the stochastic integral is a semimartingale
(5.10) and that the bracket process [X,Y] is a semimartingale (6.4). The result
then follows from the integration by parts formula, since semimartingales clearly
form a vector space. [

A theorem analogous to Theorem (6.2) holds for [X,Y] as wg}l as [X,X]. Its
proof is also analegous, so we give the theorem without proof.— .-

.....

[X,Y] satisfies:

(1) [X,¥Ig = Xg¥gs alX,Y] = aXaV;

- .
(i1) If gn:j§_§_sequence'gf;random'partitions‘tending’gg:the jdentity, then

n n n n
T, T, T, T
i+ X‘1)(Y oy 1y,

[X,Y] = Xg¥q + Tim ; (X

where convergence is in ucp, and where ¢

. is the sequence 0= Tg < T < ... <Tj < ...

with T? stopping times.

We next record a real analysis theorem from the Lebesgue-Stieltjes theory of

*
integration. We do not give its proof.

(6.8) Theorem. Let o, g, y be functions mapping [0,=[ to R with «{0) =g(0) =¥(0) = o0;

Suppose o, g8, y are all right continuous, o is of finite variation, and g and y are

each increasing. Suppose further that for all s,t with s < t, we have

t (t )
d(_yw < d
[ da| < (] dsy

W=
tofi-

(f dv,)

-

Ny ¢t

Then for any measurable functions f,g we have

t -

[ If] |da] < (12dg)® (fqPay) ® . .

In particular, the measure do is absolutely continuous with respect to both dg and

*For a proof, the reader can consult, e.g., [26, p. 263].
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dy.

~ Note that |da| denotes the total variation measure corresponding to the measure da,

the Lebesgue-Stieltjes signed measure induced by - a. We use this theorem to prove

an important inequality concerning the quadratic variation and bracket processes.

(6.9) Theorem (The Kunita-Watanabe Inequality). Let X'énd Y ég;fWo semimartingales,

and let H énd K Bé'th'méasdrab1e'prOCeSSes."Then'One'has a.s. -

l

j|H ||K ||d[X Y| < (fH d[X,X],) fK d[y,v1)®

"Proof. By Theorem (6.8) we only need to show that there exiﬁts a null set N, such

that for €N, and (s,t) with s < t, we have; .

1

t ’ t 1
(*)  [fdDX, Y], < (Jd[X,X] )% fd[v Y1,)0% .
S S
Let N be the null set such that if @qiN,'then 0 5_fd[X+rY, )--7.+rY]u , for every
S

r, s, t; s <t, with r, s, t all rational numbers. Then

0 < [X+ryY, X+rY]t - [X+rY, X+rY]S
= P20V, - [Y,YD) + 2e(DGYD, - DXYD) + (IXXT, - DXLXDQ)

The right side being positive for all rational r, it must be positive for all real
r by continuity. Thus the discriminant of this'quadraticiéquatioh"}n r must be
nonnegative, which gives us exactly the inequality (*). .Since we have, then, the
inequality for all rational (s,t), it must hold for all real (3&,t), by the right
continuity of the paths of the processes. O _

By studying the process f;,x], we will prove some pretty results from :.:
martingale theory, which are especially simple in our context E(6.[?)—(6.14)].
Since {X,X] (recall X is a semimartingale) has right continuous paths, and since

ALX,X] = (AX)2 , we can decompose [X,X] path by path into its continuous part and

its pure jump part. We write this as:
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[X,X]t + [X, X]t + Zt . . _
S<

(6.10) Definition. A semimartingale X will be called quadratic pure jump if

2 2
+ (aAX. )" .
séﬁ ST

[X,X]C = 0. Of course, if X is quadratic pure jump, then [X,X]. = X
t 0

(6.11) Theorem. If X is adapted, cadiag, with paths of finite.variation on

compacts, then X is a quadratic pure jump semimartingale. .-

Proof. We have already seen that such an X is a semimartingale (3.1), and that

the stochastic¢ integral with respect to X is nothing more than a pathwise Lebesgue-

Stieltjes 1ntegra]d(5.7). The integration by parts formula for Lebesgue-Stieltjes

differentials applied to X times itself yields: X2 = fx_ég +_fXdX, computed

path by path. The semimartingale integration by parts formula (6.5), on the

other hand, yields: X° = 2[X & + [X,X].
- : t t ¢

Moreover fXdX = [(X_ + aX)dX = [X_dX + [aXdX, and éh dxg + 6AXdXS = éX_dXs

2
+ AX
szt

2

Thus equating the two formulas, we deduce [X,X]t =y (AXS) , whence the theorem. [T

s<t-

Note in particular that if X is adapted w1th cont1nuous paths of finite

variation, then [X,X]t = S , all t > 0.

(6.12) Theorem. Let X be a local martingale with continuous paths that are not every-

where constant. Then [X,X] is not the constant process Xg.

-

Proof. Note that a continuous local martingale is a semimartingale (3.4). We have

- [X,X] = 2/X_dX , and by the martingale preservation property (5.11) we have
that 2{X_dX is a local martingaie. Moreover AZfX_dX = 2(X_)(AX): and since X is

continuous, AX = 0, and thus 2fX_dX is a continuous local martingale, hence locally

square integrable. Thus X2 - [X,X] is a locally square integrable martingale.
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Suppose that [X,X] were the constant process Xg. Then X2 - [y, x] + Xg = X2
“would be a locally square integrable martingale, hence so wou1d.i? = X? - XS; by

optimal stopping, we may assume that 22 is square integrablie (and XO = 0). Then
E(%2) = E(R2 2 - % is trivial; that is,

E(Xw|3t) =X = XO is constant, which is a contradiction. Q?

)= 0, which implies Xw =0 a.s. Thus X

—

(6.13) Corollary. Let X be a continuous local martingale. lﬁ X has-paths Qf_finite

variation on-a compact set, then those paths are a.s. constant on that set.

Proof. If X has paths of finite variation then we must have [X,X] be constant by

Theorem (6.11); then X must be constant by Theorem (6.12). The corollary now

follows from (5.9). 0O .

(6.14) Corollary. Let X and Y be two-locally quare-fntegrable martingaTes. Then

[X,Y] is the unique adapted cadlag process A with paths of finite variation on

compacts satisfying the two properties:

(i) XY - A is a local martingale;

(i1) aA = aXaY.

Proof. Integration by parts yields:
XY = [X.dY + [y _dX + [X,Y]; o o -~“wiu
but the martingale preservation property tells us that both stochastic integrals
are local mariinga1es. Thus XY - [X,Y] is a local martingale. Property (i1) is
simply an application of Theorem (6.7). Thus it remains to show uniqueness.
Suppose A,B both satisfy properties (i) and (ii). Then A-B = (XY-B) - (XY-A),
the difference of two Tocal martingales which is again a Tocal martingale. Moreover,.
A(A-B) = aA - aB = aXaY - aXaY = 0. )
Thus A-B is a continuous local martingale, A0 - B0 = 0, and it has paths of finite
variation on compacts. Thus At - Bt - A0 -iBO = 0 by (6.13) and we have

uniqueness. [
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[Corollary (6.14) is true as well for X,Y local martingales.] . -

(6.15) Theorem, Let X be a quadratic pure jump’semimértingaTe."'Then'for'any

semimartingale Y we have:

[X,Y], = XoYq + ) aX.aY.
t 00 0<5<t sT's

Proof. The Kunita-Watanabe- Theorem (6.9) tells us .d[X,Y]S‘Ts a.s. absolutely
continuous with respect to d[X,X] (path by path). Thus [X,X]C =0 '1mp1ies
[X,Y]C = 0, and hence [X,Y] is the sum of its jumps, and the result follows by

(6.7). O ~

(6.16) Theorem. Let X'and Y be two semimartingales, and }etzﬁ;kelL. Then
<

o |
[H-X, K-Y]t = é HSKSd[X,Y]S

and, in particular, DR

_ 2
[H-X, H-X]t = é Hsd[X,X]s

pan

t
Proof. It suffices to establish the following result (*) [H-X,Y]t = fHSd£X,Y]S,
rroot §s

and then apply it again, by the symmetry of the form [. , s'].

First suppose H is the indicator of a stochastic {nterva1. That is,
H =1y 77 » where T is a stopping time. Establishing (*)is equivalent in this
case to showing [XT,Y] = [X,Y]T, a result that is an obvfous consequence of (6.7),
‘which approximates [X,Y] by sums.

Next suppose H

t = U]]S,Tl,f where S,T are sthp1ng times, S < T a.s., and

u(x’

- S U - S
Ue 3? . Then stdXS - X7)

S , and it is easy to check that in this case

[H-X,Y] = UL[X",v] - [X°,¥]} L
ULEX, YT - DX, YD) = [HdIX,YI,.
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The result now follows for He S by 1inear1ty; Finally, suppose HEL and
let H be a sequence in S converging in ucp to H. Let " = H X 2= HoXe
We know Z", Z are all semimartingales. We have szd[X’YJs = [Z",Y] , since Hne‘i,

and using integration parts:

[(2",v] = v2" - gy dz" - jzhdv -

vz" - jy_Hldx - jzidy.
By the definition of the stochastic integral, we know " 5 7 in ucp, and since

W H(ucp), tetting n » » we have

Tim [2",Y] = YZ - [Y_HdX - [Z_dY -

n'—)OO ’-
= YZ - (Y _dZ - (Z_dY
= [Z:Y], s
again by integration by parts. Since 1lim ngd[X,Y]S = jHSd[X,Y]S , We have

N>

[Z,Y] = [H.X,Y] = fHSd[X,Y]s , and the proof is complete. O

(6.17) Theorem. Let H be a cadlag, adapted process, and let X,Y be two semimartin-

gales. ‘Let 5 be a sequence of random partitions tending to the identity. Then

™m M

n
T - X 1) (v i+l

| n 1 - .-
TH (X -y h |
T

converges in ucp to st_-d[X,Y]S (HO_ = HO).

Here o = (0 < Tp <17 < ... <T§

—_—

<),

Proof. [X,Y] is cadlag, adapted, and has paths of finite variation; hence it is a
semimartingale. The theorem then follows as a corollary of (5.13) Tapproximating

the stochastic integral by sums], and (6.7) [approximating the quadratic variation

process [X,Y] by sums]. [3J



31-
EXAMPLE. Let wt
That wi - t is a continuous martingale. Thus by (6.14) we have‘[w,w]t = t, hence

t
[H-w,H.w]t = 6 Hg ds. By the martingale preservation property, fHdeS is also a

be a Wiener process (i.e., Brownian motion). It is easy to check

continuous local martingale, with H-wo = 0. Using approximations by sums it is easy

t t -
ECCH-W,H-W], )

- , 2
to check that E(é Hsdws) =0,0<t <, and E{(é Hsdws)

}

E(fHods) .

T t ot «
It was this last equality: E{(J HSdWé)Z} = E{] Hgds} that was crucial in K. Itd's
) 0 0 -
original treatment of a stochastic integral. ;

7. Ito's Formula; Change of Variables..

Let V be a process with continuous paths of finite variation on compacts. Then
if fECi] (possessing at least one continuous derivative) it is well known that

f(V) 1is again a process with paths of finite variation. Moreover, the formula
t

f(v,) = f(VO) + | f'(VS)dVs holds (path by path). This is usually called the change
0

t)
of variables formula. Less well known, but an easy extension of the above, is to

the case where V is only right continuous, but still has paths_of finite variation

on compacts. The change of variables formula then takes the form:

o+

f(V,) - %(vo) = [ Frug)dvg + T LF(V) - fV) - F(Y

Yav_ 3 .
S O<s<t S -77s

S

(e}

We wish to establish a formula analogous to the above, but for the stochastic
integral; that is, when the process is a semimartingale. The formula is different

in this case: one must add an extra term! -

(7.1) Theorem (1t0's Formula). Let X be a semimartingale and let f Qg_g_c? real

function. Then f(X) is again a semimartingale, and the following formula holds:
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t ot )
(7:2) T0K) - FlXg) = [ £y, Jak + %.6 F(x JdLX, X1

+ 0<§sﬁ{f(xs) - F(Xg) - Fr JaXgy

Proof. First note that the jump part of the stochastic integral ff"(Xs_)d[X,X]s:

2 and this is a convergent series. By adding and

is given by ) f"(Xs_) (AXS)
s<t

subtracting %—of this series, we can rewrite Ito's formula in the equivalent form:

t
[ 70 Dl

w t

(7.3) F(X,) <F(Xg) = [ 70

No| =

57X ) (X))

l'\)]‘-—'

+ Zt{f(xs) - F(Xg_) - FHX _)aXg -
S<

which is perhaps less obviously a generalization of the "classical" case, but
notationally simpler to prove. The p;bdfrrESts, of course, on Taylor's theorem:

fly) - f(x) = 1 (x)(¥-x) + %—f”(X)(y—X)2 *R(GY)

where R(X,y) 5_r(|y-x|)(y-x)2 , such that r: R.—R_ is an increasing function with

1im r(u) = 0.
u40

Proof for the continuous case: We first restrict our attention to a continuous semi-

martingale X, since the proof is less complicated but nevé?thelessubives the basic
idea. We fix a t > 0, and let 9, be a sequence of random partitions of [0,t]

tending to the identity [o, = (0 =Ty <T) < ... <Tp =t)].

0 K
Then kn B ]
(7.8) F00) - £0) = ] (PO, ) = FLY = TR0, - X )
i+1 i ! i i i
slyepx oy X VP E TR LX)
2 ;' M Tn ) Shn 2 Ton
i i i i i+1

t
The first sum converges in probability to the stochastic integral 6 f'(XS_) dXS
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. t -
(5.13); the second sum converges in probability to %—£ f"(XS)d[X,'X]S (6.2). It

remains to consider the third sum: 7§ R(X 0 X 4 ). But this sum is majoriied,

Ti Tin
in absolute value, by sup r( X ni - X n|){Z(X¢hn - X n)z}',fand:singeb
i e TV Ty Ty

b (X N X n)2 converges in probability to [X,X]t (6.2), the Tast term will tend
i T, T.
N i
to 0 if Tim sup r(|X

- X n|) = 0. However s - XS(@) is a continuous function
n>e 7 T

n
i1 T4

on [0,t], each fixed w, and hence uniformly continuous. Since - [

lim sup |T?+] -:T?I = 0 by hypothesis, we have the result:- Thué, in the continuous -
n> i -
. t t
1 -I n
case, f(X,) - f(X;) = é £ (X _)dXg + Zﬁé f'(X,_)d[X,X.], for each t, a.s.

The continuity of the paths then permits us to remove the dependence of the null

set on t, giving the complete result in the continuous case.

Proof for the general case: X is now given as a right continuous semimartingale.

Once again we have a representation as in (7.4), but we need a closer analysis. For

any t > 0 we have ) (AXS)2 5_[X,X]t < » a.s., hence. ) (AXS)Z is convergent.

O<s<t O<s<t
Given ¢ > 0 let A be a subset of R, x o such that J (sX)% < <% , and Tet
5 A
B= {(s,w): (AXS)2 >0, (s,0)y §A}. Then we can rewrite (7.4) as follows:
K, _
- 1 - -l n 2 ‘
(7.5) f(Xt) - (%) = 1§o{f (XTn)(XTn - XTn)}+ 7{; f (XTn)(XTn - XTn) }
i i Ty i T
T | X ) - F(X )= X)X =X )
- n 1.4 o) n n’/ T =/ n
PBATTLIE Y Ty L LR P R
1 .. 2
Sz PO, X))
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+71 ROC> X ) -

N -n _
BTl =0 Ty Ty

As in the continuous case, the first two sums on the right side of (7.5) converge

t t
. 1 ] 1
respectively to é f (Xs_)dXS and 7—6 f (Xs_)d[X,X]s by (5.13) and (6.2). The
third sum converges to: -
1 ] 1 2 _
(7.6) eZB TF(X) = F(XS) = F1{X ) aXg - 7 £(X,_)(aX)D,

IAXSI%Q__
and it remains to consider the fourth and Tast sum on the right side of equation

(7.5). Since Tim sup |T1+] - T?[ = 0, for large enough n_we have
n <
| X

X n| < 2¢ when Brl]JTn,Tq+1] = ¢. But then R( X,Y) ly x1)( 2 , hence
T — i

n
i1 T

we can majorize

(7.7) 1 N RO Xy )
: : Z n>"_n
i {BN 1T, Ti+]] o3 Ty Tig
by r(2e) J(X - X )% since J(X - X )°
#0n M’ 200 70’ converges to [X,}(]t < », as n tends
i+ il

to » and as ¢ tends to 0, we have that r(2e) tends to 0O and thus the sums (7.7)

tend: to 0 with e. Moreover the sums (7.6) clearly tend,-as e tends to 0, to:

. 1 o 2
(7.8) O<§<t{f(xs) - f(XG) = FHXG)aXg - 5 (X ) (A% )7}

provided this series is absolutely convergent.

Let V, = inf {t > 0O: |xtr“3_k}, with X, = 0.” By first establishing (7.3)

k 0

for X][O V[ which is a semimartingale since it is the product of two semimartin-
>k

gales (6.6), it suffices to consider semimartingales taking their values in intervals

of the form [-k,k]. For f restricted to [-k,k] we have |f(y) - f(x) - (y-x)f'(x)] <

2

C(y-x)~. Then
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. 2 _
TOF(xg) - FX ) = X )aX ] < € T (aX)T < €DK, <o

O<s<t O<s<t
and
y |f"(Xs_)|(AXS)2 <d § (X% <dX,X], <= a.s. Thus the sum (7.8)
O<s<t O<s<t

is absolutely convergent and this completes the proof. [

Theorem (7.1) has a multidimensional analog. We omit the proof..

(7.9) Theorem. Let X = (Xl,...,Xn) be an n-typleof semimartingales, and let

f: R” > R have second order continuous partial derivatives. Then f(X) is a semi-

martingale and the following formula holds: .

t . - ..
of i, 1 °F i c
é Q_T'(Xs-)dxs 7 . é_éff—_',(zs—)d[x X1 S

n .

o f i

+ (f(X.) - F(Xo) - 9T (x_ )axl'y .
0<§5ﬁ "3 "S- 121 Xy vS=TTS

i
The stochastic integral calculus, as revealed by Theorems (7.1) and (7.9), is

different from the classical Lebesgue-Stieltjes calculus. By restricting the

class of integrands to semimartingales made left continuous (instead of L), one

can define a stochastic integral that obeys the traditional rules of the Lebesgue-

Stieltjes calculus.

(7.10) Definition. Let X,Y be semimartingales. Define the Fisk-Stratonovich
t
““integral of Y-with respect to X, denoted é Yo_ o dX., by:

t t " »
4 _ g -y -y3C
6 YS_ 6 dXS = 6 Ys- dXs + ?-[Y,Xﬂt .
Note that we have defined the Fisk-Stratonovich integral in terms of the semimar-
tingale integral. With some work one can slightly enlarge the domain of the defini-

tion (cf.[ 34 , p. 360]).
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(7.11) Theorem. Let X 'be a semimartingale and let f be C°. Then

) o dkg +§ Gf(Xg

t
f(xt) ) f(XO) ) 6 fl(xs- O«S<t 52

- f(XS—) - f'(X~S;)AXS} .

Proof. Note that f' is c'2 , so that f'(X) is a semimartingale by (7.1) and in the

domain of the F - S integral. By (7.1) and the definition, # suffices to establish

Yoo, xa€ - ; JaLx, X< . H
5 é s . However

t

Fr(xy) P (xo)_ [ 100K + _6 T3y )dLX,X],

5..
Thus <
(7.12) TF*(0),X1¢ = [F(x2) x,X16 + [F 730 (x ) DXL, KIS

The first term on the right side of (7.12)is é f”(XS_)d[X,X]g by (6.16); the

second term can easily be seen, as a consequence of (6.2) and the fact that [X,X]

has paths of finite variation, to be ( ¥ f(3)(XS )(AXS)3 )€; that is,
O<S<- - '

zero, and the theorem is proved. [

Note that if X is a semimartingale with continuous. paths, then Theorem (7.11)

reduces to the classical Riemann- St1e1t3es formu]a f(X ) - f(X ) = é f! (X ) 0 dX

this is, of course, the main attraction of the Fisk- Stratonov1ch 1ntegra1
As an application of the change of variables formula, we next present an inves-
tigation of a simple, yet important and non-trivial, stochastic differential

equation. We treat it, of couFse, in integral form.

(7.13) Theorem. Let X be a semimartingale. Then there exists-a (unique) semimar-
- . . e . . 3 . 3 t B ” o
tingale Z that satjsf1es the equation: Zt =1 + fzs—dxs; Z is given by

1. 1 2
Ly = exp (Xt - Eg[X,X]t)O il (1+AXS) exp (-aXg+ ?-(AXS) )
<s<t
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where the infinite product converges. , -

Proof. We will not prove the uniqueness here, since it is a trivial consequence
of the general theory to be established later. Note that the formula for Zt is
equivalent to the formula:

1 C
- 7—[X,X]t) 1 (1+AXS) exp (- AXS), e
s<t

Z, = exp (X

t t

and since Xt’i- %—[X,X]E is a semimartingale, exp (x) is c?, we need only show

that T (1+4X§)-exp (-AXS) is cadlag, adapted, and of finite variation and it will
s<t =

be a semimartinga]é; too; thus Z will be a semimartingale. The product is clearly
cadlag, adapted; it thus suffices to show the product con;grggg and is of finite
variation.
Since X has cadlag paths, there are»pn]y a finite number of s such that
|AXS| > 1/2 on each compact interval (fixed w). Thus it suffices to show
Vt ) Ofgjﬁ
|

variation. Let U = AXS]{IAXSI <12y Then we have Tog V. = Szt{1og (1+§S)- Ul

(1+AX51{IAXSI<]/2)) exp (_AXS]{|A§S|<T/2}) converges and is of finite

which is an absolutely convergent series a.s., since *z (Us)2 f-[X’X]t < © a.S.,
O<s<t

because log (1+x) - x 5_x2 when |x| < /2. Thus log (Vt)7§s'a"br0cess;w1th paths
of finite variation, and hence so also is exp (log Vt) = Vt'
To show that Z is a solution, we set Kt = Xt - %l[x,x]i_, and let f(x,y) = yex.

Then Z = f(Kg.Sy), where Sy = 1 (T+ak) exp (-akg).
<s<t

By the change of variables formula we have
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; F'Ks ! } 7 d[K:K]S
7.18) Z, -1 =7 dk. +.[e > dS_+ _d[K;KIY -
KS
+ (Z. - 7. -Z7_ aK -e 578.)
0<§5_t S S- S-S S
t pt c toK y v
(7.15) = 6 Zo_ dXg - 7'6 Z,_ dDXXIg + £ e >Tds, + z:é:zs_ dEx,xjg .
Ky
L) (ZS - Zs- - I, AK, - e ASS)

Note that S, Being_the exponential of a pure jump process, is again a pure jump

t K K | -
) . S- = S- . = ’ “ =
process; hence [ e ds, O<§<te AS¢s also Z, Zs—(]+§¥s){ and Z, MK, = Z  AX_,

so the last sum on the right side of equation (7.15) becomes:

K K
‘S‘Ass)= ] o-e S'ASS
O<s<t

L (z

(]+AXS) -7
O<s<t

- ZS_AXs -8

S -
Thus equation (7.15)simplifies due to cancellation:

t
Z. -1=[1 dX. , and we have the result.Z O
5 “s- ,

(7.16) Definition. For a semimartingale X, the stochastic exponential of X, written
€rinition , > Lhe S - \ 5 Writien

€ (X), is the (unique) semimartingale Z that is a solution Qf;.it“= 1+ f Z_ dX,
0

Of course, the previous theorem gives us €(X) in closed form. We also have the

following pretty result.

-

(7.17) Theorem. Let X and Y be two semimartingales. Then €(X) E(Y)

= E(X+Y + [X,Y]). .

~

Proof. Let Ut =;8(X)t and Vt = €(Y) Then the integration by parts formula gives

¢
t St
that UV, - 1 = é Ug_dv, + é v du, + [u,vl, .
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~ Using that U and V are exponentials, this is equivalent to:

t t

t
= é UV, dY + g U Vg _dXg * é U, Vg dDX,YI, s

letting Wt = Utvt, we deduce:

t o
Wy = 1+ [ U d(X + Y+ [X,Y])g, and so Wy = (X + Y +1X;¥]) , which was.to be
0 R v A

t

)

shown. O
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IV. SEMIMARTINGALES. AND DECOMPOSABLE PROCESSES , -

1. Introduction

The usual definition of a semimartingale as found, for example, in any of
[111, [171, [231, [38]1, or [34] is that of a process X that can be decomposed
X = MtA where M is a Tocal martingale and A is a right contiﬂious, adapted process
with paths of finite variation on compacts. This differs slightly (élthough it

is equivalent) to our definition of a decomposable process (III .3.5) which we

repeat here: —

(1.1) Definition. An adapted process X with right continjous paths is decomposable

if it can be decomposed X, = Xo + M+ A, where My = Ag = 0, M is a Tocally
square integrable local martingale, and A is an adapted process having right
continuous paths of finite variation &ﬁ ébmpacts.

The primary purpose of this chapter is to show that a process is a semimartin-
gale if and only if it is a decomposable process. This will allow us to extend the
stochastic integral to more general integrands and will be crucial in putting a
useful topology on the space of semimartingales. (Note that we have already seen
(I11.3.7) that a decomposable process is a semimartingale): We will show in passing
the Tittle known result that a process sat{sfying the t?aditibﬁélwdé?initionfofra semi -
martingale is, in fact, decomposable. Indeed, the results of this chapter that are
essential to the rest of these notes can be summarized by the following two theorems,

whose proofs are contained within:paragraphs -twothroughtfive.

(1.2) Theorem. Let X be a cadlag, adapted process. The following are equivalent:

(i) X is a semimartingale (in the sense of III.1.1); -

(i1) X has a decomposition X = XO + M + A where M is a local martingale and A has

paths of finite variation on compacts;
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(111) for any e->.0, X has a decomposition X = Xg +N + B where N-is a-local martin-

gale with jumps_bounded by e, and B has paths of finite variation on compacts;

(iv) X is decomposable.

(1.3) Theorem. Let X be a semimartingale. If X has a decomposition X = XO + M+ A

with A natural, then such a decomposition is unique. —_

In Theorem (1.2), that (iii) implies (iv) is elementary. That (ii) implies
(iii) 1is Corollary (4.7); that (iv) implies (i) is III.3.6. Thus the heart of the
theorem is to show (i) - (ii) , which is essentially the theorem of K. Bichteler
and C. Dellacherie, itself using the Doob-Meyer decomposipioﬁigheorem, Rao's theorem
on quasimartingales, and the Girsanov-Lenglart theoremvon?thgnges of probability
laws. |

We have tried to present this succession of deep theorems in the most direct
and elementary manner possible. This contrasts with their usual treatment, which
is customarily part of a general pedagogic presentation of the "general theory of
processes". In particular, we have systematically avoided presenting "the classi-
fication of stopping times". We believe this will keep the treatment on as brief
and technically simple a level as is possible; the cost comes in that we were
unable to give a complete proof of Lemma (4.5), although we belieQ;:it is fairly
intuitive nevertheless, and proofs of the facts used can‘easily be found in the

literature. The reader who is willing to stipulate the truth of Theorems (1.2)

and (1.3) could skip this chapter without Toss for the subsequent-chapters.

2. The Doob-Meyer Decompositions

We begin with a definition.

(2.1) Definition. A right continuous process X is a potential if it is a nonnegative

supermartingale such that 1im E(Xt) = (0.

oo
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The next theorem is known as the Doob decomposition [16].

(2.2) Theorem. A potential (Xn)nﬁjN has g_decompos1t1on Xy = Mn :‘An, where -
An+1 Z.An a.S., AO =0, Ahe 3%_], ggg_Mn = E(A£[3n ). Such a decomposition is
unique.

Proof. Let My = X, and Aj = 0. Define My = Mor(X; - E(X | 351)s

A, = X, - E(X]IEO) . Define Mn’ An inductively as follows:

=
|

M * (Xn - E(anah—l))

n - n-=1--
AT+ (64 - E(X[F ).

n n-1

I=
i}

n-1

It is then simple to check that Mn and An so defined satisfy fﬂe hypotheses.
<
Next suppoée Xn = Nn - Bn is another such represehtation;. Then Mn - Nn
= A, - B, and in particular M, - N, = Ay - B,€ & ;3 thus My - Ny = E(M] - N]lgb)

- .

= MO - N0 = XO - X0 = 0, hence M] = N1. -tontinuing inductively shows Mn = N

ne
all'n. O

We next wish to extend Theorem (2.2) to continuous time potentials. First note
that if E(Aﬁ) < in (2.2), then it is simple to check that An+]e>8% if and only
if for all bounded martingales Y we have

E kZ1Yk-1(AK -A) SEYAY . - -

The analogous condition in the continuous parameter case would be that if Y is

a bounded positive martingale, then

-

E{f Y, dAJ = EXY A3,
0 ;o 0

(2.3) Definition. Let A be an adapted, right continuous, increasing process such

that Ay = 0 with E(Aw) < w, Then A is'natural if E{é Ys;dAs} = E{Y A } for any

bounded, positive martingale Y.
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The next theorem is known as the Riesz decomposition, due to its potential

' theory analogue.

(2.4) Theorem. Let (X be a positive supermart1nga]e ‘Then there exists a

t)tE]R
unique decomposition of X 1nto a mart1nga1e and a potent1a] Z such that X=M+ Z.

Proof. As is well known 1im Xt = ¥ exists a.s., and moreover-Y& L]. Let
tsco ' -

Mt = E(Y|3%), and let Zt = Xt - Mt' One easily verifies that Z is a potential.

Let X = N + W be another such decomposition. Then N - M =7 - W is a martin-

gale with Z - W_=0. Therefore Z=Wand N =M. [J

The next theorem is our first version of the Doob- Mex@r decompos1t1on theorem.

(2.5) Theorem. Let X be a potential such that the collection ¥ = {XT, T a stopping

time} is uniformly integrable. Then X has a decomposition X = M &« A, where M is a

martingale and A is a right continuous, increasing process, Ay = 0, and A is natural.

Such a decomposition is unique.

Proof. For each n&€N, define Y. = /é” 1&]N . Each process (Yi)iel\l is a

discrete potent1a] By the Doob decompos1t1on (2.2), there exié%s A? such tﬁat

E{A |5 AT where A €3 and A" = Tim A" , - Suppose we
1/2 ife" i/2" i- 1/2 ] 13@ ij2h -

is a uniformly integrable collection. Then by the Dunford-Pettis

1
n
know (A_ h\&h
theorem there exists a r.v. A_.and a subsequence m, such .that Amk
tends to A in c(ﬂ;,Lw). Let Mt be the right continuous version of E(Awlat). Then
. . n n n n
for r < s dyadic rationals A, <A. a.s., hence E(A_[3) - X < E(A_|&) - X  ,

and it follows that M - X <M, - X . a.s. Therefore Ay = My ',Xt is right continuous

and a.s. increasing on the dyadic rationals; hence we can take A right continuous,

everywhere increasing, and lim A
t-so0

Now let N be a bounded positive martingale:. By the dominated convergence

= Am, since 1im X, = 0.

t to3eo t
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theorem we have . . -
E(fN_dA} = Tim § E(N (A AN
6 S-% 120 if2" 12t 2"
and since N n'e & n o this becomes:
i/2 i/2
= Tim ¥ E{N E(A NV NNE- ! -
% iz a2 a2 g2" .
= 1im § E(N . E(X X F )
g i2" a2t g2 2"
=¥m JEN (A" - AT 1.
-~ i i/2 i+1/2 i/2
Moreover E(N 0 AN n) = E(N n A n) , hence the above becomes:
i/2 i+1/2 i+1/2 i+1/2 ; -
i n n c
= Tim') E{N A il Ni/zn Ai/zn} and we have a telescoping

T i7" ie1/2"

sum. Thus:

Tim E(A) N_),
and taking the 1imit along the subsequence N shows that the limit is E(AN_), and

therefore A is natural.

As for uniqueness, let X = L + B be another such decomposition. We have seen
that the potential X determines A: and that this converges weakly to A ; by the

uniqueness of weak Timits we have A_ = B_. “But then sincé'kt = E(A,l3) - A

= E(Bw]SE) - ?t = E(Bm|3%) - At’ we have that L = M and A = B.
It remains only to show that the collection (Ai )-is uniformly integrable. For
each » > 0 define the stopping-times

A

T, =inf gi/2": AT sy :
i+1/2 -
n . e TA _ n n
Then A" > » if and only if T < o, Moreover X =E(A |3 ) -A .
: co n. T}\ o T}\ T A
n n n

Therefore
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n n
(2.6) E{A 1 } = E{A". 1 }o+ E(X 1 * 1 ~
® (AS2) T; (Tﬁ<w Tﬁ (Thee)
$aP(A" s a) + E(X 1 J
® T (Trcw)
n
and
ECGAL - 0T o 3B, 1 ) .
(A>22) T (Th<s) —
which impTies
2AP(A) > 21) < 2E{X N P
T T (T
- n n
Replacing » by 2x in (2.6) yields -
E(A" 1 o< ZAP(An>2>\)+E{X 20 b
(A >2x) _ Tix t?n ~;;%), o .
<2E(X T o RE(X, 1, )
T (The &) T (1<

and this tends to O uniformly in n as ) tends to « by the hypothesis that

#= {XT; T a stopping time} is uniformly integrable. [

(2.7) Corollary. Let X be a positive supermartingale, and suppose {XT; T a stopping

time} is uniformly integrable. Then X has a unique decomposition X = M - A where

M is a martingale and A is a right continuous, fnckeasing;'hatuﬁaﬁ process with

AO =

(@)

Proof. This %s a combination of (2.4) and (2.5). 0O .

- The next theorem, which can also be consideréd a Doob-Meyer decomposition
theorem, is due to K. It0 and S. Watanabe [22]. It exchanges the uniform integra-
bility for a weakening of the conclusion that M be a martinga]é to Ehat of M being

a local martingale.

(2.8) Theorem. Let X be a nonnegative supermartingale. Then X has a decomposition
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X =M - Awhere M is a local martingale and A is a right continugus, integrable,

increasing natural process with AO = 0. Such a decomposition is unique.

Proof. Since X is a supermartingale, P(Xt < o) =1, Define the stopping times

Ry = Inf {t: Xy > n} , and Tet T, = Rpn. Then T increases to = a.s. Let
Xg = Xtﬂi'; then X" is a positive supermartingale verifying the hypotheses of (2.7).
*1h -

n+l

tet X" = M" - A" be its decomposition, each n. Since M is a uniformly integrable

martingale so also is (Mn+] ) , and the uniqueness of the decompositions shows
o 1,:/\Tn t>0
I N o antl _oan ;
that MtAT = MtAT’” and AtAT AtAT . Thus we can def1qe
n n n n 2
= "
My = My .
t < T .
A=A ) T
t t
Clearly M is a local martingale, and one easily checks that A is natural. O

3. Quasimartingales

Let X be a right continuous, adapted process, defined on [0,~]. We will call g
ta partition of [0,o] if & consists of points (tO’tl’i"’tn+1) such that

- _ . .. 1
0 = tO < t] < vel < tn+] = » , where n is finite. Assume that Xt?? L for each
t;€rand set B
n
C(X,z) = E{¢X, - X |3 3]
i by Tt

Var.(X) = E{C(X,z)} .

(3.1) Definition. A right conffnuous, adapted process X is a quasimartingale on

[0,o] if E{]Xt|}< » for each t, and if Var (X) = sup VarT(X) is finite, where the
T . -

sup is taken over all finite partitions of [0,«].
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(3.2) Theorem. Let X be a process indexed by [0,o[. Then X is a quasimartingale

if and only if X has a decomposition X = Y - Z where Y and Z are each positive

right continuous supermartingales: where X = 0.

Proof. For given s > 0, let J(s) denote the set of subdivisions of [s,»]. For

each t&€y(s), set -

. + -
Yg = E{C(X,1) | &35 Z; = E{C(X,1) lag}
where C(X,T)+ denotes }  E{X_ - X | &, }+, and analogously for C{(X,t) . Also
= e Tty T MY
o, . T 1 -l‘+-| 1

;
let. < denote the dfdering of set containment. Suppose o,r€ x(s) with ¢<z. We

claim Yg S_Y; a.s. To see this let ¢ =(t0,...,tn), and 11LsufF1ces to consider
what happens upon adding a subdivision point t before tO, after tn or between ti

and t1+]. The first two situations being clear, let us consider the third. Set

A=EX, -X|3 }3B=EX -X |3}
t, T Ml % t " M %
C = E{X, - X 3} ;
ty tmlti
then C =

A+ E{B|3% } , hence
i
¢t <A EEI3 S )
i

5_A+ + E{B+|3% } , by Jensen's inequality. Therefore
- i

ECCT|3) < EAT8) + BB (8

S

and we conclude Yg E_Y;. Since E(Yg) is bounded by Var (X), taking limits in L]

along the directed ordered set Z(s) we define

e _ . T
YS = 1im Ys .
T
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il

and we can define 25 analogously. Taking a subdivision with to s and tn+1 = ©

~

and we deduce that ?s -7 ="%_. Moreover

T T _ + - -
we see YS - Zs = E{C ~-C [Z%} X s s

s’
if s <t it is easily checked that Y. > E{Y,[&} and Z_ > E{Z,}d }. Define the

right continuous processes Yt = Yt+ R Zt = Zt+ , With the right Timits taken

through the rationals. Then Y and Z are positive supermartingales and YS - ZS = XS.

The converse is an easy consequence of (2.8). [

(3.3) Theorem. A quasimartingale X has a unique decomposition X = M + A, where

M i g_]ocaT;ﬁartingale and A is a natural process with paths of finite variation

on compacts and AO = 0. o

-
Proof. This theorem is a combination of (3.2) and (2.8). " OO0

4., Special Semimartingales

We begin with a useful theorem that is a slight generalization of III.6.13,

since it does not assume path continuity. If A is a process with paths of finite
t
variation on compacts, we let 6!dAS| denote the path by path total variation

]

process. MWe say that A is of integrable total variation if j]dAS|e L]
0

(4.1) Theorem. Let A be a right continuous process of integrable total variation

which is natural. Suppose also that Aj = 0 and that A is a martingale. Then A = 0.

Proof. Let T be a finite stopping time and et H be any bounded, nonnegative martin-

e ad

l 2
gale. Then E{é'Hs-dAs} = 0, as is easily seen by approximating sums and the dominated
T
1

convergence theorem, since fdes|e L' and E(AT) = 0. Using the naturality of A,
0 T -
T - -
E{HTAT} = E{g Hs_dAs} = 0, and Tetting Ht = E{]{AT>O}13%}- then shows that
P(AT>O) = 0. Since E(AT) = 0, we conclude At =0 a.s., hence A = 0. O
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(4.2) Definition. Let X be decomposab]e; If X has a decomposition X = M + A where

M is a Tocal martingale and A is a natural process with paths of finite variation

on compacts, then X is said to be special.

(4.3) Theorem. If X is a special decomposable bfocéss, then'its'deCOmpoéftion

X =M+ Awith A natural i§_unfque. —

Proof. Let X = N + B be another such decomposition. Then M - N = B - A, hence

B - Ais a local martingale. That B - A = 0 and hence B = A is a simple consequence

of (4.1).

(4.4) Definition. If X is a special decamposable process, tﬁéﬁgthe unique decompo-
-

sition X = M + A with A natural is called the candnféa] dééomﬁdsif16h.

We next present a lemma which is used in the proof of Theorem (4.6), a theorem
that P.A. Meyer has dubbed the ”fundah;ﬁtg1‘1emma of Tocal martingales". Unfor-
tunately we must use a result from the "general theory of processes" in its proof,
thus not making these notes self-contained. We refer the reader to any of the
excellent sources [ 81, [11], [23], or [28] where the details can be found. Also

we use an asterisk (*) in the proof to indicate these results taken from the general

theory. 1In the proof we use the notion of predictable stopping time: a stopping

time T is predictable if there exists a sequence of stopping times S" increasing

a.s. to T and such that S" < T on (T > 0}, each n.

(4.5) Lemma. Let A be a natural process with paths of finite variation on compacts,

and B > 0. Let T = infi{{t: |AA’t| > g}. IfH is a uniformly 1ntegrab1e‘martihga1e,

then Dt==A_HT ]{tif} is also a martingale.

Proof. The natural process A is predictably measurable (*), and therefore T is a

predictable stopping time (*). Let R be any other stopping time. Then
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E{DpI= Edafy 1o pyd = ECEOHL| & 3 gopyd s . -

since {T>R} & &T- , as is easily verified, where 3T- = Bb Vo{AFEt < T} ; atl
7€ &, t > 0}. Morevver, E{aH;[d;_} = 0, since H is a martingale and T is predic-

table (*). Therefore E{DR} = 0 for all stopping times R. Let_r€:3% and set

R(io)-={oto R ~

Such an R is a stopping time, and hence E{Dtlr} + E{D_1 C} = 0. Since also

P s F —
E{D 1.} * E{D;]fc}= 0 , we conclude E{D 1 }= E{Dw1r}, whence D, = E(Dm|3%), and D
is a martingale. [ .

(4.6) Theorem. .Let M be a local martingale and let g > 0%be given. Then M has a

decomposition M = N + A where N has jumps bounded by g (i.e. [aN| < ) and A is

a local martingale with paths of finite variation on compacts.

Proof. Define the stopping times

Sy = inf {t:|AMt| > B}
Sp = inf {t>S .- |aM,[> 8}

and C, =} AM. 1 . S T
topf Sy (B3] _

Then Ct is a local quasimartingale and hence by (3.3) we can decompose C uniquely

~

as: Cp = Ny + 6t where N is a local martingale and Cy is natural with paths of

finite variation on compacts. ~Let Ht = Mt - Ct +<Ct , a local martingale. Then

~

|aHG | < [aMg - aC | + [aC | <8 * |aC -

Next define U, = inf {t: ]AEtl > B}

U, = inf {t > U 2 [aCc| > 8} .

p

+ is a Tocal martingale. Let

Set DE = AHU1 ... . Then by (4.5) we have D
Do
{t—Up}
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Dy =-% DE , and DE- is then a local martingale for each p and thus D itself is a

local martingale. The decomposition M = {H - D} + {C - C+ D} is then the

decomposition sought. O

(4.7) Corollary. Let X be an adapted, cadlag process. If X hés a decomposition

X =M+ Awith M a local martingale and A a process with patﬁg'gf_finite variation

on compacts, then for any g > 0 X also-has -a decomposition X = N + B where N 1s a

local martingale with jumps bounded by s.

(4.8) Corollary. Let X be an adapted, cadlag process. If X has a decomposition

X =M+ Awith M a Tocal martingale and A a process with paths~of finite variation

on compacts, then X is decomposable.

Proof. Corollary (4.7) is an immediate consequence of (4.6). By (4.7) we can write
X =N+ B, where N is a local martingale with bounded jumps. Let 8 be a bound for
the jumps. We wish to show that N is locally square integrable. It is easy to see
that it suffices to show that N is locally bounded. Let T = inf {t:]]Nt| > nl.

Then |N | <n+ 8, and since Tn is a stopping time, N is locally bounded. O

t/\Tn

(4.9) Corollary. If X is an

adapted, cadlag process with a decomposition X = M + A

where M is a local martingale and A i§_§_prbcéss with patﬁ;-gfff?nite variation on

compacts, then X is a semimartingale.

Proof. This is a combination of (4.8) and II[.3.6. ©

(4.10) Theorem. A quasimartingale i§_g_sem1mart1hga]e.

Proof. This is a combination of (3.3) and (4.9). O

We conclude this paragraph with a useful extension of I11.5.11.

(4.11) Theorem. Let M be a local martingale and let HelL. Then the stochastic

integral H-M is again a local martingale.
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Proof. The local martingale M is a semimartingale by (4.9), so H-M is_defined. By
(4.6) we decompose M = N + A where N is a locally bounded (hence locally square
integrable) martingale, and A has paths of finite variation on compacts. Since H

is left continuous, by stopping at a time T we may assume, with loss of generality,
St ;

that H is bounded, M is uniformly integrable, N is bounded, and f|dAs{e Ll , each

: -~ 0

t > 0. We also assume without Toss that MO - N0 = AO = 0. We know H-N is a local
martingale by II1.5.11, thus we need show only that H<A is a local martingale.

Let on'bgfa sequence of random partitions of [0,t] tending to the identity.
Then ZHTn(A - A ") tends to (H-A)t in ucp, where o is7the sequence

T . ..
i

0= Tg E_T? <. T? < o.. (II1.5.13). Let (n)) be a sub§équence such that the -

sums converge uniformly a.s. on [0,t]. — -

y n n
Then E{f H,dA |&) = ECTim [ H (A, - AL )|&)
o - n, 1 In ’
k 1ok
" "k
= Tim E{} H (A1+]-AT1)|3}
SR | P t S
Ny i Tk
1 . ~ -
n n -
. T T
= Tim {E ) H (AS - A )}
Ny T k

by Lebesgue's dominated convergence theorem. Since the Tast 1imit above equals

(H‘A)S , we conclude that H.A is indeed a local martingale. O
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5. A_Semimartinga]e'i§_Decomposab]é: fhé'Th&drem gf;BiéhtéTEf and Dellacherie.

We have seen that a decomposable process is a semimartingale (III.3.6). We
have also seen that the "usual" definition of a semimartingale: X = M + A with M a
local martingale and A a process with paths of finite variation on compacts, is a
decomposable process (4.8), hence also a semimartingale (4.9)._—In this paragraph
we will establish the converse: that a semimartingale is deE;hposable. It is this

theorem that has inspired the entire pedagogic approach presented here. If X

is a decomposable process, we will call X = M + A a decomposition of X if M is a

local martingale and A is an adapted, right continuous process with paths of finite

variation on compacts. We begin with a theorem which is efteﬁ;referred to as
<

Girsanov's theorem.

(5.1) Theorem. Let Q be a probability law equivalent to P (i.e. Q<<P and P<<Q).

If X is decomposable under P with g_decompoéition X =M+ A, then X is decomposable

under Q and has a decomposition X = N + B, where N is a Q-local martingale given by:

I f—

t
Ny = My - é d[Z,M]s

N

S

=t " dQ 3
where Zt Ep{aﬁﬁai} , the cadlag version.

Proof. Note that we know X is a P-semimarffnéaie; and th&g IITiZﬂZ‘Tmp]ies that X
is a Q-semimartingale.

We first-observe that a process Y is a Q-local martingale if and only if YZ
is a P-local martingale. Since M and Z are both P-Tocal martingales, we know they
are P-semimartingales by (4.9), hence [Z dM + (M dZ is a local martingale by (4.11).

Therefore using the integration by parts formula (III.6.5) we have -that

—~

(5.2) ZM - [Z,M] = [Z_dM + [M_dZ

is a P-local martingale. Since Z is a version of EP{%%13%} . we,have;1/i is a



54

cadlag version of EQ{dQ|3 } , and hence 1/Z is a Q-martingale. Multiplying by 1/Z
in (5.2) yields: ‘

(5.3) HZM - [Z,M]} = M - (D)[Z,M]

and since Z times the right side of (5.3) is a P-local martingale, we deduce

M - (%& [Z,M] is a Q-local martingale. We now use ihtegratiom by parts (under Q):
(5.4) () [Z.M] = [T dz,M] + [[Z,M]_d(z) + [[Z.M1, 7] .

Let N = f[Z;M]:d(%). Since %—is a Q-local martingale, so also is N by (4.11).

Thus (5.4) becomes: -

d[z,M] + N+ [IZM], 7 O,

N|—-‘

(%t) [2,M], =

dfz, M + Ny + 0<§<tA('S)A[Z,M]s

w
i

|—

d[Z N] + N

™~
[72]

t

il
Ot OVt Ot
N —

Subtracting our two Q-local martingales yields:

N - M- (5) [Z,M]3

=N - M- [y d[ZM] - N

1
=M+ (L
(M+ 7 dL2,M])
which, being the difference of two Q-local martingales, is itself one. This estab-

lishes the theorem. O -

We note that in the proof we strongly used that Q is equ1va1ent to P Lenglart has

established a generalization of this theorem where one only need-assume Q<<P

(cf [25]).
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Our next theorem was proven independently by K. Bichteler [,1] and

C. Dellacherie [10]. Our approach is that of Dellacherie and others (Mokobodzki,

Letta, Yan).

(5.6) Theorem. A right continuous adapted process X = (Xt)0<t£m i§_g_semimartin§a1e

is a right continuous process with paths of finite variation gg_compécts. (That

is, X is a semimartingale if and only if it i

a decomposable process).

Proof. We hdave already seen the sufficiency. This is the content of Corollary

(4.9).

We turn to:the proof of necessity. Choose an arbitf%ry t‘> 0. 1If suffices
to show X is decomposable on [0,t]. By a homeomorphism, then, we will show X is
a decomposable process on [0,=], but for-an equivalent probability Q. The result
then follows by an application of Girsanov's Theorem (5.1).
Moreover we have seen in this chapter that it will suffice to show that X is a
quasimartingale under the new probability Q, since this implies it is a Q-decom-
posable process (3.3).

Since we are assuming X is a total semimartingale, we know that (by definition)

for He S such that Hy = Holyy 7 9 + ... # Hn_]l]T‘n_] $] s the-mapping I, given by:

I (H) = (HX)_ = H,(X

X( A O( -l: ) ?

- = Xy) ot Ho (X - X
T, 70 n-1 n-1

-
from éu to L°, is continuous. Let B = {H&$ such that H has a representation as

o

above and such that |[H| < 1}.

Let B = Ix(ﬁ) , the imagé of B under IX‘ It will now suffice to find a probability

Q equivalent to P such that Xte L](dQ), all t, and such that sup EQ(U) = ¢ < o,
Ues

The reason this suffices is that if we take, for a given 0 = tO < t] < ... <t =,

the random variables Hj = sign (EQ{Xt] - XOIBb}),
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= sj .- have that for this He B8, E (I (H)) =
H1 = sign (EQ{Xt2 thlai]})’ ..., We ha ' ol Ix

, - & + ...+ [EqlXy - X & }|} . Since this partition t was
EQ{IEQ{XtO xt] 1% [Eq t, tn+1| b

arbitrary, we have Var (X) = sup Var (X) < sup EQ(U) = ¢c<w, and so X is a -

T T T Ve

semimartingale. -

We next make several observations:

(1) B is convex, since it is the image under IX of a convex subset of S;

(i1) B 1is bounded in LO;

Note that the above, which follow from the hypothesis that x,j§ a semimartingale,

can be expressed as: -

(ii1) for any sequence Yn of elements of 8, and for any“sequence A of scalars

L .y .0
such that 1im An = 0, we have lim AnYﬁ,fmp in L.

n n

We continue with two Temmas that show how the semimartingale hypothesis on X is used:

(5.7) Lemma: Property (iii) above holds if and only if Tim sup P(|Y|>c) =0
Cr YER

Proof. Suppose 1im sup{sup P(|Y|>c)}> 0. Then there exists a sequence c
cro Y€ ‘

tending to =, Yhes > and a > 0 such that P(IYAIQCn) i_a,_1531 . " If we take

A= %—- » we contradict (iii).

n
Next suppose Tim sup P(|Y|>c) = 0. Then for each a, P(IAnYn]>a)
. C»o YER _ . ’
= P(]Yn]>a/xn) < sup P(|Y[>a/x ) , which tends to 0 as n tends to infinity. O
T T veg n ~

—~

(5.8) Lemma. The random variable essential sup Xt is finite a.s.
t
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Proof. Let D be a countable dense set (e.g., the rationals) such that_

'supIXt[ = ess suplxtl, using the right continuity of the paths of-.X. Suppose
t€D t .

P(supIXt| = ) >a>0 for some a. Let D be a finite subset of D and let
teD

T, = mAinf{teD :|Xt|>n}. Then for each n, if we choose D and m big enough, we

can take T_ such that P(|X; |>n) > a. _
n Tn

Let Hn = 1( )eﬁ, so that X, = IX(Hn)eﬂa. But then

T

0<t§Tn n

Tim sup P(IXT_J>C) > a, which contradicts that X is a semimartingale by (5.7). O
n n-

(5.9) Lemma. There exists a law Q equivalent to P such that
-

Xg€L'(dQ), all t.

Proof. Let Y = ess sup[X,|. Then Y <= a.s. Llet A = {m<Ym+1}, and set
t

=) 2'm1A Then Z is bounded, strictly positive, and YZ: € L](dP). Define

m=0 m

 Qbydo-= Ep(Z)']ZdP and then

p -t PR S T oty _
EQ{é X |e”"dt) iEQ{é Ye  “dt}= EQ{Yg e dt} = EQ(Y) < o

hence EQ{IXTI} <o, each t > 0. IR E . 0

Observe that g€ L}(dQ), and since Q is equivalent to P, if we can show X has

a decomposition X = M + A as in (5.6), then it does under P as well by Theorem
(5.1). Thus without Toss of gemerality we can assume that B g;L](HP). The theorem

now follows from the following Temma, which follows Yan [47].

(5.10) Lemma. Let g be a subset gf'L](dP), O€e g, that is bounded in probability:

that is, for any ¢ > 0 there exists a ¢ > 0 such that P(gz > ¢) < e, for any z&g.

Then there exists a probability Q equivalent to P, with a bounded density, such

that sup EQ(U)<'w.
UEB
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Proof. First note that the hypotheses imply that 8 c:L](dQ). What we must show is

_ that there exists a bounded random variable Z, such that P(Z > 0) = 1, and such

that sup EP(Z;) < w.
z€8

Let A€ 3 such that P(A) > 0. Then there exists a constant d such that
P(z > d) < P(A)/2, for all g€ g. Using this constant d, 1e§_§ =>2d; and we have
that 0 5_C]A € 8 , and moreover if B, denotes all bounded, po;itive‘r.v., then
cl, is not in the L](dP) closure of g - B, , denoted E_:_EIZ That is,
c]Aé.E_?_le__sjnce the dual of L] is L” , and g - B, is convex, by the Hahn-Banach

theorem there exists a bounded random variable Y such that .

(5.11)  sup E{Y(z - n)} < cE{Y]A} - Replacing n by®an and letting a tend to »
CEB’TIEB_;_ .o

shows that Y > 0 a.s., since otherwise the expectation on the left side above

would get arbitrarily large. Next sugbdéé"n = 0. Then (5.11) implies that

sup E[Yz] < ¢ E{YTA} < + =,
I

Now set &= {Ye B+: sup E[Yz] < =}. Since 0 € B, , we know ¥ 1is not empty. Let
' TEB ' .

4 = {all sets of the form {Z = 0}, Z€ % 1. We wish to show that there exists a

inf P(A). SUbboée, fhen, that Zﬁ"i§,a”sequence of

Ze& # such that P({Z = 0})
‘ Aed

elements of ¥. letc =sup E[Z ] andd = ||z |lj= . (Since 0€g, we have
" ces f & b 1

h 3_0)7 Choose b such that Z bc, <= and’},bd <« ,andset-Z=7 bz, -

Then clearly Ze ¥ . Moreover, {Z = 0} = FKZn = 0}. Thus & is stable under countable
n

intersections, and so there exists a Z such that P({Z = 0}) = inf “P(A).
Aeh

We now wish to show Z > 6 a.s. Suppose not. That is, suppose P({Z = 03}) > O.
Let Y satisfy QS;lT)(we have seen that there exists such a Y and that it hence is

in 3#). Further we take for our set A in (5.17) the set A = {Z = 0}, for which we
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are assuming P(A) > 0. Since 0eg and 0€&B we have from (5.9) that

+ 9

(5.12)0 < EQYly} = E(Y 5 _ (3.

Since each of Y and Z are in ¥, their sum is in ¥ as well. But then

P{Y'+ Z =0} = P{Z =0} - P({Z = 0}N{Y > 0}) < P({Z = 0}), by (5.12).

—

This, then, is a contradiction, since P({Z = 0}) is minimal for ZE_,H . Therefore

we conclude Z > 0 a.s., and since Z€B it - is bounded as well, and the lemma is

+ 9

proved; thus also, Theorem (5.6) is proved. [O



V. STOCHASTIC INTEGRATION WITH PREDICTABLE INTEGRANDS AND SEMIMARTINGALE LOCAL

TIME

1. Introduction..

In Chapter III we treated stochastic integration for semimgrtinga]es in a
relatively non-technical manner. We were able to do so by limiting the integrands
to the spacell. This is, of course, sufficient to prove a cha;ge of variables
formula, and it is also sufficient in many applications, such as the study of
stochastic differentia] equations. Extending the integral to more general integ-
rands, analogous to a Lebesgue-type integral, requires deep qgsu]ts: namely,
Theorems IV.1.2 and IV.1.3. Extending the semimartinga]eiinteé?a] to such integ-
rands is essent{al to many applications (such as martihgaie”répresentation) and
gives semimartingale Tocal time a natgra] interpretation through the Meyer-Tanaka
formula (4.24), as we shall see. o

In this chapter we first define stochastic integration for bounded, predictable
integrands and Hasemimartinga1es (2.10). We then extend this definition to
arbitrary semimartingales (2.20) and to locally bounded predictable integrands
(2.21). In paragraph three we establish some measurability results used in paragraph
four in the development of Tocal time. A ggngrq]i;ation {4:14) of .the change of

variables formula of chapter three (III.7.1) is given using Tocal time.

2. Stochastic Integration for Predictable Integrands.

Let X be a semimartingale. Then by IV.5.6 we know X is decomposable. Let

X = XO + N + B be any decomposition where N0 =.BO = 0. Define:

1 ©
(2.1) 3,(08) = [|DNNIZ + [X] + [ 1B 1] -
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(2.2) Definition. The space 32 of semimartingales consists of all semimartingales

X for which there. is a decomposition X = Xy+ N + B such that jé(N,B) < o

It is simple to check that if X is an 32 -semimartingale, then X is also a

We can now next define: -

e

(2.3) Definition. Let X be a special semimartingale with X0 = 0 and with canonical

decomposition X = N + B. Then Eﬂg_ﬁ2‘4norm of X is defined to be:

- . .9 oo
) = | |TN,N]3| + dB,
1K1 = LIWREY| 5+ 1T 1651 11

-

It can be shown fhat X has finite:nz-norm if and only if there exists a decomposition

X = N + B where j2(N,B) < =, With j2 as given in (2.1).

(2.4) Theorem. The space gj:ﬂz semimartingales is a Banach space.

- 1
Proof. The space is clearly a normed linear space. Since [|N|| , = ||[N,NZ]] , ,
L L

it follows from Doob's maximal quadratic inequality that the space of square

integrable martingales is complete. As for B, let (Bn) be a sequence such that

) ||Bn|w|| , < = , where |En|°° = | |d§2| . Then the series } B" converges to a
n L 0 ' n
limit B and Tim z>/£|d52| -0 in L' and is dominated in L2

by J [|dB| , hence it
M NS 0

tends to 0 in L2 as well. Thus»-ZEn converges to B-in L2(dP), and cbmp]eteness

follows. (O

For simplicity, in this paragraph we henceforth assume that all semimartingales

X have the property X0 = Q.
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Let blL. denote the bounded processes inlL. For HE bl and XEH;Z we"have H.X
is in ¥ as well. Moreover if X has the canonical decomposition X= N + B, then

H-X has the canonical decomposition H-X = H.N + H.B, and moreover:

1 o
(2.5)  |[HX[| 5= [|TH-H-RIZ|[ 5 + || ]d(H-B) | ||
LZ L2 0 S LZ

© 2 - ; (o] _
= ll(é Hsd[N,N]s)ZIILz * I!éIHSIIstl IILZ :

Since thé:[ébesgue-Stieltjes path by path integrals ngd[N,N]SS, std§s make

sense for any HebP (the bounded, predictable processes) as_weTﬁi?s Hell, we can
<

use property (2.5) to extend our class of integrands.

(2.6) Definition. Given an Hz—semimartjnga1e X with canonical decomposition
X =N+ B, and processes H,J € bP, define dX(H,J) = K

[oe]

1 g - J¢)%dIfAL)

(o]

lILz ¥ ||6|Hs - Jg | dB] II;Z-

Y
2

(2.7) Theorem. blLis dense in b® under the "distance" dX(-,-) .

Proof. Let ¥= {HEDP: for any ¢ > 0, there exists a gebglsuch that dX(H,J) < ¢}
Then ¥ contains bl and the constants. Moreover if H?(@H anﬁ iné}e;siﬁg to H with

H bounded, then by the dominated convergence theorem for n > N, dX(H,Hn) < 6. - Since
H?GJd, there exists a JT€BIL such that dX(Hn,Jn) < v. Therefore for n > N, there
exists a J?Gt&L such that dX(H,dn) < ¢ by appropriate choices of § %nd v. An

application of the monotone class theorem yields the result. )

(2.8) Theorem. Given a semimartingale X jﬂ_lﬁzggg HPebu_ such that Hn_i§ Cauchy

under dy, then Hn-X_1§ Cauchy in e
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V™. O . -

Proof. We have ||H".X - Hm-XIIM2 = dy(

(2.9) Theorem. Let X be a semimartingale in ¥° and let HEbP. If H"€ bl and

ol €bll-such that, Tim dy(H",H) ="Tim d,(3";H) =:0; then H"+X and J"-H tend to the: -
. n N n -

same limit in ®%. -7

Proof. Let Y = lim H'-X and Tet Z = Tim J".X, in ¥2,
Then _____n "
I I e T PRI T
<2+ |[Hx - 3"ex lgz (nzN) ..
< 2¢ + dy(H,3")

-

2¢ + dy(H",H) + dy(H,3")

A

X
4e, and the result follows. O

1A

We can now make the:

(2.10) Definition. Let X be a semimartingale in 12 and Tet HEbP, Let HT€blL be

such that lim dX(Hn,H) = 0. The stochastic integral H.X is the (unique) semimar-

tingale Y in 2 given by 1im H'.X = ¥ = H.X, with convergence n wl

(2.11) Theorem. Let X be a semimartingale in ﬁz. Then E{(sgp |Xt])2} < é[|X||i2 .

[oo]

Proof. let X: = sup ]Xt[' Then.X: < N: + é[dESI,aand by Doob's maximal quadratic
t
inequality,
=% = = b
E((N.)%) g 4E(R?) = 4E(TRAD) .

o0 o] —

Thus E¢(X)%

A

2EC(R*)%) + 2E{(é|d§sl)2}
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< 8| |INAH %, + ZIIZdESI 113, )
L L '
and the result follows. O

(2.12) Corollary. lf_Xn is a sequence gf;semimartihgaTésCQnVékgﬁngfg_X iiJHZ

. . - n % -
then there exists a subsequence Ny such that 1im (X k _ X)g =0 a.s..
N, oo - .
k -

Proof. Since (Xn - X)* converges to 0 in L2 by (2.11), there exists a subsequence

converging a.s.. O

We are now in a.position to investigate some of the properties of this more
general stochastic integral. The bilinearity is evident, &nd Qé state it without
<

proof.

(2.13) Theorem. |et X, Y be hz semimartingales and H,K€ b . Then

(H+K) + X=H=+X+K-+X, and He(X + Y) = H-X + H « Y,

(2.14) Theorem. Let X be a square-integrable martingale and let H€ b® . Then

H « X is a square integrable martingale.

Proof. Clearly X is a semimartingale in HZ. Let H?Gbﬂ.such that 1im dX(Hn,H) = 0.

noe

Then H" « X is a square integrable martingale by III.5.11 for each.n. The theorem

follows by L2-convergence. B

(2.15) Iheorem. Let X be an H%semimartinqa1e with paths of finite variation on

compacts. Let He b¥ . Then H - X agrees with 2 path by path Lebesgue-Stieltjes

-

integral.

Proof. Let HI€bIL such that Tim dy(H",H) = 0. Then H" + X is a Lebesgue-Stieltjes

integral for each n, and the result follows by passing to the Timit. . &

(2.16) Theorem. Let X be an ¥#%semimartingale and HE bP . Then a(H-X) = H(aX).

e -
.
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Proof. Let HY€blL such that lim dX(Hn,H) = 0. Then there exists a subsequence Ny
. i N—>c0
Ny *
such that 1Tim (H " - X - H - X)_ =0 a.s., by (2.12). This implies

n, >o

k

n ‘ ‘ ny
- X) + A(H - X) outside of an evanescent set. However since H "€lL, we know

R n ML) s

- %) = H ‘(AX) «Therefore 11m H't m)‘ T ( ),on {N( # -0}, hence the
. ) ‘ ‘N
limit exists. If

= {u: there exists t > 0 such that Tim H %(w) t.(w) and AX, # 03,

L)
n-e

and if P (4) > 0, then we would contradict that 1im dX(Hn,H) = @, since

. % 12d(afl )2) o3
Tim dy (H",H) 3 11ml|] é (H% - H)“d(al )7)* + 1 f|H k- H, [diAB | |1 2

n
i
and if aX_ # 0, then |af| + [aB | > 0. Thus P(1) = 0, and we have
"k

A(H-X)t = 1im Ht AXt

Ny

= HtAXt. O

(2.17) Theorem. Let X be an ﬁz-semimartinga1e, and let H,KEbP . Then

H e+ (K« X)=(HK) « X.

Proof. This follows from the result for H,KEtdL'(III.S.]O}:'andfthehwby taking

Timits. t

(2.18) Theorem. Let X, Y Qg_ﬁz -semimartingales and Tet H,K&€.b®. Then

t -

[H-X,K-Y]t = é HSKSd[X,Y]S

and, 1in particular,
t
_ 2
[H-X,H-X], = é Hgd[X,X], .
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Proof. As in the proof of Theorem II1.6.16, it suffices to show - -

t R N
[H-X,Y], = [ Hed[X,Y]. Let HY€bIL such that dy(H",H) ~ 0. By stopping we can
0

also assume Y: €bll, and it is then easy to check that dX(HnY_,HY_) also tends to -

0. We have, by I1II.6.16, —

(2.19)  [H"-X,¥] = [H"d[X,Y] > [Hd[X,Y];

Let Z" = #" Jiiziand by (2.12) we know there is a subsequence Ny such that

nk % )

lim (z " -12)_=0 a.s., where Z =H « X. Then e

n, »» - -
k <

n n n n n.
k 7 K Ky k

n 7 n |
Zkyi=z2%-(v)-z25-@ ) -v=z%-(H" . x-@

by integration by parts and by (2.17).{'Taking Timits we have

n
Tim [z %,¥]
nk—>°°

IV =Y o (HX) - Z_ - Y

Y =Y - (2)-7_+Y

[Z,Y] = [H-X,Y].
Combininig this with (2.19)yields the result. 0O . .

Now let X be any semimartingaie with XO = 0 for simpTicity. Let X=M+ A
be a decomposition where the local martingale has bounded jumps, which we know exists

by IV.4.6. Define:

-

t
T, = inf{t > 0: IMtI >n or éldAsl > nl.

Then
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XTn- } t n
Xp _if T () £t
n
Tn- Tn Tn- ) ;
and X =M" +A - (AMT )]([T W[ if ¢ is a bound for the jumps of M, then
n --n’ T
T - T - -

| X n | 2n + 2c; that is, it is bounded. Note that X " is a semimartingale and
is in u? . This allows the extension of the stochastic integral to arbitrary semi-
martingales. "~

(2.20) Definition. Let X be a semimartingale and HE b . ,LeE;[n be stopping times

<

: T - B -
increasing to « such that X " is in e . Define H.X to be Ha(X.ni) on j[O,Tn[l for

each n, and call H.X the stochastic integral.

Note that if Tm > Tn in Definitioh (2.20), then if Hn-ebu.converge to HE bP
ind T - (+,+), then they converge as well in d T - («,+), so the integral is
(x™) (x")
well defined. We can also further extend the class of integrands. A process HE P

ic said to be locally bounded if there exist stopping times Tk increasing to » a.s.

: k
such that (H—HO)T is in bP for each k.

(2.21) Definition. Let X be a semimartingale and Tet HEP be 1oca11y”bounded. The
k

stochastic integral H.X is defined to be HjX, + (H - HO)T -« X on ﬁ[o,Tk];; ,

It is now a simple matter to check that all the prbperties (2:13) through
(2.18) still hold for this mi]&‘extension. ‘

These techniques can be carried further, but we do not do so here. By developing
the semimartingale topology, which is closely tied to the Jiznorm;‘éﬁe can extend |
the stochastic integral to the space of predictable, integrable processes. We refer

the interested reader to [ 4] and [44].
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3. Stochastic Integration Depending on a Parameter

In order to present the theory of local time for semimartinQaTes and its con-
comitant formulas, it is first necessary to establish some measurability results,
which is the purpose of this paragraph. We begin with a clever theorem due to
C. Stricker and M. Yor [45] , which builds on an idea of C. DQJ§ans—Dade [12].

We let (A,4) be a measurable space.

able. Suppoéé:Xn(a,~) converges in probability on o for each geéA}, Then there

exists an 493 -measurable function X such that X(a,-) = Tim Xﬁca,-), in probability,
n -

for every a€ A .. N

Proof. Set no(a) = 1 and define inductively

nk(a) = inf{m > nk_](a): sup  P[|X (a,-) - X.(a,)] » g‘k] 5_2*k}
p,g>m P q |
Set Yk(a,w) = Xn (a,w). (Note that a - nk(a) is measurable).. For each k > 1
k(a) |
and every a,
K K
P{|Yk+](as') - Yk(as')| > 2 } 5_2 Py

and the Borel-Cantelli Temma implies that Ykﬂa,-) converges_a.s. Next 1etha be the
set where Yk converges and define

Tim ¥, (a,m) , w€ A°
T N S ‘

X(a,w) =
0 wg 12

Then Aa; €4®3F , and hence X is jointly measurable. O

We will not have use of it, but we record here nonetheless a useful corollary

that follows trivially.
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(3.2) be*oﬂary. Let X, be as in (3.7), except assume that X, converges in

LP(p > 1) for every a€A. Then there exists an X on A X @ that is° 4®3 -measurable

and such that Xn(é,-) converges in LP to X(a,-) for every a.

Proof. Convergence in LP -implies convergence in probability, thus the corollary ;_

follows from (3.1) O -

At this point let us recall two definitions.
(3.3) Definition. -The predictable og-algebra @ on R, X @ is the smallest c-algebra
making all left continuous, adapted processes measurable;—'thé Eptiona] c-algebra &
. <

onR_X g is the smallest g-algebra making all right cbhti';lu_ods, adapted processes

measurable.

(3.4) Theorem. Let X be a semimartingale and let H(a,t,w) = H’i(‘*’) b_e.# ® p- measur-

able and bounded. Then there is a function Z(a,t,w) € £ ®® such that Z(a,e,-)

is a cadlag, adapted version of the stochastic integral H® . X, each a€ A.

Proof. Let #= {H €bd @ p: the conclusion holds}. If K €b P and f€ b ,

and if H(a,t,u) = f(a)K(t,w), then : . '

R

. | E
»std_xs = [f(a)KdX = f(a) fK.dX € £ ® O, and so HE ¥ . Note that H of this form

generate bd ® p .
Suppose next that H"€ ¥ and H" converges boundedly to a process HEbd &P,

By the monotone class theorem it will suffice to show that the 1imit process He ¥,
Let § = R, x @, and define P =1 x P, where A(dt) = e~tdt on IR+;. It then suffices
to show, thanks to Theorem (3.1), that Hhe L x converges in 5 pr'c;babﬂity for

each a.



70
Suppose first X€ ﬁz . Since . -

t t | |
Ecsup(f HIRdxg - f WX )% < cf| fH %X, - f Hgdxs||2 )
t 0 0 g

by Theorem (2.11), it suffices to show that Tim [|H"*® . X - # . X ,=0,
N> - ¥
each a€ &, because if sup Y"(t,-) tends to O in P-probability, then ¥ (t,0)
t

tends to 0 jg_ﬁ—probabi]ity as well. Let X = N + B be the canonical decomposition

of X. Observe that

|2 . x - e . x]]5, < 2E(f (HD>2-H2)d[WLNT) -
M 0 >

¥ 25(6 [HE-0-H2[ [dB 1)

which tends to zero by the dominated convergence theorem, since H">2 and H? are
bounded, and we have the result.

For a general semimartingale X not necessarily in 2 , let T be stopping

n
times increasing to « a.s. with TO = 0 such that XT T€ HZ , for each n. Then

n- n-
T a

W o XU ed®@os but - XU = HY - X .1 , with each

1, +
[6,7" - N
term in A® @. Since '

we have H_ L X ed®o.

(3.5) Iheorem. Let X(a,t, ) = xi(m)!y;siéqga- measurable and gfsemimartinga1e

for each ai € 4 . Then there exists a version gf_[Xa,Xa] which is. # ® ¢- measurable.
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~ Proof. Let S be a sequence of fixed times wich form a sequence'of partitions

of [0,s] tending to the identity (cf. 111.6.1). Then

n n
a,ti a,ti 5

+] X

(0G)% + ] (X
1

converges to [X‘a,Xa]S in ucp for each a € A and this holds for each s > 0. Let

P(dt,dw) = A(dt) x P(dw), where A(dt) = e~tat on R,. We define_ﬁ =R, x Q

L

— : - ) . _Lt. nA T

R . S . o S TaLt; a,t;

<o that P is a probability on @. We set YZ’a = (Xg)2 + Z (X i+ X 1)2
i L

and then Y Pe d® 3. It suffices to show that Y">2 convgrggg:to [xixa] in
ﬁ—probabi]ity for each a by Theorem (3.1). By Theorem 111.6.2 we know that
yn»@ converges to [Xa,Xa] in ucp for P, for each a. This implies

Tim P{sup IYZ’?- [Xa,Xa]SI > 8} = 0, each 86 > 0, and each t > 0. Let ¢ > 0 be
n s<t -
given, and choose m so large that P([m,»[x@) < e. Then

LY 2, x0T > 8} < ﬁn[o,mm(\Y”’a-[xa,xau > §)} + P([m,©) x )

<pisup [YDR-DELEI] > 6 e
s<m

which yields the result. - ‘ : e 4

_ (3.6)Théofém; Let X be a semimartingale, and let H(a,t,w)=Hg-be:ﬁ@bP—measurab]e

such that H3(w) is locally bounded for each fixed a€ A. Let 7%= h® . X be

the £®C-measurable version of the syochastic integral. Then AZiu(da)'i§¢g

version of H . X, where H = fHau(da), for u a finite measure ggj(A,ﬂ ).

7
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Proof. First suppose H(a,t,w) = f(a)K(t,u) for f€ bd and K€ bP. Set

Hs+X= f(a)k+ X, the result then being clear. Next set &= {HEbL® P such that
the conclusion Ho]ds}. Then ¥ is a vector space containing the generating collec-
tion f(a)K(t,w). The result for bounded functions follows by the monotone class

theorem, and the extension to locally bounded integrands is-simple. O

4, The Local Time of a Semimartingale

We have seen-with "Ité's lemma" (III.7.1) that if f: R »~R is c? and X is
a semimartingale, then f(X) is again a semimartingale. ;That“-is,, semimartingales

2

are preserved under C° transformations. This property erx_te.n_d‘s' slightly: semi-

martingales are preserved under convex transformations, as (4.1) shows. (Indeed
this is the best.one can do in genera]éw“if' B = (Bt)t-> 0 is standard Brownian
motion and Yt = f(Bt) is a semimartingale, then f must be the difference of

convex functions [6] ). Local time appears in the extension of Ité's ]emma to

convex functions (4.15).

(4.1) Theorem. Let f: R ~R be convex and let X be a semimartingale. Then f(X)

is a semimartingale and one has e

t
) = ) + [ £00 kg + Ay

where f' is the left derivative of f and A is an adapted, right continuous, increa-

e

sing process. Moreover AAt = f(Xt) - f(Xt_) -f'(xt-)AXt .
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Proof. First suppose |X| is bounded by n. Let g-be a positive ¢ function with

compact support in ]-=,0] such that [ g(s)ds = 1. Let fn(t) 5.ﬁf f(t+s).g(n§)d§.

2

Then fn is convex and ¢~ and moreover fﬁ increases to f' as n tends to ». By

Ité's lemma (III.7.1)

¢ ]
(4.2) £ (X) = fn(XO)_+j@ﬂ;\(Xs_)dXS + AL -

t
where Ag ) {f s) - fn(X AX } + ; f ! X )d[X X]c

) - f'n(X
9<S'<t

S- S-

The convexity of f implies that A" s an increasing process.; Lett1ng n-ténd to « ,

(4.2) becomes: s
t
(8.3) £(Xy) = f(Xg) + éf'(Xs_)dXs + Ay

where 1im A" = At in L2, and where the convergence of the stochastic integral terms

N t
is 1in hzon [0,t].

We now compare the jumps on both sides of the equation (4.3). Since

f'(X_ )dX_ = 0 we have that A, = 0. When t > 0, the jump of the left side of (4.3)
s-'""s

0
is £(X,) - F(X,_), while the jump of the right side equals f'(X, )aX, + oA, ;
therefore AA, = f(Xt) - f(Xt_) - f'(Xt)AXt, and (4.1) is established for |ix|.
bounded by n..
For general X, let T = inf{t: IXtI > n}. Then Y X1 . :ﬁ‘ Ts¢afboundedfsemi—
- ]0 T [’
martingale, hence f(Yt) = f(YO) + ff'(YS )dYS + Ag. This is true for each n,
0 -
t n n C
hence one has f(Xt) = f(XO) + éf (XS_)dXS + AL on [0,T'[. Therefore
n+el,T"- T - n n
(A7) = (A7) and we can define A = A" on LO,T [, each n. The general result

now follows.” [



For x a real variable let x+, x~ be the functions x' = max(x,0) and -

X~ = - min (x,0).

(4.4) Corollary. Let X be a semimartingale. Then |X|, X+, X~ are all semimartin-

gales.

Proof. The functions f(x) = |x|, g(x) = x* and h(x) = x are all convex; the

result then follows by (4.1). 0O

For x,y real variables, let xvy = maximum (x,y) and xAy = minimum (x,y).

(4.5) Corollary. Let X,Y be semimartingales. Then X\ﬂY.énd XAY are semimartin-

gales.

Proof. Since semimartingales form a vector space and xVy = %—(Ix—yl + x +y) and

XAy = %-(y + x = |x-y|), the result is an immediate consequence of (4.4). [

We can summarize the surprisingly broad stability properties of semimartingales.

(4.6) Theorem. The space of semimartingales is a vector space, an algebra, a lattice,

and is stable under 62 , and more generally under convex., transformations.

Proof. This is a combination of III.2.1, III.6.5, 4.5, I}I.7t],waﬁd 4.1, O

We next define a function that is the left derivative of the convex function

hO(x) = |x]: define

1 x > 0~
sign (x) =
-1 x <0

ha(x) = |x-al. .

(4.7) X
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Then sign (x-a) is the left derivative of ha(x). By (4.1) we have -
. t a
(4.8) |X¢-a| =|X0-a| + é sign (Xs_-a)dXs + At ,

where Ag is increasing.

(4.9) Definition. Let X be a semimartingale. The local time at a of X, denoted

Lz = La(X)t, is defined to be the process given by )
a a . .
Ly = AL T_-Z {ha(Xs) - ha(xs-) - hé(xs-)AXs} , using the notation of (4.1),

“—7s<t
(4.7) and (4:8)'_1:;

‘Note that the Tocal time L? as defined in (4.9) is contiriuous in the variable
<
t by (4.1); moreover, if & are the Borel sets in R, we know by (3.4) that we can

find a version of LY that is 4®C-measurable. We always choose this measurable

S

version of the local time.

The next theorem is quite simple yet crucial to proving the properties of L@

thqt justify its name.

(4.10) Theorem. Let X be a sem.martingale and let L? be its local time at a.

Then
(4.11) (X-a)t = (X.-a)" + 0 SR o (X"ia;)'~
T * 0 é (Xs- > a) s 0<§<t (XS_ > a)'’'s
+ .1 ,a
- O<S<t](xs- i.a)(xs_a) fzhe
(8.12) (tpoaV = UK-a)™ - [ 17 | (X -a)
4.12) (X,.-a) = (Xy=a) - [ 1 X+ 1 X.-a
t 0 6 (X < a)7s 0<szt (Xs_>a) 8
+ .1 a '
+ , - 1 - .
" 0<§<t1(xs—ia)(XS Dt 2 Lt -

] . + -
Proof. Applying (4.1) to the convex functions f(x) = (x=a)" and g(x) = (x-a) we get

t
g(Xe) = alXy) + ég‘(xs_)dxS *+ By
t : +
f(X.) = f(Xg) + (j}f'(xs_)dXs * By -
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Next let . -
Co= By - ) {9(Xg) - g(X) - g" (X _)axS?
O<s<t
CF =Bl - T rf(x) - (X)) - FHX)AX Y
t t 0<s<t S S- s-'""s"?
and subtracting the:formulas we get B: - BE =0 and hghce C: ﬁ.é%; also
CI + C£ = Li;'thus C: = C£:= %—Li , ‘andzthe proof is comp]ete.‘ 1 -

The next theorem, together with the "occupation time density" formula, are the

traditiona]_Ehstifications for the terminology "local time".

(4.13) Theorem. For a.a. w, the measure in t, dLg(w),‘igiéarr%éd Ql_thé set

{s: XS_(w) = Xséw) = a}l.

Proof. Since Li has continuous pathss the measure dL%(w) is diffuse, and since

{s: Xs_(w) = a} and {s: X_ (w) = Xs(w) = a} differ by at most a countable set, it

S-
will suffice to show that dLi(w) is carried by the set {s: XS;(m) = al.
Suppose S, T are stopping times and that 0 < S < T such that [S,T[ < {X_ < al.

Then X.< a on [S,T[ as well, hence by (4.11) we have

T
+ +
(X-a)7 - (X-a)c = [ 1 dx_ + ] (X_-a)
T S5 (X >a)ls Cglgq (X > a)ts
+, 1,4 a
+ X~ + 5 - .
S<§<T](Xs- ca)lism) Tz {ty k)

Eliminating the terms that must Sé zero yields:
+ + 1 a- a
(X-a)I = (XT-a) + -Z--(LT - LS)

1,2 ay _ a _ ,a
whence ?'(LT - LS) =0and Ly = Lg .

Next for r€@, the rationals.define the stopping times Sr(w)’ ¥ > 0, by



77

r-if Xr_(w) < a
Sr(w) =
o if Xr_(w) > a
Then define

T (w) = inf{t > S (w): X _(w) >a}.

Then [Sr,Tr[ c{X < a} , and moreover the interior of the seif{X_,< a} equals

U ]Sr’ Tr[‘ As we have now seen, dLa does not charge the interior of the set
ré€q /

r>0 . ‘

{X < a}. This set is open on the left, hence it differs from its interior by an

at most countable set, and since dL? is diffuse it doesn't charge countable sets.

Thus dL? does not charge the set {X_ < a} itself. s

Analogously one can show dL? does not charge {X_ > a}:f Hence its support is-
contained in the set {X_ = a}, and we .are_done. 0

The next theorem gives a very satisfying generalization of Ito's lemma (I11.7.1)

- (4.14) Theorem. Let f be the difference of two convex functions, let f' be its

left derivative, and let u be the signed measure (when restricted to compacts)

which is the second derivative of f in the generalized-function sense. Then the

following equation holds.

- w

(4.15) £(x)= £(X,) + gf'(xs_)dxs ] (X)) = FXg1) - FHX_)aX)

O<s<t

* g Julda)ly

roj—a*

-

Proof. First note that for each fixed (t,w) the function a - Li(w) has compact
support as a consequence of (4.13) and that semimartingaies ha%e cadlag paths which
‘are hence bounded on [0,t] for each w. Therefore the last integr;1 on :the right
side of (4.15) has meaning.

For simplicity let us assume that u is a signed measure with finite total mass.

Define a function g by

(4.16) g(x) =[]|x-y|u(dy).
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It is well known that f and g differ by at most an affine functien h(x) = ax + b.
Equation (4.15) is clearly true for affine functions (e.g. III.7.1), so it suffices
to establish (4.15) for functiong of the form (4.16), and we assume f is of the
form f(x) = j1x-y*u(dy). Then f'(x) = [sign (x-y)u(dy) and hence if

0 2t|X -yl - }Xs_ - y| - sign (Xs_ - y)AXS, then - ,
<<

(4.17) .thu(dy) = {R(X) - F(X ) - FHX _)aX 3.
O<s<t

Also, 1ettiﬁ§jH{ = |Xg =¥l - Xy - ¥|, one has

(4.18) fH{u(dy)‘= f(Xg) - F(X). 1

Next consider Zy f sign (X,_ - y)dX., and Tet Z be the 4®0 measurable

version, which we know exists (3.4). By the Fubini lemma (3.6) we have
t
(4.19) fzdy éf(xs_)dxs.

1 - a a
S1nce2 Lt Ht Jt - Zt , We have

(4.20) 3 [L3u(da) = [HIu(da) - [ITu(da) - JZ{u(da)

and combining {4.20) with {4.17),(4.18) and (4.19) yie]ds‘the.¥oﬁmuTa (4.15) and
the proof is complete. [T

The next formula gives an interpretation of semimartingale Tocal time as an

occupation density relative te- the random "clock" d[X,X]E

(4.21) Corollary. ~Let X be a semimartingale with local time (La)__aelR . ‘Let g

—~

be a bounded Borel measurable function. Then a.s.

7 Lg:g(a)da = f g(X_ _)d[X, X]
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Proof. Let f be convex and c? . Comparing (4.15) with Ito's lepma III.7.1 shows

that:

w t
(4.22) {ng’f"(a)da = (f)f_“(xs_)d[x,x]g

where p(da) is of course f"(a)da. Since (4.22) holds for any-continuous and positive
function f", a monotone class argument shows that (4.22) must hold, up to a P-null

set, for any bounded, Borel measurable function g. O

We recé;a here an important special case of (4.21).

(4.23) Corollary. Let X be a semimartingale with ]oca]'gﬁme (ta) Then

BER °

v1C = f R g
[X,X]t _i]Lt da.

We conclude with the useful Meyer-Tanaka formula.

(4.24) Corollary. Let X be a semimartingale with continuous paths. Then

t
- . 0
]Xt|— |XO| + 6 sign (Xs)dXS + Lt‘

Proof. This is merely (4.14) with f(x) = |x|, which implies y(da).= eO(da),

point mass at 0. O
Observe that if f(x) = [x]| , then f" = §(x), the "delta function at 0", which
of course is a generalized function, or "distribution". Thus (4.24) gives the

t N
intuitive interpretation of Toeal times as Lg = f a(xs)dxss”and. e CoT
U
EE = fﬁ(Xs~- é)dXs, for continuous semimartingales. _
0 -



VI. STOCHASTIC DIFFERENTIAL EQUATIONS ' -

1. Introduction

When K. Ito first defined the stochastic integral relative to the Wiener
process, his chief purpose was to study stochastic differential equations. By

considering a system of equations of the form (173_1 <n): —.

d t .
d
)

. . , t .
1 _ 1 i 3 i . .
Xt X0 + jil %fj(s,xs)dws + é g (s,&s)ds, where W = (W ,...,W") is a

d-dimensionéijW1ener process (or "Brownian motion"), Ito proved under Lipschitz

hypotheses on f andigithat-afcontinuous, uniquecsolution existed, and that it

was a continuous strong Markoy process, time homogeneous™f f-and.gwere autoﬁoméug;
This provided a probabilistic method of studying mu]tidimehéfoha] diffusions.
The previous methods had relied on an-analysis of the infinitesimal generators
of their transition semigroups. These are partial differential operators, and
hence this Tead to a study of elliptic partial differentia]lequations and a con-
comitant obfuscation of the probabilistic content.

The differential “dW" however also has an interpretation as "white noise"
in statistical communication theory. Here the Markov hature of the solutions is
not the issue and one considers more general coefficientsfthathhqvéla non-
anticipating dependence on the history as well as current state of the solution.
Furthermore, with the advent of the semimartingale integral the more general
"semimartingale noise" can be taken as a driving term. It is these more general

equations that will be considé}ed in this chapter.

2. Norms for Semimartingales -

Recall that D represents the space of all adapted processes with cadlag

paths. For HED , let H* = sup ]Htl, and define
- t
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@1 = I (1<p <) .-

For HED, the left continuods version H_of H is inll, and we set

[1H_ || b " [1H]] b If A is a semimartingale with paths of finite variation,
S

= = ——

a natural definition of a norm would be [|A[|= ||[ [dA_]| , where-| dA_(w)}
0

o
denotes the total variation measure on R induced by s »—As(w). Since semi-
martinga]es'aﬁunot in general have such nice paths, however, such a norm is not
appropriate. Insfééd we use the norm given in V.2.3, which was used to extend
the space of integrands of the semimartingale integral. ;Qur_définition here

is slightly different, but it can be shown to be equiva]ent“(éf [36]). Let Z

be a semimartingale. By IV.5.6 we know Z is decomposable. ‘Let Z =Ly +N+A

A, = 0. Define for 1 <p < =

be any decomposition where N0 0

+

@2)  a,0m = HINE s gl e 19 AT ] -

(2.3) Definition. Let Z be a semimartingale. For 1 <p < = define

[|Z|| . = inf J_(N,A)
P z=z +N+A P

H 0
where the infimum is taken over all possible decompositions Z = ZO + N + A where
N is a local martingale, A€D with paths of finite variation on compacts, and
A, = NO = 0. -

Corollary (2.5) below shows that this norm generalizes the ﬂp norm for

Tocal martingales, which has given rise to a martingale theory analogous to the

theory of Hardy spaces in complex analysis. We do not pursue this topic



(cf, e.g., [33]). . -

2
(2.4) Theorem. Let Z be a semimartingale. Then ||[Z,Z]% 1], p < |1z}] b
P =
(1 <p<=). '
Proof. We may assume without loss that Z0 =0 and let Z = M—{ A, M0 = AO =0,

be a decomposition of Z. Then

[Z, 2]2 < M, M]2 + [A, A]a

_ 2;
~ = [M, M]2 + (J(aA)7)®
a 1
i_[M,MJj + EIAAS| ) «;:
< [M,M]1%+ [ [dA_| , T
— 00 S .
0 B
with the equality above a consequence of III.6.11. Taking LP norms yields
|z, Z]2|| Jp(M,A) and the result follows. OO
(2.5) Corollary. If Z is a local martingale then ||Z|| = ||[Z,Z]%

Ifz 4P wll LN

Proof. Without loss assume ZO =0, Then Z=0+Z +0 is a decomposition of Z,

hence[]Z]]H _y < IIle

mll =

3,(2,0) = LL[Z,ZJ§||,p.' By (2.4) we have ||[Z,2]2
L

Whénce equd]ity. kv[]"
We do not have need of the Hp norm for all p(1 < p < =); we consider next

the important case p = 2.

(2.6) Theorem. Let Z Qg_g_seEﬁmartinga1e. Then~||Z|| o < B Z]] , .
S H

Proof. A semimartingale Z€D, so ||Z]|| , makes sense. Without Toss assume
S

Z0 =0, and let Z = M+ A be a decomposition with MO = AO = 0. Then
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(2.7) ||Z|]§2 = E(z0)% < ECOM + [lAA )< 2B ()7 + (fldA )Y,

2 2 2

using (a + b)“ < 2a® + 2b°. Doob's inequality says that E{(Mj)z} 5_4E{(Mf)f

= 4E{[M,M]w} , the last being a simple consequence of I111.6.2. Continuing (2.7)

we have

11212, < 2EL8)% + ([ dA)%
s

< SBECIMN + (f]dA])%
< BE((IMME + [laa D

< 8L3,(M.M1° :

and taking square roots yields the result. [

(2.8) Corollary. On the space of semimartingales the 52 norm is stronger than -

gbg_sz norm.

(2.9) Iheorem. Let Z be a semimartingale, D€D, and

+.:l_=
q

| —t
S| =

(1 <p<w; 1<qg<w). Then

dZ D JA
10, i < 10l 1121 g

Proof. Without loss assume Z0 =0, and let D_ - Z denote fDS_dZS; IfFZ =M+ A,

Mo = Ao

D_ - Z, hence [|D_ -+ Z|] . <3.(D

=0 is a decomposifion of Z, then D - M+ D - A is a decomposition of

- M, D - A). Also [D_ - M, D_ - M]

—

il )
= jDs_d[M,M]s (I1I.6.16), hence

X
2

30+ M, 0 A) = (oG dDMMI)F + [Iog_LIeAIH

r - -

1 oo
< |1D*([M,M]2 + é IdASI)IILr
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. L -
< 1o 11[MM1Z + [|dA_] |] . -
~ LP o > 19
= ||D i (M,A),

| ||Sp 3y )

with the last inequality foTlowing from Hotder's inequality.. The above implies

that -

D . Z D i (M,A | ) -
H_ I[Hy‘illllgg g )

for any such decomposition. Z = M + A. Taking infinums over all such decomposi-

tions yields~the resu]t. O

For a process X€D and a stopping time T, recall tﬁat: -

" Xlo,rr * Tl

= Xelpo,1r el

(2.10) Definition. A process X is IocalTychQSpEptivelyfpré]oéaT11)~in!§P(resp. gp)
if there exists a sequence of stopping times (Tk)k>1 increasing to « a.s. such

T T;= =
that X K (resp. X k") is in ép (resp. Hp), 1 <p <o

While there are many semimartingales which are not locally in Hp , all semi-

martingales are prelocally in ﬂp. T - .

(2.11) Theorem. Let Z be a semimartingale. Then 7 - Z0 is prelocally i Ep, all

P, 1 2p <.

oS

Proof. Without loss assume ZO =0 and let Z = M + A be any decomposition, such

that M has jumps bounded by a constant e(IV.4.7). Define indictively:

=O;
0 t

.
1
T, = infit > T [MMIZ + é[dAs] > k+l} .

k+1
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The sequence (Tk)k>1 are stopping times increasing to < a.s. Moreover.

| T- T T, -
= _ SN+
(2.12) Z M 5) + (A AMTk ][Tk’m[) N+ B
'S 2
is a decomposition of Z © . Also, since [M,M]T = [M,M]T _if(AMT Yo,
k k- 'k
equation (2.12) yields:
W %
3, N,B) = [[IN,N]2 + [|dB,]| Ile
N 2 % -,
= (DM, - (D) E e fla] ||
k- k L

.5 1 -
< ||(i(2 + 82)2+ <k+ E)Il < ®
- LT

Tki

Therefore Z °" € H” and hence it is in HP as well, 1 <p<e. O

(2.15) Definition. Let Z be a semimartingale in ﬂm and let o > 0. A finite

sequence of stopping times 0 < Ty < T, < ... < T, is said to a-slice Z if
_ Tki | T%f+1+]¥ B .
Z=1 and ||(Z -7 ) [, <a,0<1<k-1. Ifsuch a sequence of

stopping times exists, we say'Ziﬁia—s1iceab1e,'and we write Z€ ¢ (a).

(2.14) Theorem. Let Z be a semimartingale.

(i) For o > 0, if Z€ & (a) then for every stopping time T, 7T¢ $ (o) and
ZT‘-E d (24).

—

(ii) For every o > 0, there exists an arbitrarily large stopping time T such

that 217 € § (a). -

Proof. Always 1]ZT|| < ||Z}] . - and since AR LAY U AMT][T oo[) one
——— Hoo _ HOO ]



86

concludes ILZT'II < 2||z}] ., and part (i) follows. . -
H

00

Next consider (ii). If semimartingales Z and Y are a—s11ceab1e, theh by
(i) Z + Y is 24-sliceable. Without loss assume Z, = 0, and Tet Z = M + A,

M0 = AO’ where M has bounded jumps. We consider M and A separately.

t t-
For A, let Ty = 0, T,y = inf{t > Tp: 4 ldAs| > /2 or‘gﬁdAsl i:k}. Then
. k
T.-- .
A k € o (ay2) for each k, and the stopping times (Tk) increase to « a.s.
_ . 2
For M, ¥et Ry = 0, Ryyq = inf(t 3_Rk: [M,M]t - [M,M]Rk > g~ or [M,M]t > k}.
N ﬁk- N h )
Then M 16 H, each k, and moreover: . N
R, Rp- . R R *.
CITAS B L A UV RS PRV ) P
Rie1 *Ris1 7HRKT LR
hence <
.k +-l
U T
) 1
< JJ(IMMIR - IMMIR )2+ faMp |
k+1 k k+1 L
2 1
= [1((aMy  )° + [MM] - Ml ) E e fam, ]
Rt Rie1™ R SR L
2, 2,7 _ /7
< ||(8c +8%) +8ll =0 +/2)8 .
L SR .
Rk- o o
Thus for each k M "€ 8. ((1 + V2)g) , and we take B = and the result
24272
follows. O

—

3. Existence and Uniqueness of Solutions

We begin by stating a theorem whose main virtue is its sjmp]icity. It is,

of course, a trivial coroliary of Theorem (3.10).
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(3.1) Theorem. Let Z be a semimartingale and let f: R, x @ xR » R such that:

(i) for fixed x, (t,w) + f(t,w,x) ig_iﬁ)L;i

(i1) for each (t,w), |f(t,w,x) - f(t,w,y)| < klw) [x-y| for some

finite random variable (.

Let X be finite and Sb-measurable. Then the equation -

0 =
_ t
e = g * [ TSy o X )T
admits a solution. The solution is unique and it is a semimartingale.

Of course one could state such a theorem for a finite numbeffdf differentials
s <
4z’ (1 <j <d) and for a finite system of equations.  Th€ next definition

describes the coefficients we will consider. D" consists 6f processes
§=_(X],...,Xn) where each X'€D (1 <3 <m).

(3.2) Definition. Let n > 1 and F: D" -~ D. F is said to be Iﬁ-Lipschitz if
(i) for any stopping time T and X, !G]D”, XT' = !T' T-

(1) (F(X) = FOO)E < K(@)|1X - Y]]

implies FOO)T™ = F(Y)T

The above definition is a slight modification of one first proposed by M. Emery

1. o -

(3.3) Lemma. Let Je §2 , let F be D-Lipschitz and suppose F(0) = 0, and that
K(w) < ¢ a.s.. Let Z be a semimartingale in H” such that ||Z]| 1
- H™ ) 2/§E

Then the equation -

t
X, = J, + é F(X),_ dzg

. 2 . .
has a solution in S™, it is unique, and moreover

llxlléz <2191 5
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t
Proof. Define p: §° - S° by a(X)y= J; + [ FX)g_ a2, Then by (2.9) and (2.6)

the operator is %—- Lipschitz, and the fixed point theorem gives existence and

uniqueness. Indeed

X2 < 1192 * 1) F(X)s-dzsllsz

A

|A

Il 15, + /8 | 1F(X) AN i
19112 = 1O 11211,

| A

i 1
J 5= | |F(X .
|| 4j§2 + 2¢C 1! ( )IISZ

Since ||F(X)|| , = [|F(X) - F(O)|| , < e|[X]|] , » we have, "~
s2 o2 i g

-

X1 5_||J1|§2 + %—||X]|SZ , which yields the estimate. -OI

(3.4) Lemma. Let J€S°, F D-Lipschitz with F(0) = 0 and K(uw) < ¢ < = a.s.. Let

Z be a semimartingale such that Z€ é(—l——-). Then the equation

2v8T

has a solution i $2, it is unique, and moreover ||X[| , < C(c,Z)[[J|| , , where
= S e S

C(c,Z) is a constant depending only on ¢ and Z.

Proof. letz = ||Z|| and j = []J|]| ,. Let Ty,Ty,...,T, be the slicing times
H* S -

{

for Z, and consider the equattons

T.- T.-
(3.5(1)): X =31 + JF(X) _dZ " Equation (3.5(0)) has the trivial solution

S

X =0, and its S2 norm is 0. Assume that equation (3.5(i)) has a unique solution

X' 11X

, and 1etXJ
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Stopping next at T1 instead of Ti' , let Y1 denote the unique solution of

T. T

(3.6(i)): Yi =g +'fF(Yj)s-dzs 1

, and set y' = ||Y1]| o - Since
S

vi = i i

Y =X + {AJTi + F(X )Ti: AZlel[Ti,w[ , we conclude that

y! < 211 Al F 2 L
i HSz_H H§g+ | ||§2+ || F( )Ilégll Htl“’

<x' +2j+/Bc x'z

T = xi(] + /8 cz)+2i;

hence s

3.7  yl <25 +x'(1+ Bcaz).
T. T

We set for U€D, DiU = (U -U 1)*]+1 . Since each solution X of
P T. .
(3.5(i+1)) satisfies X T =y on [0, T1+][ , we can change the unknown by
A
U=xX- (Y1) i+ , to get the equations:
(3.8(1)) U= DiJ + jF(Y1 + U)S_d D1.ZS . however F(0) # 0, and so we define

G1(-) = F(Y1 + o) - F(Y1) , and thus (3.8(i)) can be equivalently expressed

as:

i

(3.9)1)) U= (D3 + JR(Y'). d DZ() + JG;(U)g_d DyZ .

We can now apply Lemma (3.3) to (3.9(i)), and thus it’has a unique solution in

§2 , and its norm u' is majorized by uj 5_2||D1J‘+ fF(Y1)S_d D1251| 5
- S

<2(2j + /By ) <4i +y' . - -
2+/8c -
Thus we conclude equation (3.5(i+1)) has a unique solution in §2 with norm

1 dominated by (using (3.7)):
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Al wyt <y 2y’ <83+ 201 + Be)x . -

‘ | e K

We next iterate from i = 0 to k-1 and conclude that x& 5_8{(2 + 2/§t 2) - ]}j .
' 1++V8¢ z :
T, -
Finally, since Z = Z k , we have seen that the equation X‘; J + fF(X)S_dZS
2 K Tt

has a unique solution in S~ , and moreover X = X™ + J - J = 7 ; thus

(2 + 2/§bz)k -1
1+ v/8cz

k b0

[1X]1 o <X +2J, hence C(c,Z) <2 + 8{
S

(3.10) Theorem. Given a vector of semimartingales Z =(ZJ,.,.QZd), processes

JjG]D (1 <1 f_n), and operators F} which are Dn—Lipsqhiﬁgr(1_E_i <n; 1 <j<d),

then the system of equations

. . d t
i_ i i J
X;=al + § [ FNX)._ dZ
t t j=1 0 J S S
(1 < <n) has a solution in D", and it is unique. Moreover if (J1)1 pisa
vector of semimartingales, then so is (X1)1.<n .

Proof. The proof for systems is the same as the proofﬁfor one equation but with
more cumbersome notation; hence we give here the proof fop-n =d =-1. Thus we

will consider the equation

(3.11) X, - Jy + [F(X)g_dz

-

Assume that max K'(w) < C < a.s.. Also, by considering the equation:
1,J
t

t
(3.12) Xt = {Jt + éF(O)S_dZS} + OIG(X)S_dZS , -

where G(X) = F(X) - F(0), it suffices to consider the case where F(0) = 0.

T

Let T be an arbitrarily large stopping time such that J "€ §2 and such
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1
4/8c

that 7€ & (

). Then by Lemma (3.4) there exists a unique’ solution in

1w

? of:

t
X(T), = 9. + éF(X(T))S_dZT;

T- _ oy

By the uniqueness in §2 one has, for R > T, that X(R)'~ = X(TY' ~ , and thus one

can define a process X on ax[0,=[ by X = X(T) on [0,TL. Thus we have existence.
Suppose next Y is another solution. Let S be arbitrarily large such that

(X - Y)S' 1swbounded, and let R = min (S,T), which can also be taken arbitrarily

large. Then xR~ and YR~ are both solutions of . ﬁ;f
<
_ R, & - T
U=4J" -+ éF(U)S dz -
. R- 1 R- _
and since Z'- € &(—— ), we know that X~ =Y
2V38c -

in Lemma (3.4). Thus X = Y, and we have uniqueness.

R- by the uniqueness established

We have assumed that K(w) < c< » a.s.. Suppose instead that K{w) < = a.s..
Since K(w) < = a.s., choose a constant ¢ such that P{K < c} > 0. Let Q=

{K <c+n}, each n =1,2,3,... . Define a new probability Pn by Pn(A) =
) n

= 3 |
t t Qn

PO%NQH)/P(Qn), on the space o equipped with the filtration. & , the

trace of 3tons%r Then it is a simple conéeduéncé of thédaeffﬁition-of a semi-
martingale (III.1.1) that the restriction of Z in equation (3.11) to 2 X [0,=[
. - . . n . .

is an (32)Ofﬁ<w-sem1mart1nga1e. Let Y be the unique solution on @  that we

have seen exists. For m > n we have Qm =9, and“Pn << P Hence by (III.5.3)

"
we know Pm-stochastic integrals are indistinguishable from Pn—stochastic integ-
rals, whence ¥™ restricted to Q, X [0,o[ is a solution on (Qﬁ,sgg. Thus YV
is Pn-indistinguishable from Y , and we can thus define a solution Y on

R, x @ by setting Y = Y on e = {o: K(w) <c +n}. O
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(3.13) Definition. Let n > 1 and F: D" = D. F is said to be Tlocally ~

D"-Lipschitz if

T- _\T-

(i) for any stopping time T and X,Y in Dn, X implies

FOOT™ = R T™

~

(i1) there exists a process K(t,u) such that supk(t,m) < a.s. for compact
-t€n

sets 4 and such that (F(X) - F(Y))*, < K(t,+)][X - Y[ 1%,

(3.14) Definition. A stopping time T is called an explosion time for a process

X if o -

(i) for any stopping time S < T a.s., X][O S[. EH) .

(i1) Tim sup |[|X || = = a.s.
AR
t<l

(3.15) Theorem. Given a vector of semimartingales Z = (ZT,...,Zd), processes

J]GBD(I_s i <n) and operators F} which are locally D” Lipshitz

(1 <1 <n; 1 <j <d), then there exists a stopping time T and a process X such

|A

thatifis < T then x1]0 S[elDn and such that X is a so]ut1on of

i

i i i . . .
(3.16) Xt Jt + .Z éFj(X)s_dZS_gg [O,?]: AMoreover Ehere~l§_§?max1ma1 time

T such that T = « or T is an explosion time for X.

Proof. Let f,: R" =R be & functions with compact support and which take

k-
values between 0 and 1, and sueh that the interiors of the compacf sets Ny =

{x: fk(g) 1} increase to R"; that is, U Ay = R". For each (1,j) define a
k=1 - .

.. i _ i i .. o.n, .- }
new coefficient Gj,k by GJ k(X) = fk(K)Fj(X). Then Gj?k is D -Lipschitz. Let
§k denote the solution of (3.16) with G} K replacing F}, and define stopping

times Sk by:
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S (w) = infit: Xo(w) €43 . S

kK _ yk+]
on [O,Sk[ , hence Sy 5-Sk+1

By the unigueness established in (3.10) X~ = X

a.s., and we set T = lim S, . Using uniqueness define X(t,w) by:
k0 :

X(t,w) = xk(t,w) on.[O,Sk[, each k.

Then X satisfies (3.16) on [0,T[. )

We conclude by showing that either X. (w) or XS _(w) is in the complement
' 7k "k

of A and thus.Tim sup[[X || = « a.s. First suppose that X .(w) = A€ a . Then
- k ’

t—

H<T -
Xsk(w)_ (w)= &Sk(w)_(w)s.s1nce;fk(m)-—A].The processes glgnd X+ then have -the same h
Jjump at §k(w) and hence they have the same value at time Sk(m): that is,

' “I = k o a . . . . - .
Xsk(w)(w) = Xsk(w)(w). However by r19ht¢cont1nu1ty and the definition of Sk(w),

W ; 2
we ithen must have Xo (w) = Xk
“Sx “Sk

One can easily find conditions which guarantee that the explosion time T in

(w) eAk. O

(3.15) is a.s. infinite, thus improving a bit on Theorem (3.10); we do not pursue

these issues here.

4. The Semimartingale Topology

We begin with a key lemma, followed by an example which illustrates that a
straightforwérd attempt to extend the lemma to a more general situation is doomed.
This motivates the semimartingale topology, which gives the correct description
of the stability of the solutions of stochastic differential equations. In this
paragraph we will consider only the one dimensional case, the éxtensions to sys-

tems being clear and simple.

(4.1) Lemma. Let k',c be constants and suppose given the equations:




t
(4.2) X, = Jy + éF(X)S_dZS -
(4.3n) XM= g0 4 tF”(x”) dz"
. t - Yt g s-"Cs-
where -
i) J and (Jn) are in §2 (respectively 52) and J" tends to J in 52
—_— n1 — — = = Wwddlna
(resp. 52);
(i1) F_gﬂg_(Fn) 51 are all D-Lipshitz with the same Lipschitz constant k and
a all verify ||F U)|| .<c for all UeD, ggg_Fn(X) converges to
S -

F(X) in S%, where X is the sdlution of (4.2);

(i11) Z is a semimartingale in &(——) , (Zn)n>1 EﬁEﬁiﬂ;ﬂz , and 7" con-

T T 2/8k

‘verges to Z 1n'H2.

Then the so1ut1ons X ,of (4;35)'con9éfée ég_xrin_éf‘(wespective1y ﬂ?).

N

Proof. Suppose J,(Jn)n>] are 1in §2 and J" converges to J in §2.

Then
X - X" =3 -3+ (FX) - FY)) ez + (M) - FTOM) - 2
+ M .z - Y.

Let Y = (F(X) - ) -z+ M . @z-2". .

Then

(4.4) X - X" =9 - 3"+ ¥+ (A0 - Ay .z,

For UeD define G" by: -

¢"(u) = F(X) - F(X - U). Then G"(U) is D-Lipschitz with constant k and
G"(0) = 0. Take U= X - X", and (4.4) becomes -

U= -3"+Y"+ 6 (v - .z
By (3.4) we have



ng, - n n n,, n
[[X - X llsg < C(k,Z)|]0 -d + ¥ |isg < C(k,Z){[|J - IISZ + |]Y |Isz}-

Since C(k,Z) is independent of n and 1im H|d - Jn|| 5 = 0 by hypotHesis, it
S

N-o0 S
suffices to show Tim ||Y"]] s = 0.
n->o §/. ,
But T
i(4.5) lIYnllsz < [P - FIX)) - Z||52 [P (2 - Zn)llsz

| A

/8| |F(X) - F"(X)llsg izl + 8 ||F“<x”)_||sw1|z-z“1|

HZ

- H™ 2

by (2.6) and (2.9).> Since ||Z}] _ < = by hypothesis and sinee. . ..
H . o

Tim [|F(X) - FY OO | o = lim ||Z - 2" | , = 0, again by hypothesis, we are done.
S n->w H e

N->co

2

2 and that J" converged to J in H™, then

Note that if we knew J", J€H

n n n n
X = XM, < 113 = 0 o+ LIV o+ kX = KT 5 2] G
H HE H % H

we have seen already that 1im ||X - Xn|| 9 = 0, hence it suffices to shew
n--o S

Il ,=0. Proceeding as in (4.5) we obtain the result. O

strong restriction that ||Fn(U)|| . <c , for all UeD. We take o = [0,1],
s :

P to be Lebesgue measure on [O,]Jj-and (3%)t>0 equal to & , the Lebesgue sets on
[0,1]. Let ¢(t) = min (t,1),-t > 0. Let f (u) > O and set Zy = o(t)f (),

1, all t. Thus the equations (4.2) and

RItl

€ [0,1], and finally take Jg = Jt

(4.3n) are respectively: .

¢ -
X, =1+ (j)xs_dzS
X, =1+ }x” dz”
T g s- s
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which are elementary continuous exponential equations and have solutions:

Xg = exp (Zy) = exp (f (w)o(t))

X

. exp (flw) 6(t)).

exp (Z,)

1

Suppose that Tim E(f %) = 0 but that Tim ELFP} # O for p > 2 (6F Lemma (4.7)
N> xacd —

below which establishes (more than) the existence of such functions.) Then the
" converge to 0 in 52 but X" does not converge to X = 1 (since f = 0) in §p R
for any p >-}.— Indeed, 1im E{fﬁ} # 0 for p > 2 implies 1im E{e n} # 1 for any

N> N

t > 0. ]

Note that the above example shows that when the goeé%icigﬁts are not uni-u
formly bounded, it is the perturbation of the semimartinga}é differentials that
create problems. However it is not a priopi clear that a weaker claim is also
false: ¢ould one perhaps have that 7" converges to Z in gz implies that Xn
converges to X prelocally in 21? Before we continue with our example, we state

a real variables lemma. We refer the reader to [41] for a proof.

on [0,1] such

(4.7) Lemma. There exist nonnegative measurable functions (gn)n>]
that
— .
(i) 1im [ g (X)dx = 0 B -
n»«»(g n

(ii) Tim sup j [g x)1Pdx = + «

N>

for all p > 1 and all Lebesgue sets A such that P(a) > 0.

Example (4.6) continued. We continue with the same notation as in examp1e (4.6).

We have seen that Tim ||Z I 2 , but Tim ||X - X" I p #0, all.p > 1. We

N> nN->ce

now want to show that X" does not tend to X even pre]oca]]y in Sp (Since all

processes are continuous here, "locally" and "prelocally" are the same.) Let T



be a stopping time with P(T> 0). > Q. Sinceg3%==_3;a]1 t>0, a "stopping time"
is simply a nonnegative random variable. Choose ) < 1 such that g = (T >}

and P(pn) > 0. Let our functions (fn) be as the functions (gn) in (4.7).

Then n Zn ]
omT g = lite >T||S1 - Efe |} -

E((zp"
p P
- > E{1,6(T) (f)"3
B > xpEHA(fn)p}
and so 1im sup || T[] 1 = @ which makes it impossiblp that X" tends Tocally
N-e0 -t
ins'toX=1 O

The preceding example is what motiv;tes the semimartingale topology, since it
is not possible to obtain general results of the form: if 7" tends to Z in !p’
then Xn tends to X locally (or even prelocally) in §q , for some qg.

We begin our treatment of the semimartingale topology with an alternative

presentation of the topology "u.c.p." that we used in Chapter III.

(4.8) Definition. The subspace of D of prbcésées‘havingia'finitéhijmit at « 1is
denoted D_ . The subspace of D_ consisting of total semimartingales is denoted

T .

=00

For XG]DOO we define

-

||x||]D = E{min (X*_,1)} .

.‘]D
X = 0. But in genera] ||aXH]D # |a| ||X||I) » 80 [|-]lp s not a norm. It

(D

Note that

satisfies the triangle inequality, and ‘chat—llXH]D = 0 implies

does induce a distance, however.

(4.9) Definition. For X,Y€D_ , set d_(X,Y) = [[X - YHE



p ! = ¥ -n i *
For XED , X, 5, €D, , thus.we can set HXII]D : néo 27 E{min (X% ,1)}.

does not define a norm). Aiso, we set

(Again, || - ]ip

d(X,Y) = ||X - Y]] for X,Y€D.

The proof of the next theorem is left to the reader.

(4.10) Theorem. (D,,d ) and (D,d) are both complete metric spaces. _

(4.11) Theorem. The topology on I induced by d is the same as_the one induced

by u.c.p. -

* T
Proof. If X converges to X in u.c.p. then lim (Xn - X)k:= 0 in probability,
n .

each k. Therefore by Lebesgue's dominated convergence theorem

N

) 2™ Egmin (X" - 0 1))

) 2% Yim Emin (O - X). 1))

N0
= 0.
Conversely Tlet X" converge to X in (D,d) and suppose there exists e, &> 0 such

that for some t > 0, 1im sup P{(X" - X); > €} > 6. Let ky >t and let X' be a
N>

* .
subsequence such that P{(Xn - X)t > ¢} > 8, all n'. Then

. e |
AL 2K Egmin ("' - X)F, 1) 2278 min (e8,1) > 0 which is a

n'-sw -
contradiction. O

-

For the rest of this paragraph we will use the

(4.12) Notational Convention. For a process X€D and a stopping time T, set

T _ ~
X = Xf; NT] {T>0}
T- _
X = {Xt][O,T[ + XT-][T,m[}1{T>O} .
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Note that tAT = minimum (t,T); the difference with previous notation s that

we multiply by ]{T>0} .

(4.13) Definition. Llet 1 < p < » and let X,(Xn) be semimartingales (respec-
=P = n>1

tively X?(Xn)E'Iw). Then (Xn) is said to converge locally iﬂ_ﬂp (resp. ﬂz) if

there exists a sequence of stopping times (Tk)k>] 1ncreasing"%0 © a.S.

(respectively: such that there exists K(w) < « with k > K(w) implying Tk(w) = )
' k

nTE T
and such that for all k (X7)  and X

are in HP and Tim ||(X - Xn)T |].. = 0.
= N> Hp

(4.14) Definition. Let T <p<»and let X,(Xn)n>] be semimartingales

(respectively X,(Xn)v €T ). Then X" is said to convergé prelocally i HP
: hz_] =00 -_— e - —s — —_ =

(resp. EE) if there exist stopping times (Tk)k>1 as in (4.T3) such that
vim (" - )" T[] =0, each k > 1,
H .

N0

Let X be in T and let X = M + A be a decomposition of X with Ay = 0.

1 0
(4.15) Jo(M,A) = Eqmin(1,([M,M]Z + [1dA1))) + sup E{{aM}
0 T ‘

where the supremum is taken over all stopping times T.- (Note that jo is not

exactly analogous to the jp defined in (2.2)). Next for a

semimartingale X in

T set

=00

(4.16) ||x||HO =infy _ 4 a Jg(M:A)

=

where the infinum is taken over all possible decompositions X = M + A with

A, = 0. Note that || - || 5 lacks homogeneity and is not a norm. It does, how-

0 0

n =

ever, verify that [|X|| 5 = 0 implies X = 0 (cf (4.19) below):
H

o

(4.17) Theorem. Let X€T_. Then [[X[] 5 < 1.
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Proof. Lete > 0. By IV.4.7 we know there exists a decompositign of X,

X = M+ A, where the jumps of the local martingale term M are bounded by €.

Therefore jO(M,A) < T + sup E{IAMTI} < 1 + ¢ for this decomposition. Since ¢
T

was arbitrary and since ||-|| 4 is the infimum over all decompositions, the

o
- -

result follows. O v —

(4.18) Definition. The topology on T_ induced by convergence in -1 g

[oe]

is called the semimartingale topology.

The next theorem is an important characterization of the semimartingale

topology. It.is due to M. Emery [19, 20]. o,

(4.19) Theorem. Let 1 <p < and let (X") _,, X be semimartingales in T_ .

~ .

(1) lf_(Xn) is Cauchy in the semimartingale topology then there exists a sub-

sequence which converges prelocally ig_ﬂ] Eg_g_semimartinga]e Y
1

then X" converges to X in the semi-

(i) lf_(Xn) converges to X prefocally in H

martingale topology.

Proof. We first prove (ii). Replacing X" with X" - X it suffices to consider
the case where Xh converges to 0 prelocally in-ﬂ], Suppose Xﬁ:does not converge
to 0 in the semimartingale topology. Then there exists an o > 0 and a subsequence

n' such that-HXn ““0 > 2a . Let T be a stopping time such that P(T< ) < a/d

0O

and such that (Xn )T' tends t6 0 in ﬂ]. For large enough n' there exists a

decomposition of (x" )T': (Xn )T' =M+ A" where as well

1 1 1 (. © 1 .
GO0 AT = e E g AT [} < o/4.

Let o= N+ B" be another decomposition of X7 such that Ng = 0 and N has

all jumps bounded by 1(IV.4.6). Then
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Note that L" = M" and C27= Aﬁ_on {T = «}. For semimartinga]ég‘U,V and a stopping

time T it is an immediate corollary of 111.6.17 that [UT,V] = [U,V]T, and thus:

a1 1 ® 1 1 y 1 ® 1
[, 12+ g lansl ="M 1E é ldAg | on {T = =}. Therefore

+

8 i

et 13 :

(4.20) E{min (1?([L”',L”']

o— 8

< Etmin (1, (0" MY 1E 0 [ aAY )Y+ PT < )
0-

<_oc/4 + o/d = a/2.

Note further that for a stopping time S

n' n' n'
IALS |_<_|AMS|+ IANS “{T < ]
1 [} _;
" n" uhoz
. < [M" .M 12+ ]{T < )

. . ' by ] . 1
since the jumps of N are bounded by one,_ and.since |AM3j—f;(§(AM%)2)2
s -

Y
< [M,M]Z (I11.6.14). Then

-I I B
(4.21) E{|aLg 13< (M MY 1234 PLT < =} < o/8 + of8 = o/2.

I 1 - . 1
Thus Jo(L" ,C"') < o by combining (4.20) and (4.21), whence X
H

=00

i_JO(Ln ,c"') < o, which contradicts ||Xn | 022 since o > 0.
H - -

=oo

—~

Proof of (i): Suppose (Xn) is Cauchy in the semimartingale topology. Without

loss of generality assume Xy = 0 and len+1 - X" 0 5.2'n, since we are
H

-0
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dealing with subsequences. Let Xn+1 S =M A" be a decomposition-with
(A" < 2™ each n. Let

t
n . N-% n
C, = %([M M1E+ {)_\dASH

which is a.s. finite valued on [0,0] since X and X" are all 1n‘1w. Define

T (w) = inf{t: Cy(w) > k}. N

Thus there exists a r.v. K such that if k > K(w) then T, (w) =« , almost all w.

(4.22) Set A Z A , where AO =0, and A = 1im A" which exists since
nyT- I n EEPL A
¢, < as. men 118 - AT 1] L Le - ANy <] DT e
: H 9 % e=n+ll0 g

which tends to 0 as n tends to « .by.dominated convergence.
1 i 1
since [M",M"1Z < [M"M"1E_ + a[H" M1
n 1% n
= [M',M ]?_ + IAMTI
<k + |amy|

and sup E{|AM2|} 5_2—n+1 , we have ||(Mn)T|l 1 <k 271 and each M€ ﬁ].
S H -

Moreover
1T e s e
2=n+1 H 2=n+1 H -
B ® 1
< E([MY, MY ]2
B 2=n§1 T

T ECONMPIE + Jan)
< E{[M",M + |AM; )}
— 2=n+1 - 1

3 et MQ}T } o+

IA

Z E{IANT]}

[ n+1 2=n+1 .
< E{ 7 MQ] o+ 3 ol -

9=N +1 2=n+]

which tends to 0 as n tehds to =, again by the dominated convergence theorem.
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n .
) (Ml)T is a Cauchy sequence of local mar-
2=0 . -

tingales in H]. However the space of ﬂ] Tocal martingales is a Banach space;

We have thus seen that (Mn)T =

that is, it is complete (cf [11]). Let -

(4.23) M= 1im (M7

N>

where the Timit is in ﬁl, and where M is a local martingale. Combining A from

(4.22) and M from (4.23), define

XU =+, _
By the uniquenessrbf Timits X(z) = k(k) ofi [d,Tk[ if 2 > k, and we dé?ine
x = x{K) on [0,T¥[ . :
Let X_ = 1im Xt’ a 1limit we know exists since the sequenceﬂfk(w) is eventually
tooo T -
equal to =, a.s. Moreover since X “js~a.semimartingale for each k, we deduce
X€T . The theorem now foilows. O

(4.24) Comment. In the preceding proof in order to show M as defined in (4.23)
existed, we needed the result that the space H] of local martingales is a Banach
space. This fact is a simple consequence of the Burgess Davis inequality of
martingale theory, a fairly deep result. One can avoid the ne;essjty of invoking

this theorem by replacing (i) in Theorem (4.19) with the fo]]bwi%g:m

(i') If (X™)- converges to X in the semimartingaie topology then there exists

| v

subsequence which converges to X prelocally iﬂ_ﬂ].

-

(4.25) Corollary. The space iw equipped with the semimartingale topology is

|

topological vector space, metrizable into a complete metric sﬁaceﬁ
Proof. Let d(X,Y) = ||X - Y]] 0 for X,YET_.
- Y =

=00

By Theorem. (4.19) (i) .we have semimartingale-convergence related't0>ﬁ]
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convergence, and thus X" converges to X for d if and only if for-each sub-

L1}

sequence X" we can extract a sub-subsequence X" with convergeé'to X prelocally

in H]. It follows that Iw is a topological vector space that is metrizable.

The completeness also follows from (4.19). O

(4.26) Comment. The choice p = 1 made here is arbitrary. EEéry [19] has estab-

lished analogous results for 1 < p < « .
Let X be a semimartingale. For a positive integer n let X% = th&n. Then

x“e Im. Define

(4.27) XL =T 27 XM g - oo
H n -

o«

(4.28) Definition. The semimartingale topology on the space gf_semimértiHQATeé

is the topology induced by || - [] 4.
H

{o0]

For a semimartingale X with Xg = Xt/vn’ then X(k) converges to X in the semi-
martingale topology if and only if X(k)n converge to X" is the semimartingale
topology for T for every n = 1,2.3,... . Thus one Verifies easily that (4.19),

(4.24) and (4.25) remain valid for the semimartingale topology on the space of

semimartingales.

(4.29) Theorem. Let X" be a sequence of semimartingales that is prelocally Cauchy

in the semimartingale topology. Then there exists a semimartingale X such that

X" converges to X in the semimartingale topology.

Proof. By stopping at a finite fixed time we need only establish the theorem
for T_ and its semimartingale topology. Thus we assume XhE:[m , each n, and let

Tk be stopping times increasing to « a.s. such that 1im P{Tk < o} =0 and Tet

ko0
k- _'e k
= Yk. Since (Ykﬂ)T T o= (Yk)T -

Ykej[w such that Tim (Xn)T" , we define

oo
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Y=Y on [0,T°] , -
Replace X" with X" - Y, and suppose then that X" does not converge -to 0‘1n-§2§

Let n' be a subsequence such that ||X" || o > o > 0. For each k there exists
H

a further subsequence that converges pre]Bca]]y in Q] (by (4.19)). Fork =1,

let ni,]

diagonalization procedure and taking

be the sequence; for k = 2, L is a further subsequence. Using a

n.
i,1,2,...,n

" =X
we have
(4.30) 2| g2 a>0 S
He
n Tk— 1
(4.31) (Z) converges prelocatly in H' to 0 as n tends to « for
each k.

Property (4.31) implies that yak converges prelocally in H] to 0 as n tends to .
By (4.19) we conclude Ak converges to 0 in the semimartingale topology, which

contradicts (4.30) above. O

5. Stability of Solutions of Stochastic Differential Equationgl

We consider here equations and sequences of equations of the form:

H
[l
+

(5.1) X

(5.2n) X

o S
it
[

n
S- dZs -

and we wish to find conditions on Jn, Fn, and Z" converging to H, F, and Z such

that X" converges to X. Lemma (4.1) is a tantalizing preliminary result, but as
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we saw in Example (4.6) this lemma does not extend in a straight forward manner.
The semimartingale topology of paragraph four gives the correct netion of

convergence.

(5.3) Theorem. Llet (Fn) F be D-Lipschitz with Lipschitz constants all

n>1°

bounded by k > 0. Lgt_(dn) J, (zM JA gg_semimartinggTés and suppose ik

n>12 n>1°
tends to J and Z" tends to Z in the semimartingale topology. Let X" be the

solution of. L5.2n), X the solution of (5.1) and suppose Fn(X) tends to F(X) in

u.c.p. Then X tends to X in the semimartingale topology.

Proof. By prelocal stopping at an arbitrarily large time T wégcan assume that

J, Jn, Z, and Zn, all n> 1, are in 52 (see Lemma (5.7) following this proof).

Also by prelocal stopping we can further assume that €48 ( /l ) and that
‘ 4v/8 k

F(X)| is uniformly bounded by a constant € > . Moreover by (4.19), trivially
extended to the case p = 2 (4.26), we can further assume - by passing to a sub-
sequence if necessary - that pAk converges to Z and il converges to J in hz.

We introduce truncation operators BX defined by (for x > 0):

(5.4) BX(X) = min{x, sup (-x,X)} )

Then B® is . D-Lipschitz with Lipschitz constant 1, each'x 3_6l " Consider the

equations

k
n_ .n k+c+1.ny, N n-
(5.5n) Yt = Jt + é(B FO(Y )S_ dZS .

-

*
By Lemma (4.1) we have y" converges to X in 52. Note that (Fn(X) - F(X)) tends
to 0 in L (dP) by hypothes1s and that (Y" - X)  also tends to.0 in L (dP) by
(2.6). Passing to a further subsequence we assuiie they both converge to O a.s.

Nekt define:
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] M m .
Ty = nfit> 0:mmy x|V - X + [F(X), - FX)gl 2 1

The times T2 ificrease ~ and lim P(T ») = 1. By prelocal stoppihg at T,_ for

Qo0

n > o we have (V' - )" and (F(X) - F(X))* bdunded by one. HNote that =

L

stopping at T _ changes Z being in 3 (——l——-) to Z€ & C——l——),—by (2.14). Then
4/8 K 2/8 k_*

IFP M < 1RO - PO )+ [N - B |+ | FX)|
< k(" -0 F0 - FOO)T + 0

< k+1+c,

which implies Bk+c+]ﬁn(¥n) = Fn(Yn), and hence for J", Zn;stopﬁed at an arbi- -
trarily large time Q, Y is a solution of |

Mol FUYM)_dzl - ‘

t "t é S- s N

and thus by uniqueness of solutions we have yh = X" on [0,Q[. Thus we have seen
that we can find a sequence of stopping times Qh increasing to = a.s. such that

stopping all processes at Qh for fixed h implies that there exists a subsequence

2

n' such that an converges prelocally in H™ to X, which by (4.19) implies that

K" converges to X in the semimartingale topology. [

Let Lip (k) be the space of D-Lipschitz operators having a Lipschitz constant
smaller than or equal to k, and give Lip (k) the topology of u.c.p. inD. Let
§'be the space of semimartingales equipped with the semimartingale topology. Then

a restatement of Theorem (5.3) would be:

(5.6) Theorem. The operator A: ﬁ'x Lip (k) x §'1nto=§ given by A(ds F, Z) = X,

where

is continuous.
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(5.7) Lemma. Let(wn) be a sequence of semimartingales, Wl = 0. There exists
= —_— n>1 — — — 0

. m
a sequence of stopping times (Tm).”, increasing to « a.s. such that (wn)T €'H2,
- el mpt ——— 2 dkhichd oz

each n,m.

Proof. For each n, let W= N+ A" be a decomposition with the jumps of N"
: t

n_ gy n n_=% . N
bounded by one (IV.4.7). Llet Ct = [N ,N ]t + éldAsL,and Sk —_1nf{t..‘Ct > k.

Then for each n (SE)k>0 is a sequence of stopping times increasing to « a.s.

Hence there exists an integer c(n,p) such that P{Sg(n,p? < p} < 27N"P et

. - n . . . : n
R = dinf S_, -.,. Then R is a stopping time and R <S . each n.
m n>1,pom c(n,p) m m Egh,m)
R - - -
Therefore (Cn) T is bounded. Moreover R is 1ncreasing-qu»
n
P(R <m) < ) P(R <m)
m =051, pom c(n,p)
n -mt]
< P(R <p) < 2
_né,:km c(n,p) R =

Therefore 1im Rm = » a.5. We have found a sequence of stopping times Rm increa-
N-oo
n)Rm'

sing to « a.s. such that_(C < &(m) is bounded. However since

G L RN () LV A PR ';
m .mf~

LNLm . gNsm ’

ey
and [L™™M, Ln’m]f

+

[1dB]>™] < 2(s(m) + 1), we have that
0 _

(M) " 2 < i (T, BT < 2(s(m) + 1) < - O



109

_ VII. STOCHASTIC DIFFERENTIAL EQUATIONS AND MARKOV PROCESSES . -

1. Introduction-

As mentioned in the introduction to Chapter VI, K. Itd used his integral
with respect to the Wiener process to study multidimensional diffusions; that .is,
continuous strong Markov processes. Now that we have a theory” of stochastic
differential equations with general semimartingales as differentials, one might
well ask how such an equation can be related to an underlying Markov process.

Some answers -to this general question are given in Theorems (3.5) and (3.12).

2. The Markov Framework -
<

The subject of Markov processes is both highly deve]oped and highly technical.

We use the notation of R. Blumenthal and R. Getoor [2]; the results of this
chapter are taken from [6] and [40]. Our treatment here will be reasonably self-
contained. We use the notational convention X€:F/G to mean that if G is a set

in the c-algebra G, then X™'(6)€ E.

Throughout this chapter @ will denote an underlying space on which are
defined:
(2.1) (1) a semigroup (et)t 0 of operators; _
(ii) a right continuous process X = (Xt)t;O takiné‘vaTUes.{e-a topological
space E with Borel o-field E; B

(1i1) X satisfies X., = X, o o (t,s > 0);

(iv) a filtration (gg)t>0 of separable g-fields on g such- that X%E Mg/53
u° =-1\:/h=4‘§ ; and eiz MO/M°;

(v) a probability kernel PX(8,) from (E,E*) into (Q,MO), Where

—~

E*=ngr “*{s thé o-field-of universally measurable sets on
u f1n1te measure

E; and where E“ denotes the comp]et1on of E with respect to the measure .
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For each probability law y on (E,E) we set, for a€E, PH(a) = é X(A)u(dx) .
N

Then M" denotes the completion of M under P, and Mp denotes with the

PY_null sets of MY adjoined. Finally we set M = Ny and M, = rmmg, with the

intersections over all.u finite.. -One should think of.the probability pH-on @ as

the . law gOverthg X when it has initial distribution wu. —_

Let E t = o(Xg3 s < t). This is the natural filtration of X; we let Fi,
E¥, E, Es be defined analogously to M.
(2.2) Definition. The collection X = (2, M, My ét’ Xis PX) is a normal Markov

(respective]y'étrOng'Mérkov) process if for every boundeq'Z€'£=, every t >0

(respectively: - every stopping time T); and all probabi]?ties Us

E¥{Z. eth t[ZJ <L

(respectively: T replacing t), and if PX(X_ = x) =1, all xeE.
0 .

The following is a stronger form of the strong Markov property.

(2.3) Definition. A filtration (l\=4t)t>0 is a strong Markov filtration if for every

- finite Mt - stopping time T we have

\ -1,,,0
(i) (T+s) MT+ v eT (Ms+) all s,t > 0 _ ) X"

(i) for all bounded ZEM we have ZeeTe M and E" {Zoe IMT+} = E. [Z] for all wu.

To see how a strong Markov filtration naturally arises, consider two different
realizations of reflecting Brownian motion as follows: let

W=(q, E, Et’ o,, W, P¥) be a standard Wiener ﬁrocess with natural filtration

t> "t

- — X . .
t)t>0 . Set X, = .. Then X = (2, E, Egs 8ps X¢s P ) satisfies (2.2),

but (Ft)t .9 1snot a strong Markov filtration for X, since the. future of W

(E

after time t depends both on X = stl and on sign (W), and not simply on X,
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t
alone. Next let At = 61[0,w[(ws)ds, and let g = inf{s: As > t}' and set
Y. = W, . Then it is well known (e.g. [2, p. 212]) that

y=1(o, E,LE »08 Y, PX) is a strong Markov process and moreover M. = E
: 2ty rg b “t Tt

is a strong Markov filtration for Y.

(2.4) Definition. A process Y is said to be additive (respectively strongly
additive) if

(1) Yo = Di—a.s. |

(ii) for every s,t > 0 we have Y_ . = Yo Y00 a;s.‘(%éép; for all t > 0

and all M, - stopping times S we have Y¢,. = Yg * th§§:§.s.)-

-

The "shift" opérators (et)t>0 operate on random variab1e$: “We can a1§o ?shjftﬂ

t

processes with the help of the following operator, invented'by M. Sharpe.

<L

(2.5) Definition. A "Qig_shift" CH is defined by setting for a given process

Y:
(OSY)t = Yt—SoeS] [S,w[(t) s S,t > 0.

In the definition of additivity (2.4), the equalities were given a.s... That is,
= [} Y 11 Hine~ =

we had Ys+t(“) = Ys(w) Yy es(@) , for all wé¢ Ns,t . where_E‘gNslt) 0, all

u. A priori the null set Ns t depends on s and t. A process Y is called

perfectly additive if

Ys+t(w) = Ys(w) + Y£°es(w) , all w €N, all s,t >0,

where P*(N) = 0 for all probabilities yu on (E,E), and where¥N does not depend
on s and t. The proof of the next result is quitetechnical and”we do not give

it. (See [6, p. 171] and [46] for a proof.)
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(2.6) Theorem. If (M )t 50 18 is a strong Markov filtration and Y is an additive, (M 4) -

adapted right continuous real-valued process, then Y is indistinguishable from

an adapted perfectly additive process Y which is moreover strongly addifive as

well.

By indistinguishable we mean P"{w: there exists t > 0 with Yth) # Vt(w)} = 0,

for all probabilities w on (E,E). -

In view of the Theorem (2.6) we henceforth assume that all additive processes

are both perfectly additive and strongly additive,

(2.7) Lemma. A process Y is additive if and only if-(esy)t'f;Yt - YtAs

Proof. Using (0.Y), = Y, _ 0651(t 5 s) and the additivit].of_Y we have

t t-s

(esY)t - (Y(t-s)+s - Ys)](t>s)¢=_(yt - Ys)](t>s) - Yt B YsAt

On the other hand if Yt - YtA = (o Y)t , then Yt - YtAs = (Yt - Ys)](t>s)
B (Y(t—s)+s - Y)1(’c>s) = Vs %! s (t>s) °
which implies Yu°<% = Yu+s - Ys , Where u =1t - s > O;‘hence Y is additive. O

(2.8) Corollary. Let Y be an additive semimartingale. Then (QSY)¢i§ agaih a

semimartingale, for each s > 0.

‘Proof. By Lémma (2.7), (esY)t = Yt - YtAs , and the result is obvious. O

We next give some technical results that we will need in the next paragraph.

(2.9) Proposition. Let H" be a sequence of M - measurablie randogp variables’

such that PX - Tim H" exists for each x€ E. Then there exists a r.v. HE Mt+
N->o0 ’

such that P* - Tim H" = H for every x€E.

N0
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Proof. P* - 1im denotes convergence in pX probability. Set no(x) = 0 and

nk(x) = inf{m > nk_](x): sup Px(al Hq| > 2 k) 2'k}. Then ‘each ny is
p.g>m
= n
E* - measurable, whence (x,w)~r>2§(m) = H k(X)(w) is £fQ§Mt+ - measurable. There-
fore 1im inf Zﬁ(w) is E*€>ﬂt+ - measurable. Since PX{IZE - Zﬁ+]| > 2'k} 5_2'k;

ks

the Borel-Cantelli lemma implies that Zﬁ tends to ZX, P* 4.5 The hypothesis

that P* - 1im H" exists implies that nk(x) tends to « for all x€ E. Thus

P - 1im F__f Z”. Next set H(w) = Z (w), and H is Mt+ - measurable. Since

N>

PX(X0 = X) = 1, we are done. O

(2.10) Corollary. Let Y be a semimartingale for every sz and let HEL. Then

there exists a process H-Y which is a version of the semimartingale integral

process for every pX.

Proof. First suppose HE S. Then H = Ho]{O + Z H. 1]T 1 and the

1+1

semimartingale integral is given by

.
Jy(H) = fH dY Z i oy,

which is defined independently of x, but nevertheless is the stochastic integral
for every p* , XEE. For a given HelL, choose ¢ > 0, and defﬁhe“inauctively
stopping times (TE) as follows: T?(w) =0

Teoq(e) = infit > To(w): [Hi(w) = H (w)] > e}

-

where Tki](w) = + » if the set is empty or if Tﬁ(w) = + », Since HeL, it is

easy to see that the (TE) are a.s. equal to stopping times. Taking ¢ = 1/n,

we set

n o_ -
t " /n |

Hy = ) H

1/n
k+1

1/n

An, T An]
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Then H'e S , each n, and the K" converge to H uniformly on compacts. _Recall
that the semimartingale integral was defined as the extension by continuity of

Jy from S to W in ucp (I11.4.6). Then P* - Tim (H”.Y)t = 7} is a version of
t Moo
the PX-semimartingale integral process of H with respect to Y. Since HY.Y s

et " measurable, by (2.9) we know there exists

X _ 5 pX | 7.
each t, such that 7, = Z, P" - a.s., all x, and that Z €M, . .

defined independently of x and is M

ar.v. Zt .

We need to show that there is a process Z in D that can serve as our
semimartingale integral for each PX, all x€E. We know Z¥eD and Zt = Zé R

P*- a.s., each t. -Let p, = {w: Z (s) = f(r), where f is a right continuous
t : .7

r
function with left Timits, and reQN [0,t]}. Then it 1s;stanaard that

n; € Mt+ (e.g.,'IV-T-18 of [11]), and moreover Ay decreases”when t increases.

We set:

<

Tim 2Mw);w€Uﬁ
Zt(w) = Yra>t; r>t; r€N s>t S
0 otherwise

Then Z€D and is M., - adapted. Moreover since each Z¥eD and also

='t+

X = 7 P*. a.s., we have PX(At) = 1 and hence Zy = ZiﬁPx-a.s.

(2.11) Lemma. LgE_Hn be a sequence gf.raﬁdoh variables such tﬁat“Px-]im HY =
N0

H, all x€E. Then P*-Tim H'°g_ = Hop_ all s > 0, all x€E,
. o ,

Proof. By (2.9) we may assume that H is M-measurable. Let g(x),= min (1,|x]).

-

Then PX- 1im H" = H is equivalent to 1im EX*{g(H" - H)} = 0. But:

Moo N

x nO o - X n_ [o] -
E"{g(H °e, - Hop )} =E {g(H H).es}

= X Xpa(uyl o
= EY(ET(g(H" - H)oo | 1)
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_ X XS n
= EYE Sg(H" - )3y . L

But Ey{g(Hn - H)} is a bounded function of y tending to 0 as n tends to « for
X
all y€ E; thus 1im E s{g(Hn - H)} = 0 as well, and the result follows from the )
N>
dominated convergence theorem. O

——

(2.12) Theorem. Let H€I and let Y be an additive semimartingale. Then

eS(H-Y) = (_eSI:I_)‘(eSY).

Proof. Recall that esYxis again a semimartingale (2.8), and that there exists

a version of the stochastic integral valid for all pX siju]taneous]y (2.10),

so that the stétement of the theorem makes sense.

First let He¢ S so that

000y " 42 T 1T4Tind
K T1'+1 Ti
Then H.Y = H Y + ) Hi(Y -Y "), and a simple calculation shows that the
i>0 '

result holds in this case. Replacing (2.9) with that of Lemma (2.11), the proof

is now analogous to that of Corollary (2.10) and we leave it to the reader. O

3. Markov Solutions of Stochastic Differential Equations:

Throughout this paragraph X = (g, M, Mt+’ Ots Xt’ Px) will denote an

underlying normal strong Markov process as defined in (2.2). The assumptions

and notations of paragraph ‘two will be used freely.
We consider here stochastic differential equations of the form:

F!
j

+
e~

j
(1) dzd .

Ot
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1 < i <n. However techniques for systems are the same as for one equation, so

we take n = 1. Also since no extra probiems arise when d > 1, for simplicity

we consider only d = 1. Thus we will study

1
jou g
+

t
(3.1) . Y [ F(Y)_ dz
0

S- 'S

—

and we will try to relate Y to the underlying process X. Our basic resuit

(Theorem (3.5)) is that under appropriate hypotheses on H, F, and Z, the process

(Y,X) is sf;bng Markov.
To allow arbitrary initial distributions for the solutien process Y we

enlarge our probability space © as follows: set @ = @ R; E%@ R and

W= M°®R , where R denotes the Borel sets of R. Let Py - pig ey product

measure, where ey denotes the point mass. Dirac measure at {y}.

Next set E = E xR and we let (ﬂt)ti0

filtration satisfying M®R c H, for all t > 0.

denote the smallest right continuous

There is a one-to-one correspondence between a process H on @ and a family

of processes (HY) on 2, and it is given by H{(w) = H%(y,w), where (y,w)€ @ .

YER -
We let D denote the space of Hi- adapted processes with paths in D, P**Y a.s.

i

for each (x,y)e€ L. S oo

We now turn to the coefficients in equation (3.1).

(3.2) Definition. Given a semimartingale Z we say F is D-extendably Lipschitz

if F is D-Lipschitz and can be extended to be D-Lipschitz on ﬁ'x’R+. o

Recall that D-Lipshiti'was definéd‘in"Chabter»VI'(VI.3.2).' We need ohe more

technical result.

€D, and 7 = (2Y), ¢ €D such that 2’ is a

(3.3) Theorem. Let H = ( R

Y
H )yGIR
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semimartingale for P , all x€E and all y€R; let F be extendably D-Lipschitz.

Then there exists a process Y = (Yy)yeﬂalulifsuch that Yy'i§_themPX solution of

t
YooY y y
o= H o+ g F(VY),_ dz

for all y€R and all x€E. -

Proof. For (w,y) €8 define 8, (w,y) = (6(w),y) , and define X (w,y) = (X (w).y).

Bre O
praY - PX8>gy, it is trivial that Z is a semimartingale (?x’f) when Z¥ is one

Then X = (Q}Egj 0., s, X%, P*s¥) is a normal strong Markov process. Since

PX. Thus for any HEIL we can find a version of the semimﬁrtin@a]e integral

F-Z such that F.Z = [wfdzY , P*Y ~a.s. That is, (R-D)Y = w.20 P% ass.,

all x€E.

Next define Y(1) = H, and inductively define Y(n+1) = H + F(Y(n)) _-Z ,
where F(U)Y = F(UY). Then Y(n) €D for each n. Using the Lipschitz hypothesis
on F one can verify P**Y- 1im Y(n)

t
N->0
such that Y = (Yy) , ¥V being the solution for all Pf, Xx€ E. An argument

= V£ , where Y is a solution of the equation

analogous to the one used in the proof of (2.10) yields the result. 0

.

In Chapter VI we allowed our coefficiénts to depend on the entire history
of the solution up to the present state. Such latitude in the coefficients is

too great if we are to hope to have a Markov property for the solution.

(3.4) Definition. A coefficient F is said to be.strongly homogeneous if

(i) for all Y€D and stopping times T eT(F(Y)) is indistinguishable from
F(opY) on [T,[ . -

(ii) for all w€n,s>0, t > s and H, K€D such that H _(u) = K.(w) when

s <r <t, then F(H)t(w) = F(K)t(w)-



118

Examples of strongly homogeneous coefficients are F(Y)t_(w) = f('Yt__’j (AL:).)-.
with f€ c! : G(Y)t_(w) = g(Xt_(w), Yt_(m))l(0 w)(t) , assuming X has left

1imits and g is smooth.

(3.5) Theorem. Let H, ZE]D be strongly additive and suppose Z is a Px-sjemimar-

tingale for all x. Let F be extendably D- L1psch1tz and streﬁg1y homogeneous

and let Y = (Yy)yE]R € D such that Yy a solution for each y€R of
¥z F \
(3.6) Vi=y +H+ (g F(Y )5_ dz,.
Then . _ _ .
i -

: _(XYo) S
. XLy = ) S 2
3.7) V(X Topp) It = B ° 7 £f (X, V)

- .

for all bounded f€ E®R , for all (x,y)éf, and for all finite Ijt- s'.t.dp.p.i.né

times S.

Proof. Fix an a.s. finite stopping time S. Llet Ht = Ht - Ht/\S R Zt = Zt - Zt/\S .

For GE€ ES and finite, let VG denote a solution of the equation

i - a (t) + H + } FYE) - dz'.. Sl
t [st[ t 0 S- S' ’ o
Step 1. We first show that if G = YJS/, then ‘7% Jt/ on {t > S}. We let
Vo= vyY 76 1 :
Y, = Yy ]{u<S} Y, {u>§} , which is inD. On {t < S} we have
v - vG _ W ' 70 !
Yo=Y = Vg + Hp + g F(Y )s_dz <
which can be reexpressed on {t > S} as
S y t g
=y +H + g F(Y) _dZ, + é F(Y?) _ dz*



119

By the homogeneity of F we have F(Yy)u = F(?)u if u £ S and also F(VG)

u - F(Y)u
if u>S. However Z' = 0 on {u< S}, hence

t

(3.8) Y=y +H + 6 F(Y),_ dZ_ an {t > S},

t t

But (3.8) is clearly valid for t < S as well, and thus Y is_a-solution of

equation (3.6), and step 1 follows from the uniqueness of solutions.

Step 2: We next show eSYS and V¥ are indistinguishable, where v o= ?G if

G = y. We-have:

Yy _ 4 y .
ogY” = y][s,m[ + ogH + eS(F(Y Y-Z) -

Y e
y][s,w[ + ocH + (ogF(Y) - 6cZ) )
by Theorem (2.12). Using the additivity of H and Z as well as Lemma (2.7), we get:

og¥ = V1pg p + H' + Flog(¥))-2' aus.

Thus eSYy is a solution of the same equation that v is, and step 2 follows
from the uniqueness of such solutions.

Step 3. In this step we will see that

(X,
XY (T v = FLY
ED Y VF(Xgyps Voup)d = BV LVE

Since Hy 1is contained in the P**Y completion of

for all bounded V in H.
ﬂt®{¢, R}, we need establishonly that

XgsYs

=X — — —
E Y (VF(Xg Vo) = EOVQVE ® OIF(X, V)1 -

for arbitrary stopping time S, t > 0, bounded V€& ES and bounded f€ E®R.
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Set G = Y}S’ . Then ' )
=X,y - " _ X ‘"G‘ |

by step 1. However by (3.3) we know {(w,y) - ?§+t(w) is Qs+€8£gmmasurab1e.

Since G€ He » equation (3.4) yields -

PV V(K g Terp)} = [P (do)V(@)EXE(F Xy Tor)) [Heh o)

T G(w)

- = [P*(dw)V(w)E {f(X o o)) Hs}Hw)

by step 2. Using the strong Markov property of X and co@tinufng the equation:

w) N
UCRESOY

i,f,r'“:( (w), (w))
G {

Hj
m
s,
<
m|
—
—+,
~~
><
|
A
[
-

This completes the proof. O

(3.10) Comment. Observe that equation (3.7) implies thatﬂ(ﬂ H Ht’ (Xt,Y ), PAY)
is a right continuous strong Markov process as defined in [2] but unfortunate]y

it is not one according to our definition'(2.2). The problem is that the

shift operators (et)t>0 for (X,Y) are not present. We could define a shift

by 84 (w,y) = (6, (w), Vk(w,y))'fh which case we would have X, . = X, ° 6

on Q, but the relation 5£+s = §£-° 9. , for example, only holds a.s. and not

s s
jdentically. This is, however, a false problem since being a‘MarEbv process
is really a statement about only the transition semigroup, and one can always

realize a process on a new space with the same transition semigroup that would
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be a strong Markov process in the sense of definition (2.2). (cf. [6, p. 271])

(3.11) Comment. The hypotheses that H and Z be additive in Theofém (3.5)>may
at first seem strange. However examples abound: if the Markov process X is
itself a semimartingale one can take Zt = Xt - Xo' If X is not a semimartinga]é
then there always exist functions f: E - R such that Zt = f%XE) - f(XO) is an
additive semimartingale for all PX (cf. [6]). -

In the classical Ito theory the underlying Markov process X is just a

Wiener procégs, and one has two semimartingale differentials: le = dXt,

the Wiener process, and dZi = dt, Lebesque measure. Due ﬁo*the independence of
the increments, however, the conclusion is stronger than®that of Theorem (3.5):
the solution itself is strong Markov. This result extendS"%n our framework as

follows: <L

(3.12) Theorem. Let X have stationary and independent increments and et

Ly =X, - X;. Let F be extendably D-Lipschitz and strongly homogeneous and

let V =(Y) _ €D such that ¥ is a solution, for each y€R, of:

— VER
T
Yt =y + éF(Y )s- dZs B X
=X _ _(X s—Y—S) _' . ) — ..
Then E ’y{f(Ys+t)|§S} = E {f(V. )} for all bounded f€R, (x,y)€E, and finite

stopping times S.

Proof. The proof proceeds exactly as steps.one‘and two of “the proof of’
Theorem (3.5), taking H = 0 of course. However using the elementary fact that
the independence of the increments of X is also valid for stoﬁpigggtimes [that

is, o(XS+t - XS; t > 0) is independent of ﬂs], (cf. [1], for example), we note
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that YG as defined just before step one is independent of gs. ~
Step 3. Let Vegs and f€R both be bounded. Then as in (3.9):
XY = X y
(3.13) {Vf(Ys+t) = E {Vf(Ys+t)}
= X v -
=E {Vf(YS+t)} -

fP (dw) V(w)E {f S+t |H Huw).

However Y§¥£:TS independent of Hg , hence E XOR(Y Sit))[gs}(w) = h(x,6(w)),

where h(x,y) = Ex{f(Q{)} , using the stationarity of the increments. Thus

(3.13) becomes: | oo
BV V(Y ) = [P (dw)V(w)h(x,6(w))
= EX{VE(X,Y§)[f(Y£)]}
= Y x,vg)[f(7£)]} ,

which completes the proof. O
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