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ABSTRACT

A television game considered by Price and Tenenbein (1976)
has been approached from a branching process viewpoint. In so
doing the original game considered by these authors has been
generalized thereby allowing the use of some of the known results
in branching processes in answering some of the questions posed
by these authors. Some related computational techniques have been
discussed for obtaining the solution of an equation (arising in
branching processes) needed for certain results pertaining to
these games.

1. INTRODUCTION
This work was inspired by a paper authored by Price and

Tenenbein (1976) appeard in these communications sometime ago.
The problem dealt with by these authors apparently was posed to



them by the producers of a television game show that they were
developing at the time. In particular, as per these authors, the
producers were concerned about the size of a budget for the show
and wanted to evaluate the chances of winning and the expected
pay off for the game. In this context the model considered by
the authors 1is briefly described as follows:

Consider a sequence of independent trinomial trials where
each trial results in either event A = [success] with probability
a, or event B = [a win of a run of additional r>1 trials] with
probability b, or event C = [neither of the two events A and B]
with probability c, where a+b+c=1. The game begins with a fixed
initial number k>1 of such trials. Each time the event B occurs
within these k trials or at any subsequent trial the player is
allowed to have r additional trials over and above the remaining
trials he is yet to go. The game is terminated either upon the
occurrence of the event A or when the player has used up all the
trials allowed to him, whichever of these two possibilities hap-
pen to occur first. If the game terminates with A, the player
wins a prize, otherwise he loses at the end of the trials allowed
to him. Let M denote the total number of trials it takes to end
the game. The authors, after showing that P(M<~)=1, attempt to
obtain an approximation for the probability P(L) of the game end-
ing with a loss for the player, along with an error bound for
this approximation. Numerical values for the approximation along
with their error bounds were given for r=2 and various values of
b and ¢c. The paper ends with a mention of several remaining is-
sues such as the improvement over their approximation for P(L),
obtaining a similar approximation for E(M) and the possible de-
sired objective of the producers of the show who may want to 1i-
mit the E(M) while retaining a fixed value of P(L). A case is
also made for a possible use of the present model for developing
a sequential inspection plan for quality control problems where
each unit under inspection may either have a major defect (event
A) or a minor defect (event B) or be free of defects (event C).



In the next section we adopt for the above game a branching
process (Galton-Watson process) approach which leads not only to
a generalization of the above model but also allows us to use
some known results about these processes to the present problem.
In particular it gives the probability P(L) as the solution of a
known equation in branching process (see equations (14) and (22)),
which can be explicitely solved for the authors' case of r=2 (see
(31) and (32)). Moreover we also establish a simple linear rela-
tion between E(M) and P(L) (see (24)), so that if you know one
you can know the other. Unfortunately this relation was not no-
ticeable by following the approach of the above authors. Finally
we also discuss some computational aspects of certain needed
quantities through the use of iterative procedures suggested by
the branching process approach.

More recently, essentially the same branching process has
been used by Karlin and Tavare (1982) (see also Pakes (1983)) for
the study of certain mating systems in population genetics. Here
the above mentioned success event A is referred to as "killing"
by these authors. The reader may refer to Harris (1963) and
Athreya and Ney (1972) for a detailed account of the branching
processes and some of the related well known results that we shall
need.

2. A GENERALIZED GAME BASED ON A BRANCHING PROCESS

In the following we shall view the above game slightly dif-
ferently but essentially in a manner equivalent to the above. To
us each trial constitutes in observing two independent random
variables ¢ and X, where ¢ takes values 0 or 1 according as the
prize-winning (success) event A occurs or not with P(z=1)=p,

. O<p<1, and X, which may take the value zero, represents the addi-
tional random number of trials that the player will be allowed to
have (over and above the trials that he is yet to go) with the
probability generating function (p.g.f.) for each X given by



[o]

f(s) = E(s*) = .ZO pisi, Is| < 1. (1)
'l:

Throughout we shall assume that p0>0 and p0+p]<1. Furthermore

it is assumed that (gi,Xi)'s corresponding to various trials are
independent and identically distributed (I.I.D.) random vectors.
In the branching process language if Zo=k denotes the initial nu-
mber of trials representing the zeroth generation, the (random)
number of additional trials allowed during the run of these k
initial trials is given by

Zy = Xo1 * Xgp *ee- ot Xgpo (2)

where X's here and below are I.I.D. with the common p.g.f. given
by (1), and Z] denotes the number of trials for the first gener-
ation. Thus in general having defined Zn for the nth generation,

Zn+1 for the next generation is given by

JA

n
L1 = 1-21 *ni 21 (3)

0 if Z, = 0.

(see Kendall (1951) and Neuts (1969) for a similar branching pro-
cess interpretation in connection with an M/G/1 queue.) It is
clear that as soon as a Zn becomes zero, the additional tria]s
having run their course the game ends. Instead the game may also
end at the trial when the event A occurs for the first time. Let
for n>0,

Y = ozo Z, (4)

Then

Y ?Y, as., (5)

where Y is generally referred to as the "total progeny" of the
branching process'{Zn}. Thus it is easy to see that

M = min(Y,N); P(loss) = P(M=N), (6)



where M is the number of trials it takes to end the game and N
is the number of trials it takes for the event A to occur for the
first time, so that

PIN=3) = pP7lq,  §=1.2..., (7)
with g=1-p. The game considered by Price and Tenenbein (1976) is
now a special case of the above with
| a=p; q=btc; P; = 0 for i # 0,r; (8)
po = clbre)™s p = blbre) !
where the events B and C are observed through the random variable
X depending upon if X>1 or X=0 respectively. It is worth noting
that here no generality is lost in observing two independent ran-
dom variables ¢ and X at each trial instead of observing a single
trinomial trial as was considered by the above authors. Also
since P(N<»)=1, it is immediate that P(M<=)=1; in fact since N
is a geometric random variable, M must have all its moments
finite.
| The réndom variable Y has been dealt with among others by
Otter (1949), Bharucha-Reid (1960), Harris (1963), Prabhu (1965),
Mullikin (1968), Feller (1969), Dwass (1969) and Pakes (1971).
Again because of the mutual independence built into the branching
process, it is easy to see that if Zo=k,

Y=n]+n2.+....+ g (9)

where ”1'5 are I.I.D. with distribution same as that of Y corre-
sponding to the case with ZO=1. Let

Y .
gn(s) = E(s M, 1> 05 g(s) =E(s'); |s] <1 (10)

Then it is well known that P(Zn+0), the so called probability of

extinction, satisfies the relation

JA

P(Z,50) = P(Y<w) = g O (11)

where g is the smallest root lying between 0 and 1 of the equa-
tion f(s)=s and is equal to one if E(X)<1 and is strictly less



than one if E(X)>1. Thus in the latter case Y is an improper
random variable with

Z
P(Y=o) = 1 - g(1-) = 1 - g 0. (12)

In the case Zg=1, it is well known (see Harris (1963), Prabhq
(1965), Dwass (1969) and Pakes (1971)) that gn(s), n>0, satisfy
the relations '

o gg(s) = 5. gpuq(s) = sfg (s)), n >0, (13)

and that their Timit g(s) equals to the unique regular solution
F(s) for t within the open unit disc of the equation

t = sf(t), |s| <1, (14)
with 0<g(1-)=8<1. For the case with Zo=k3], it follows from (9)
that

a(s) = [F(s)1%, |s] < 1. (15)
Some authors in defining Y, and Y (see Mullikin (1968), Karlin
and Tavare (1982)), unlike (4), do not include Zy so that equa-
tions (13) and (14) differ slightly in their case.

Remark: As mentioned earlier a model (based on a branching pro-
cess) similar to our game-model has recently been studied by Kar-
lin and Tavare (1982) (see also Pakes (1983)), where our success
event A is referred to as a "killing" event. However there is
one minor but basic difference namely that in their case if such
a killing event occurs to any individual belonging to a given
generation, the whole generation is considered as killed and the
process thus stops at such a generation. Instead in our case the
- process stops by trials rather than by generations. Moreover,
the offsprings being trials, it is visualized that the trials
corresponding to a given generation are run one by one in a cer-
tain order so that as soon as the event A occurs the process
stops at that trial. Thus the trials (belonging to this last
generation) that have already been run will be counted as per our
definition of M given by (6).



3. SOME CHARACTERISTICS OF A GENERALIZED GAME

In this section we shall derive expressions for certain use-
ful quantities relating to a generalized game, such as E(M),
P(loss), distribution of M, the cost involved for a game, etc.
As we shall see below, most of these quantities are easy to de-
rive once we look upon the original game in our modified manner,
a]]owing us to express M as in (6). We assume that Zo=k3J. Note
that :
pY ifY <o

P(event A never occurs|Y) = (16)

: 0 ifyY=ow,

P(event A occurs at nth trial|n<Y<w) = pn']q, (17)

so that for |s|<1, using (11), (12) and (15), we have

@ i
E(sM; winning, Y<w) z P(Y=1) 2 pz-lq sz
i=k =1

sy (B -IF(ps) T, (18)

(1-85) Z]p2'1q s*
Q[:

(1-6%) sq(1-ps)~", (19)

E(sM; winning, Y=«)

and

E(sM; Y<o, loss)

E(sM; loss)

_Ek P(v=1)(ps)t = [F(ps)T", (20)
1:

where F(s) is the unique regular root for t (within the open
unit disc) of the equafion (14). The above expressions in turn
yield

E(s™) = ((qs) + (1-s) [F(ps)1¥} (1-ps)~T, (21)

P(winning) = 1 - [F(p)1%; P(loss) = [F(p)I¥ (22)
In particular using (6) and (7) (or (21)) we have '



) ‘
EM) = 3 (1-£(p")) = LERIL (23)
so that
P(winning) = q E(M). (24)

It is this relation which got overlooked by the approach adopted
by Price and Tenenbein (1976). Thus the producers of the show
could control one of the two P(winning) and E(M), by controlling
‘the other and fixing the value of q appropriately. Again using
(21) and after some lengthy standard calculations one also ob-
tains

k k
Var() = & + LE@IL ¢ L LERML - onopre ()17, (25)

q
where a prime indicates the derivative of a function. Here it is

known and can be easily shown that sf'(F(s))<1, for all 0<s<]1,
except for the case where s=1 and f'(1)=1, where it is equal to
one. Again in obtaining (25) we have also used the fact that for
O<s<1

F'(s) = f(F(s)) [1-sf'(F(s))17", - (26)
which can be established by using (14) of which F(s) is the uni-
que regular solution. It is interesting to note that, since the
expression within {} of (25) is negative, Var(M) is strictly less
than Var(N)=p/q2.

Suppose now that each trial takes a random length of time,
where these times, denoted by T1sTosTgsensns for various trials,
are I.I.D. random variables with a common cumulative distribution
function (c.d.f.) H(-), and are independent of everything else.
Then the cost of a game is given by

I
=2

%
A) T top, if M
i=1

¢ = (27)

M : _
A_z T > ifM=Y,
i=1

where A is the cost per unit time and p is the amount for the
prize pay-off when the player wins the game. Thus the Laplace-



Stieltjes transform (L.S.T.) of ¢ is given by
E(exp[-6])
exp(-ep)E([H*(Ae)]M; winning)

+ E([H*(20)1"; Toss), (28)
for Re(8)>0, where H*(6) is the L.S.T. of the c.d.f. H(:). Using
(18)-(20) in (28) we find

v.(8) = exp(-8p) qH*(x0){1-[F(pH*(r8))1¥}

¢
« [1-pH*(20)177 + [F(pH*(r0)) ¥, (29)
Finally from this and (23) we obtain the expected cost of a game

,(6)
b lo

given by ‘

E(C) = [AE(c) + q o] E(M), (30)
which is not unexpected in view of the relation (24).

We note that in most of the above expressions the function
F(s) appears predominantly. To obtain F(s) involves solving
the equation (14) for t for given values of s. In the next sec-
tion we shall discuss some iterative techniques of solving (14)
arising in the context of branching processes. But first we deal
with two special cases for f(-), where (14) is explicitly solv-
able for F. .

The first one was considered by Price and Tenebein (1976)
which corresponds to the case with

~ 2
f(s) = py + (1-pyls”. (31)
For this it is easy to solve (14) explicitly yielding
F(s) = (1-[1-4s%p,(1-pg) 172} (2s(1-py)) 7T, 0<s<l,  (32)
so that when Zo=1, thé.probabi1ity of extinction is given by

1 if Pg 2

F(1-) = (33)

N = PO

po(l-po)'] if py <
The expression (32) also turns out to be the p.g.f. of the time
it takes for a random walk on integers to travel from 0 to 1 with
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(33) being the probability that this time will be finite (seé
Dwass (1968), (1969)). For the present case (32) when used with
s=p in (22) yields an explicit expression for P(loss), which was
previously obtained approximately by Price and Tennebein (1976).

Our second example corresponds to the case of so called lin-
ear fractional p.g.f. for (), with

f(s)=(]—ao-a])(]—ao)-]+a15(1-aos)-1,

0<a0,a],a0+a]<]. (34)
Again for this case too (14) can be explicitly solved yielding
a]s a]S 2
F(S) = (]+0"OS = ]-0’. ) = [(1+0LOS - ]—OL )
0 -0
“das (1 - ~29772) (20 )7 (35)
0 1-a0 0 ’

4. COMPUTATION OF THE FUNCTION F(p)

We shall briefly discuss now the problem of obtaining the
smallest solution F(p) of the equation v

t =p f(t), (36)
for t within the unit (real) interval, for a given value of p
with O<p<l, where we also allow here the value p=1 unless other-
wise mentioned. We exclude however the case with p=1 and fr(1)<1,
where the root of (36) is known to be one. One procedure is sug-
gested by the way the above question arose namely via a system of
jterative equations (similar to (13)) given by

Go(s) = s, Gn+](§) = p f(Gn(s)), n>0, (37)

where Gn(s) can be shown to converge monotonically to F(p) as

o, Thus starting with a given value of s as GO(S), we itera-
tively compute Gn(s) using (37) for a few values of n. As it
turns out, typically after only a few iterations the obtained .
value of Gn(s) is already fairly close to the desired solution
F(p) of (36). In fact, as also pointed out by Karlin and Tavare
(1982) (Their analog of equation (36)'15 given by (40) below and
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is only slightly different from ours because of the fact that
they do not include Z0 in their definition of Yn and Y (see
(42) below)), using a modification of the proof provided by
Athreya and Ney (1972, pp. 38-41) it is easy to establish the
existence of the limit

lim y""(G,(s) - F(p)) = p Q(s), 0 <5 <5y, (38)
N0

where
vy =p f'(psy), (39)

So and s, are the two real roots (both functions of p) with
O<so<]5§], of the equation

t = f(pt), (40)
and Q(s) satisfies the functional equation
Q(f(ps)) = vQ(s), (41)

subject to Q(so) =0, Q'(so) = 1 and Q'(s)>0 for every se[O,s]).
Furthermore as it turns out, the convergence in (38) is uniform
for s over [0,8] for every O<6<s]. As noted earlier vy defined
by (39) is strictly less than one except for the case when p=1,
f'(1)=1, which we have already excluded. Also comparing equa-
tions (40) and (14) with s=p, it is easily seen that

F(p) = psy» (42)
so that
vy = p f'(F(p)). (43)

Thus it follows from (38) that the sequence Gn(s) defined by (37)
converges exponentially fast to the desired solution F(p) of (36).
Again by taking s=ppy in (37), since G](pp0)>pf(0)=pp0=

Go(ppo), it is easily seen by an induction argument that Gn(ppo)
+F(p) as m. Similarly if instead we take s=p in (37) when p<1,

since G](p)<p=GO(p), we have via an induction argument, Gn(p)+
F(p) as nso. Thus since Gn(p)-Gn(ppO) +0 as n»», by computing
both Gn(p) and Gn(ppo) not only would we obtain F(p) approximate-
ly for large enough n, but also an error bound in the form of

the difference Gn(p)-Gn(ppO).
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However a better approach is the following. The equation
(36) can be rewritten as

t = prgl1-p(f(t)-py)t™' 17", (44)

which suggests an alternative way of defining the iterating se-

quence as _

Ho(s) = s5 H 1q(s) = ¢(H (s)), n > 0, (45)
where

6(s) = ppgsLs+ppy-pf(s)17", (46)

which is an improper p.g.f. with

8(1) = ppyatppg) ™! < 1. (47)
Again for 0<s<1, it can be easily seen that

s S ¢(s) « s3pf(s) s F(p)s (48)
so that by standard induction arguments it follows that as ns=,
Hn(s)+F(p) for s<pf(s) and Hn(s)+F(p)'for s>pf(s). A similar be-
havior holds for the sequence Gn(s). In particular, since s<pf(s)
holds for s=pp,, we have Hn(pp0)+F(p) as m. Again note that
since for s>0

Hi(s) > Gy(s) & ¢(s) > pf(s) e pf(s) > s, (49)
and HO(s) = Go(s) = s, it follows by an induction argument that
for all s satisfying O<s<pf(s), we have

Hoo(s) = 6(H (5))>6(8 (5))>pF(G (5))=6 1 (s), m]  (50)
so that for S=ppy we have

F(p) > Hy(prg) > Gp(ppg)s n 2 1. (51)
Consequently the sequence Hn(ppo) appears to perform much better
than Gn(ppo) in converging to F(p) as m. Likewise for s>pf(s),

it can be shown that
H](s) < G](s)

(52)
Hopq ()=0(H (s))<¢(G, (s))<pf(G (s))=G ,(s), n>1,
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Holds, so that

F(p) < Hn(s) < Gn(s), n>1. ' (53)
Thus the sequence Hn(s) beats the sequence Gn(s) again in its
approach towards F(p). In conclusion when p<1 one may instead
compute Hn(p) and Hn(ppo) which satisfy

Ha(Ppg) < F(p) < H (p), n>o0, (54)

and use the differences Hn(p)-Hn(ppO) for the error bounds for
either of the two, Hn(p) and Hn(ppo), taken as an approximation
to F(p) for large enough n.

5. CONCLUDING REMARKS

(a) As also pointed out by Price and Tenenbein (1976) the
above models can be used for developing a sequential inspection
plan for quality control problems (see Wetherill (1982)), where
each unit under inspection (independent of the other units) may
either have a major defect (event A), a minor defect (event B) or
be free of defects (event C). If an event A is observed we stop
the process and try to remedy the problem which may be causing
the major defects in the items. If on the other hand an event B
is observed we go for an additional positive random number of
items to be inspected over and above those we have yet to examine.
Finally if an event C is observed we pass on to the next item for
inspection if there are yet more to go. One sequential inspect-
ion plan would be to stop not only when an event A is observed
but also when the number of times the event B has occurred ex-
ceeds a given number or alternatively when the total number of
items to be inspected (trials) i.e. the random variable M (see
(6)) exceeds a given number. This given number and also the
distribution of the additional random number of items to be de-
sired whenever B occurs, are chosen depending upon a suitable
loss function invb]ving the cost of inspection, etc. and upon
how fréquent]y the occurrence of the event B is considered accept-
able in a given situation. Some of the results found in Puri
(1969) or their analog for the discrete time case may be useful
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for the distribution problems involved here. However a detaijled
treatment of these problems based upon our generalized branching
process model will have to wait for another communication.

(b) 1t is evident from (50) and (52) that for all starting
values of 0<s<1, the sequence Hn(s) performs better than the
sequence Gn(s). In view of (38) it also follows that the sequence
Hn(s) converges to F(p) at least as fast as Gn(s), which converges
at an exponential rate of -gyy given by (39). In fact it appears
that the corresponding exponential rate constant for the sequence
Hn(s) may be much larger than -g,y. These considerations will
have to be now investigated separately.

(c) Finally the above class of models can be generalized to
the case where the probability p for the event A may be allowed
to vary (in a suitable manner) from trial to trial. Equally
appropriate may be for some situations is to allow f(s) and in
particular the probability Py to vary from trial to trial.
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