STATISTICAL PROPERTIES OF THE FILE-MERGING METHODOLOGY

by

Thirugnanasambandam Ramalingam
Purdue University

Technical Report #85-21

Department of Statistics
Purdue University

August 1985



TABLE OF CONTENTS

LIST OF TABLES . . . . . ¢ . . . & ¢ 4 v o v o

LIST OF FIGURES

ABSTRACT . . . . . . . & v v v vt e e v e e v o

CHAPTER 1 INTRODUCTION

1.1 A Paradigm .
1.2 A Dichotomy of Hatchlng Problems . .
1.3 A General Set-up for Statistical Hatching
1.4 The Matching Methodology - Some Important
1.5 Iwo Basic Types of Matching Strategies
1.6 Criticisms of Statistical Matching
1.7 Reliability of Synthetic Files
1.8 Thesis Outline . e e
CHAPTER 2 MERGING FILES OF DATA

ON SAME INDIVIDUALS . . . « « + ¢« + « + .
2.1 AGeneral Model . . . . . . « « ¢« ¢ ¢« & &
2.2 Notations .
2.3 Data-based Matching Strategies . .
2.4 Repairing a Broken Random Sample . . . .

2.4.1 The Basic Matching Problems . . .
2.4.2 The Maximum Likelihood Solution
to the Matching Problem .
3 Some Bayesian Matching Strategies .
4 Matching Problems for Multivariate
Normal Distributions .
2.5 Reliability of Matching Strategies for
Bivariate Data . . . . .
2.6 An Optimality Property of the Max1mum
Likelihood Pairing o¢* . e e .
2.7 Monotonicity of E(N{(¢"))
with Respect to Dependence Parameters .
2.8 Some Properties of N(¢*,¢)
2.9 Poisson Convergence of N(e*) . . . .

2.4,
2.4,

Page

e« « . vii

xi

[

0o~NEMN

Steps .
. . . 10

18

18
19

24
25
27
29

32

59
71



vi

TABLE OF CONTENTS (Cont'd.)

Page

CHAPTER 3 MERGING FILES OF DATA ON SIMILAR
INDIVIDUALS o . . St e e s e e e e e e e e .. 105

3.1 Kadane's Matching Strategies for
Multivariate Normal Models . . . . . . e+ + « » . . 106
3.1.1 Isotonic Matching Strategy . . . . . ... .. 114
3.1.2 Sims' Matching Strategy . . . . . .. . . . . 115
3.2 Alternatives to Statistical Matching
Under Conditional Independence . . . O b ¥ 4
3.2.1 Maximum Likelihood Estimation 1n
Multivariate Normal Models Using

Iwo Files of Data . . . s e e e e 4 . <« . 120
3.3 An Empirical Evaluation of Certain
Matching Strategies . . . e« . . . 129

3.3.1 Conclusions of the Monte Carlo Study « + . .« . 137
REFERENCES . . . . . . . . . .. .. .. ... e e e e e e s . . 174

VITA . . ° . . . . . . . . . ’ * . . . . . . . . . . LI . . . . 178



LIST

Table

2.1 Expected Average number of
€ = 0.01 (Yahav (1982)) .

2.2 Expected Average Number of
e=0,01.........

2.3 Expected Average Number of
€e=0.05.........

2.4 Expected Average Number of
e=0.1 ... ... ...

2.5 Expected Average Number of
€e=0.3 . .. .. ...

2.6 Expected Average Number of
e=0.% . . . ... ...

2.7 Expected Average Number of
€e=0.75 .. ... . ...

2.8 Expected Average Number of
e=1.0 . . . . ... ..

vii

OF TABLES

Page

e~-Correct Matchings,
et e e e e e s e e e e e 65

e-Correct Matchings,
c e e e e e e e e e e e e e 67

e-Correct Matchings,
T e e v e e e e e e e e e e e 67

e-Correct Matchings,
e e et e e e e e e e e e e e 68

e-Correct Matchings,
e e e e e e e e e e e e e e e 68

e-Correct Matchings,
e et e e e e e e e e e e e e e 69

e—Correct Matchings,
e e e e e e e e e e e e e e 69

e-Correct Matchings,
e e e e e e s e e e e e e 70

3.1 Summary Statistics of Sample Correlations - Files
with n=10 Records Conditional Independence Case . . . . . 141

3.2 Summary Statistics of Sample Correlations - Files with
n=10 Records Conditional Positive Dependence Case . . . . 143

3.3 Summary Statistics of Sample Correlations - Files
with n=25 Records Conditional Independence Case . . . . . 145

3.4 Summary Statistics of Sample Correlations - Files with
n=25 Records Conditional Positive Dependence Case . . . . 147

3.5 Summary Statistics of Sample Correlations - Files
with n=50 Records Conditional Independence Case . . . . . 149



viii

LIST OF TABLES (Cont'd.)

Table Page

3.6 Summary Statistics of Sample Correlations - Files with
n=50 Records Conditional Positive Dependence Case . . . . 151

3.7 Summary Statistics of Sample Correlations - Files with
n=25 Records Conditional Positive Dependence Cage . . . . 153



ix

LIST OF FIGURES

Figure Page

3.1 Isotonic vs. Mahalanobis.

p.., = 0.00, pyz = 0.10, Py 0.00, n=10. . . . . ... 154

Xz y

3.2 Isotonic vs. Mahalanobis.

Pyg = 0.94, pyz = 0.85, Py

y 0.96, n=50. . . .. ... 155

3.3 Isotonic vs. Nomatching.
P = 0.00, pyz = 0.10, Py

0.00, n =10. . . . . . .. 156

Xz y

3.4 Mahalanobis vs. Nomatching.

Pyg = 000, p. = 0.10, Py =000, m=10. . ... ... 157

Xz

3.5 Matching in Bins vs. Nomatching.

Pygz = 0.00, pyz = 0.10, pxy =0.00,,n=10. . . .. ... 158

3.6 Isotonic vs. Nomatching.

Pyg = 0-00, Py, = 0.10, p  =0.00,n=10. . ...... 159

Xz Y

3.7 Mahalanobis vs. Nomatching.

Pyzg = 0:00s py, =0.10, p . =0.00, 0 =10. . ... ... 160

Xz

3.8 Matching in Bins vs. Nomatching.

Pyg = 0-00, p = 0.10, Prg =000, m=10. . ... ... 161

3.9 Isotonic vs. Nomatching.

Pyg = 0-93, Py, = 0.75, p  =0.70, n =25 . ... ... 162

X2 y

3.10 Mahalanobis vs. Nomatching.

Pyg = 0.93, pyz = 0.75, pxy =0.70, n =25. . . . . . . 163
3.11 Matching in Bins vs. Nomatching.

P, =093, p =0.75 p =0.70, R =25. . . . . . .. 164

XZ yz Xy

3.12 Isotonic vs. Nomatching.

Pyg = 0.93, pyz = 0.75, ny =070, n=25. . ... ... 165



Figure

3.13

3.14

3.15

3.16

3.18

3.19

3.20

Mahalanobis

sz = 0-93,

Matching in

Pyg = 0.93,

Mahalanobis

Pyy = 0-00,

Isotonic vs.

Pyg = 0-93,

Matching in

Pz = 0.93,
Isotonlc vs.
Pyg = 0.94,

Matching in

Pyg = 0.94,

Isotonic vs.

pxz = 0.94,

LIST OF FIGURES (Cont'd.)

vs. Nomatching.

P = 0.75, Pyy = 0.

yz y

Bins vs. Nomatching.
.70,

P, = 0.75, ny =0

vz

vs. Nomatching.
pyz = 0.10, pxy

!
o

Nomatching.
pyz = 0.75, Py

]
o

y

Bins vs. Nomatching.
.80,

pyz = 0.75, pxy =0
Nomatching.
pyz = 0,85, ny =0

Bins vs. Nomatching.
pyz = 0.85, Pyy = 0.

y

Binning.

pyz = 0.85, Pey = 0.

y

70,

.95,

.80,

.96,

96,

96,

25.

25.

25.

25.

25.

50.

50.

50.

Page

166

167

168

169

170

171

172

173



xi

ABSTRACT

Ramalingam, Thirugnanasambandam. Ph.D., Purdue University, August
1985. Statistical Properties of the File-merging Methodology.
Major Professor: Prem K. Goel

Matching is defined as the methodology of merging micro-data
files to create larger files of data. Matching is often done to
extract statistical information which cannot be obtained from the
individual files that are incomplete. Current Federal statistical
practice involving multivariate file-merging techniques is typically
not based on a formal Sstatistical theory. 1In view of this
situation, a survey on matching is given. A1l known models for
matching are presented under a unified framework, which consists of
three situations involving the same or similar individuals.

The properties of a maximum likelihood strategy to match files
of data involving the same individuals are derived via ranks and
order-statistics from bivariate populations. 1In addition, the

properties of this strategy have been examined with respect to a

more reasonable criterion called epsilon-correct matching.

Asymptotic results for such situations, including (i) the Poisson
approximation for the distribution of the number of correct matches,
and (ii) convergence in probabllity of the average number of

epsilon-correct matches have been derived. Small-sample properties,



xii

like the monotone behavior of the expected number of matches with
respect to the dependence parameters of the underlying models have
been proved.

Two matching strategies due to Kadane (1978) and one strategy
due to Sims (1978) for merging files of data on similar individuals
are discussed. These strategies are evaluated based on a Monte-Carlo

study of matching models involving trivariate normal distributions.



CHAPTER 1

INTRODUCTION

One of the most important tools for analyzing economic policies
is the micro-analytic model. This technique is used frequently in
public decision-making centers. Virtually every Federal Agency uses
micro-analytic models for the evaluation of policy proposals.

Direct use of sample observations rather than aggregated data
is characteristic of the micro-analytic approach. For this reason,
the micro-data that is used as input to the model has a significant
bearing on the validity of the results of the model. Furthermore,
when all the input-data come from a single sample, the quality of the
model depends on, among others, sampling and data-recording proce-
dures. However, if the data from a single source is insufficient or
partly aggregated, then typically multiple sources of data are used
to provide the necessary input to the model. At the same time,
issues such as validity and quality of the results of the model
cannot be assessed as easily as when we have a single source of data
as input. 1In such situations, government Statisticians have been
using a methodology in which multiple sources of data are merged to
form a composite data-file. Effective use of the different pieces of
data in order to produce sensible but more comprehensive files is a

fundamental issue in the file-merging methodology.
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Some of the difficulties associated with the merging procedures

and techniques for their resolution have been known for quite some-

time. Initiated by the Federal Subcommittee on Matching Techniques,
there has recently been renewed effort to establish solid theoretical

foundation and empirical Justification for the file-merging method-

ology. This research reviews the relevant literature and then pre-
sents new statistical properties of some known procedures for merging

data-files. We shall now glve an example of a typical situation in

which merging of two files is carried out.

1.1 A Paradigm

A micro-economic model in heavy use at the Office of Tax
Analysis (OTA), Department of the Ireasury, is the Federal Personal
Income Tax Model. This model is used to assess proposed tax law
changes in terms of their effects on the distribution of after-tax
income, the efficiency with which the changes will operate in
achieving their objectives, ete. The inputs for this model are two
sources of micro-data, namely the Statistics of Income File (SOI)
and the Current Population Survey (CPS). The SOI file is generated
annually by the Internal Revenue Service (IRS) and it consists of
personal tax return data. The CPS file is produced monthly by the
Bureau of the Census. As we wiill explain in Section 1.2, such
pooling of data from more than one Federal Agency has been severely
restricted in recent years by, among others, confidentiality issues

such as the privacy of the individuals involved in the aforementioned



files of data. For this reason, complete information, especially
identifiers such as social security numbers, is typically not
released by the IRS and the Census Bureau. The resulting micro-data
files are compromises between complete Census files and fully aggre-
gated data-sets. Thus, sufficient detail remains to support micro-
analysis of the population, while partial aggregation protects
individual privacy énd greatly diminishes computational burden.

A typical problem in tax-policy evaluation occurs when no single
available data file such as SOI or CPS contains all the information
needed for an analysis. For example, consider the variables

W= (x’Y'Zl'Zz)' where

X = Allowable itemizations and capital gains

Y = 0l1d Age Survivors Disabillity Insurance (OASDI)
Z1 = Social security number

22 = Marital status

Suppose that we are interested in estimating a simple correlation
PX.Y between X and Y or, more generally, the expectation of a known
9’

function g, say, of W; that is the integral

Y = | g(w) dF(w) (1.1.1)

where F(W) is the joint distribution function of the variables in w.

Now, the SOI microdata file cannot be used in its original form since
it does not include the OASDI benefits (Y). Census files (CPS) with

OASDI benefits do not allow a complete analysis of the effect of

including this benefit, since it does not contain information on



allowable itemizations and capital gains (X). Thus, instead of
observing x.Y,Zl,Z2 Jointly on the same units, we have to get only
the following pair of files:

File 1 (SoI): X,z
and

File 2 (cPS): Y,z ,Z

1'72

Estimating y based on the fragmetary data provided by File 1 and
File 2 is an important practical problem that has not yet been solved
satisfactorily. In an attempt to cope with situations such as the
OTA model, Federal Agencies have long been using procedures for
matching or merging the two incomplete files so that one can do the
usual inference for v, hoping that the merged-file is a reasonable

substitute for the unobserved data on (X,Y,Z.,2.).

1’72

The reporting units in CPS are households. In general, the
units in a file may refer to other types of legal persons, like
corporations, partnerships and fiduciaries. The term "individual"

will be used as a generic label in this thesis to refer to the

reporting units of the micro-data files.

1.2 A Dichotomy of Matching Problems

Roughly speaking, there are two different categories of matching
problem. The first category consists of problems of exact matching
in which it is desired to identify pairs of records in the two files
that pertain to the same individual. Accurate information on identi-

fiers such as social security number, name, address are assumed to be
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available when exact-matching the two files. It is clear that all we
need to carry out an exact match of two files is, among other tools,
an efficient software to sort the individuals by their identifiers.
With the help of such software, we can, within reasonable error, link
a given individual in File 1 with an individual in File 2 such that
these two units possess the same values for the identifiers. The
resulting merged file contains data which are more comprehensive than
both File 1 and File 2. Also, even after merging, most records will
pertain to the same individual, the number of erroneous matches in
the enlarged file depending on the particular software used in the
process of merging. It is clear that, if accurate identifiers are
available for the units in the two files, then no statistical issues
are involved in the matching methodology and we shall not discuss
this type of problem any more. However, one may refer to, among
others, Fellegi and Sunter (1969) and Radner et al. (1980) for work
related to the exact-matching methodology. We shall close our
discussion of this type of matching problem by noting some of the
reasons why exact matching of files is often not possible.

First, over the past several yeabs, there have been significant
changes in the laws and regulations pertinent to exact matching of
records for statistical and research purposes. New laws, especially
the Privacy Act of 1974 and the Tax Reform Act of 1976, have imposed
additional restrictions on the matching of records belonging to more
than one Federal Agency and on the matching of files of Federal

Agencies with those of other organizations. As a result of these
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laws, some Agencies have limited access to their records for statis-
tical purposes to an even greater extent than seems necessary by
statutory requirements.

Second, analyses of microdata often involve data from units that
are not available from a single source but are available from several
sources. For example, suppose that one is interested in the relation-
ships among two sets of variables, one set consisting of information
about health care expenses incurred by individuals and the other set
consisting of information about receipt of various types of welfare
benefits. Suppose further that no existing data file contains all of
the needed variables, but that two samples of a target population,
which come from two different surveys, together contain all these
variables. If executing a new survey to obtain all the variables
from a single sample is not feasible, then one might match the two
samples and use the merged file for statistical analyses of variables
which are not present in the same sample. Note that the two sample
surveys may have information on the same individuals whose iden-
titlies are either unknown or unreliable. However, in the afore-
mentlioned example, it is more appropriate to assume that the two
samples contain very few or no individuals in common. In case the

two samples are stochastically independent, we shall describe the

units in the two samples as similar individuals.
Suppose, then, that exact matching is not feasible in view of
the aforementioned reasons. Then the tools that are used in the

exact matching methodology are inadequate for the purpose of merging



the two files of data. In particular, identifiers are practically
useless. However, the probabilistic structure of the populations
that generate the data in the two files or other statistical
techniques can often be used to combine the two files. Such proce-

dures will be called statistical matching strategies.

In the literature on matching files there is no consensus on
rigid definitions of Exact Match and Statistical Match. Indeed, it
1s traditional to distinguish these two types of problem by verify-

ing whether same (exact) or similar (statistical) individuals are in

the two files. Our classification of matching problems is somewhat
different from the usual practice in the sense that any procedure
for merging files, which may contain the same or similar individuals,
will be described as a statistical match if statistical techniques
are involved in the process of merging. This convention is in agree-
ment with that of Woodbury (1983), who describes certain matching
problems involving the same individuals in two files as "Statistical

Record Matching for Files".

1.3 A General Set-up for Statistical Matching
Consider a universe @%‘of individuals. Let X, Y, Z denote three
groups of random variables and let us assume that we cannot observe
the vector VW = (X,¥,Z) for any unit in Qkﬂ However, suppose that the
following data are available:

(Base) File 1: n1 individuals, each with information on a

function Hi, say, of W.



and (Supplementary) File 2: n2 individuals, each with information

on a function, E;, say, of V.

Various matching problems arise depending on what type of data are in

!I and g;. We distinguish only three different situations:

Case I: W] = X and W5 = I; we also assume that the two files

contain the same individuals.

Case II: Let EI = (X,2), EE = (Y¥,Z). As in Case I, we further
assume that the two files contain the same individuals.
Case III: Let w; = (X,2), WE = (Z.Z). Unlike in Cases I and II, we

assume that the two files contain similar individuals.

1.4 The Matching Methodology -
Some Important Steps

We shall now mention some steps involved in actually creating a
statistical match between two glven files. First, if the populations
represented by the files differ, a "universe adjustment" is carried
out to ensure that there is a common universe q%'from which the indi-
viduals of the two files are sampled. Second, a "units adjustment®
might be needed if the units of observation in the two files differ
(e.g. persons and tax units). Third, "matching or common variables,"
Z, are defined and it is assumed that File 1 with n1 records carries
information on (X,2), whereas File 2 with n2 records consists of data
on (¥,Z). The variables X and Y are often called non-matching
variables. Finally, in the "merging" step, if the records (gi,gi),

and (gj,gj). respectively from File 1 and File 2, are to be matched,

then one completes the ith record in File 1 by substituting xj for



the missing value. Thus, we get the synthetic File 1:

(Ki’zj.zi)’ i-= 1,2, ceey nl

Clearly, the same methodology can be used to get a synthetic File 2
by finding substitutes for missing X values of Fiie 2 using X's from
File 1. However, in order to keep our discussion simple, we shall
often be concerned with completing only File 1. Although, many
different methods have been used in this ftnal step, several basic
similarities can be identified. In most matches, certain Z variables
are treated as the so-called "cohort" variables. Such variables
establish "packets" of the records ifi each of the two files, with
matching permitted only between pairs of cases in the same packet.
For example, sex is often a cohort variable so that a male can be
matched with another male, and a female with another female. This
step about the formation of cells or packets is aimed at diffusing
the dissimilarities between units that are being matched. Further-
more, depending on how many of the common variables are used as
cohort variables, there may be very little or no within-packet
varialion with regard to 2. In such situations, File 1 has data on
X and File 2 has data on Y and we would like to merge the files to

~

get joint information on X and Y. Note that, in Section 1.3, such a

scenario was labeled Case I. The selection of "matching records*®
within a packet is typically based on a "measure of dissimilarity" by
which a "distance" is computed between a given File 1 record and each

potential match in the supplementary file. A potential match with
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the smallest distance is chosen as the match that wlll provide the

missing Y value to a File 1 record.

1.5 Two Basic Types of Matching Strategies
Suppose that the age of an individual, Zl' say, is a matching
variable. Then, one may define a distance measure d, say, between

individuals i in File 1 and j in File 2 by the equation

.. = 'Zli -2

13 (1.5.1)

23'

For fixed i = 1,2, ..., n}, one will then match one possible J* in

File 2 with ith record in File 1 if j* minimizes d over j. That

1j
is, J* depends possibly on i and satisfies the restriction

dij“ = 12;2n2 dij (1.5.2)
If the cholce of J* 1nvolves nho other restrictions, then the statis-
tical matching strategy is called "Unconstrained Matching"”. However,
there are typically additional restrictions subject to which one must
choose the optimal match j* from File 2. Matching data-files with
the restriction that the variance-covariance matrix of data items in
each file be identical to the variance-covariance matrix of the same
data items in the matched file is an example of a "Constrained Match."

In order to formulate this type of merging mathematically,
assume first for simplicity, that both files carry only n records;

that is, the common value of n1 and n2 is n. Let
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th th
aij = 1l if i record in File 1 is matched with the b
record in File 2 l1<i, J<n (1.5.3)
0 if the ‘1th record in File 1 is not matched with the
jth record in File 2
Then, the following additional conditions will ensure that the
aforementioned preservation of moments is achieved by not letting

more than one record in File 1 to be matched with the same record in

File 2:
n
) aij =1, for j=1,2, ..., n (1.5.4)
i=1
n
3 aij =1, fori=1,2, ..., n (1.5.5)
Jj=1

Now let djj denote, as in the case of a unconstrained match, a

measure of inter-record dissimilarity given by the extent to which
the attributes in any one record differ from the same attributes in
another record. Then the optimal constrained match minimizes the

"objective function®

n n

I I 4., a,. (1.5.6)
i=1 j=1 ¥ 1

Subject to the restrictions in (1.5.3) to (1.5.5). Clearly, this
extremal problem is the standard linear assignment problem in
"Optimization."

A matching situation more typical of problems relating to policy

analyses is a constrained merge of two files with variable weights
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in both files and an unequal number of records in the files. Let o,
be the weight of the ith record in File 1, and let ls'j be the weight
of the jth record in File 2. 1If nl. n2 are respectively, the number

of records in File 1 and File 2, then we minimize the objective function

in (1.5.6) subject to the following constraints.

2
) aij = ai. i=1,2, ..., n1 (1.5.7)
J=1
o
) aij = Bj, J=1,2, ..., n, (1.5.8)
i=1
n n,
! a. = Y 8 (1.5.9)
i=1 .i j=1 3
and
a,. >0, Viand]j (1.5.10)

It is clear that an optimal constrained matching strategy when
the two files have unequal number of individuals is the solution of
a standard transportation problem in which the roles of the "ware-
houses" and "markets" are respectively played by the records in File
1 and File 2 and the "cost of transportation”™ is the inter-record
distance "dij". Existing algorithms to solve a linear assignment or
transportation problem can be used to complete the final “"merge"

step, giving us the synthetic sample

w = (X;,¥7:2,)y 1 <ign (1.5.11)

1.
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where g; denotes the value of Y assigned to the 1t record of File 1.

The sample in (1.5.11) may now be used to estimate a parameter like

Y in (1.1.1).

1.6 Criticisms of Statistical Matching

In Sections 1.4 and 1.5, we described the general form of most
matching techniques that have been used by Federal Agencies.
Matching records at the "packet" level means basically that the
random vectors X and Y are stochastically independent, given the
value of the common variables Z. In the particular case of a multi-

variate normal distribution for W = (X

~

»Y,2), conditional independence
assumption is equivalent to the claim that the partial correlations
among X and Y variables, controlling on the Z variables, are all
zero. This point was made first by Sims (1972) and repeatedly by
others since then. The conditional independence assumption is a
strong one for which convincing justifications has generally not been
offered. It implies that the relationships between X and Y can be
totally inferred from X's relation to Z and Y's relationship to Z.
Sims (1978) stated that matching the files under such assumptions is
unnecessary. He also sketched an alternative statistical procedure
that uses the data in the two files to estimate, under conditional
independence, a parameter such as Y in (1.1.1). Sims' alternative
will be discussed further in Section 3.2.

Fellegi (1978) and many other investigators have expressed great

caution about the use of statistical matching because not much is
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known about the accuracy of the estimates of the joint distribution
of W produced by synthetic files.

Notwithstanding these criticisms of statistical matching, there
is no viable alternative statistical procedure that will, in general,
provide better estimates of Y than a synthetic file can offer.

Given this lack of good alternatives, especilally when conditional
independence does not hold, the area of statistical matching is wide
open and both theoretical and empirical investigations to discover

the properties of synthetic data-files are in order.

1.7 Reliability of Synthetic Files

The precision of synthetic-file-based estimators of a given
parameter relevant to the population of W = (X,Y,2) is affected by
various types of errors that occur while matching two files. To
discuss these matching errors, let us first restrict our attention
to the cases where the same individuals are in the two files, namely
Case I and Case II.

In practice, it is almost inevitable in most matching projects
that some matching errors occur, even with the most sophisticated
procedure and the most careful execution of matching of the files.

These errors fall into two major categories:

(1) Erroneous match (false match) or linking of records that
correspond to different individuals.
(ii) Erroneous non-match (false non-match) or failure to link the

records that do correspond to the same individual.
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The reliability of the results of a statistical matching
strategy 1s often defined (Radner et al., 1980, p. 13) as one of the

following coefficients:

(a) the proportion of the correct matches, that is, matches of
records on the same individuals.
(b) the proportion of erroneous decisions, that is, false matches

and erroneous non-matches.

These reliability coefficients are random variables because, in
view of the terminological conventions of Section 1.2, a statistical
matching strategy is dependent on the data in the two files. The
sampling distribution of the reliability coefficients, either exact
or asymptotic (as the sizes of the files grow), are very useful in
Judging the quality of a given matching procedure.

Now, we will discuss the reliability of a synthetic file in
Case III, where the two files contain very few or no overlapping
individuals. First, note that the definitions of error in the
results of matching, which have been proposed for Case I, are not
applicable to Case III because the linkage of records from the two
files that pertain to the same unit seldom occurs in Case III. 1In
other words, almost all linkages in Case III are false matches in the
sense of the definitions given earlier in this section. In Case III,
definitions of error and reliability which are tractable from a
theoretical perspective are unavailable at this time. In fact,

little theoretical work on the errors present in the synthetic files
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of Case III has been done. Until now, the evaluation of a given
matching strategy in Case III has been done from an empirical point

of view. A case in point is the work of Rodgers (1984).

1.8 Thesis Outline

In Section 1.3, three important cases for merging two files of
data were distinguished. of these, Case I and Case II are relevant
when the same individuals are represented in the two files. Case III
arises when only similar individuals are present in the files. This
research is concerned with both theoretical investigations and
empirical evaluations of the quality of synthetic files in Case I and
Case III. We shall not discuss Case II in this thesis.

In Chapter 2, Case I is discussed at some length. A review of
known results for this case is given. New optimality properties of
a maximum likelihood matching stbategy are established. Some small-
sample and large-sample properties of the number of correct matches
with regard to this strategy are derived, shedding some light on the
reliability of the synthetic file arising from using the maximum
likelihood strategy.

Case III is the topic of interest in Chapter 3. The bulk of the
discussion in this Chapter is confined to matching two files of data
that are -sampled from a trivariate normal population. Thus, if
(X,Y,Z) is a three-dimensional normal random vector, File 1 has data
on (X,Z), while File 2 has data on (Y,Z). Two strategies proposed by

Kadane (1978) and one strategy due to Sims (1978) are used to create
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synthetic files out of simulated data on (X,Z) and (Y,2). These
synthetic files are then evaluated by comparing the estimates of the
correlation between X and Y provided by them with the estimates based

on unbroken data on (X,Y,Z).
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CHAPTER 2

MERGING FILES OF DATA ON SAME INDIVIDUALS

A useful classification of situations involving statistical mat-
ching of data-files was discussed in Section 1.3. It may be recalled
that in the context of the two files having the same individuals, this
classification scheme included two cases. Case I is the scenario
where no matching-variables Z are present, while case II is the
situation where matching-variables are part of the statistical model.

In this chapter, we shall discuss results relevant to case I only.

2.1 A General Model

T
Let [yl be a multi-dimensional random vector with C.D.F H(t,u)

Ii
and P.D.F h(t,u). Let [Ui]’ i=1,2, ..., n be a random sample of
size n from H. We shall assume that these sample values got broken-up
into the component vectors T's and U's before the data could be

recorded. Thus we do not know which I and U values were paired in the

original sample and the two files consist of the following data:

File 1 - 51, 52, ey gn.

which is an unknown permutation of Il' cees In’ and

File 2 - ¥

I.3% Y

~2’ AR ] ~n'

which is an unknown permutation of Uj ..., Up
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DeGroot, Feder and Goel (1971) call this a "Broken Random Sample"
model for two files.

Two types of statistical decision and inference problems arise
from observing a broken random sample. The first type of problem
involves trying to pair the X's with the Y¥'s in the broken data in
order to reproduce the pairs in the original unbroken sample. The
second type of problem involves making inferences about the values of
parameters in the joint distribution H(t,u) of T and u.

This chapter will be organized into a review of the literature on
matching problems in Sections 2.3 to 2.5, followed by a discussion of
statistical properties of some matching strategies in Sections 2.6 to

2.9.

2.2 Notations
In this section, we introduce most of the notations that will be
used in the present chapter.

T
(1) (y) will denote a multivariate random vector. It is assumed to

have an absolutely continuous joint cumulative distribution func-
tion (CDF) H(t,u) and joint density h(t,u); the context will make
the dimensions of t and u clear. 1In particular, (5) will denote
a two-dimensional random vector, with h(t,u) and H(t,u) respec-
tively as the density and CDF of (5). hl(-) and hz(-) will
respectively denote the marginal densities of T and U and F(-),
G(+) will be the respective marginal distribution functions.

The symbol gg(-) will be the generic notation for the density
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function of the random vector §. Without the suffix, g(e«) will
denote a real-valued function.

(2) Let (gi). i=1,2, ..., n be a random sample from the population
of (5). Let Fn(x) = % 'gl I(Tisx) be the empirical C.D.F
based on the variables I—

1° . Tn' Similarly, Gn(x) will be
the empirical C.D.F based on Ul' ceny U2'
n
Let R11 = azl I(Tizlq) be the rank of Ti among the variables
Tl' ey Tn’ where 1 = 1,2, ..., n. Similarly, R21, ey R2n

1° ccee Un.

.» ¢(n)) be a permutation of the integers

will denote the rank order of the variables U

(3) Let ¢ = (¢(1),

1,2, ..., n. & will stand for the set all such permutations.
Also, let o¢* = (1,2, ..., n).
(4) Let 0. Vi =1,2, ..., n, define events Ani (¢,ec) as follows:
Ani(w.c) = [|u(¢(R11)) - Uil < ¢l (2.2.1)

5)

Let Apj(e) = Apjle*,e), 1 = 1,2, ..., n,

A i = Ani(¢“,0) = (Rli = RZi)' 1i=1,2,...,

n
Let Vni(w.e) = IA (9,6)° i=12..., n.
ni
V..(e) =1 - » 1 =1,2, ..., n
ni Ani((P +€)
Vni = IA y 1 =1, 2, , N
ni

(2.2.2)

(2.2.3)

(2.2.%)

(2.2.5)

(2.2.6)

Let c(x,y) be the generic notation for a Joint density of two

random variables T and U which are marginally uniform. Then,
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1
define the constant A as [ c(x,x)dx, which is the density of the
4]

random variable T-U evaluated at zero. For any fixed integer 4,

define
§n = (Snl’ . snd)’ where (2.2.7)
Snj = Rlj - sz. J=1,2, ..., n.

Note that if

13 =1 _ -I » V1<j<cdandl<k<n
Jk (Tj TkaO) (Uj-ngo)

(2.2.8)
then we get the representation
n
snj = z Ejk’ j = 1’2! ey d. (2.2.9)
k=1
Let §k = (Elk’ ey Edk) (2.2.10)
Then,
n
S, = 1 E (2.2.11)
n k=1 Kk
Let ¥ =1 - I » 1 <J,k<n
1jk (Tj-Tkge) (Uj—Ukzo)
E =1 -I,0 l1<Jd,k<n (2.2.12)
23k (Uj—ngp) (TJ Tk2¢c)
Let L=T-Uand L, = T, - U,, where =1,2, ... . Let A_ be
3= 7Y J a
the sigma-field o(gl, cees Hd) generated by the vectors
T3
gi = (Ui)' 1,2, ..., d. Let ¥,(8) be the generic notation for

the characteristic function of a random vector n, © being a vec-

tor of dummy variables whose dimension is the same as that of n.
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Let Ejk(zl' coey gﬁ) be the variable Ejk’ when W. takes the

i
value Ei' i=1,2, ..., 4.
n
Let B (W0 -y w,) and S = k§1 Bl ooty w,) be
respectively Ek and §n when !i = Ei’ i=1,2, ..., a.
Let Yd = Wd(g s esee !d) be the negative logarithm of the
modulus of the characteristic function of Ed+l- (s -0en ¥y

2.3 Data-based Matching Strategies

Pairing the observations in the two data-files that were des-
eribed in Section 2.1 should be distinguished from the problem of
matching two equivalent d;cks of n distinct cards, which is discussed
in elementary textbooks such as Feller (1968). One version of card-
matching is as follows. Consider a "target pack” of n cards laid out
in a row and a "matching pack" of the same number of cards laid out
randomly one by one beside the target pack. In this random arrange-
ment of cards, n pairs of cards are formed. A match or coincidence
is said to have occurred in a pair if the two cards in the pair are
ldentical. Because the two decks are merged purely by chance and

without using any type of observations or other information about the

cards, one may describe such problems as no-data matching problems.

An excellent survey of various versions of card-matching schemes is
found in Barton (1958).

Suppose that N denotes the number of pairs in the aforementioned
matching problem which have like cards or matches. The derivation of

the probability distribution of N dates back to Montmort (1708). The
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following is a summary of some of the well-known properties of N
(Feller 1968):
Proposition 2.3.1: If P[m] is the probability of having exactly m

matches, then

. 1 11 1
(1) P[m] = mt (1 -1+ 21 ~ 31 + .., * (n_m)’] , M =20,2, ..., n-1
and 1
Pl = o1
e—l

(i1) Noting that ml is the probability that a Poisson random
variable with mean 1 takes the value m, we have the following

approximation for large n:

-1
e
P[m] ~ m!
(11i) For 4 = 1,2, ..., n, the dth factorial moment of N, namely

E(N(d)

), is 1.

As one might expect, for certain broken random sample models, it
pays to match two files of data using optimal strategies based on
such data. Several authors starting with DeGroot, Feder and Goel
(1971) have proposed and studied matching strategies based on broken
data. In Section 2.9, it will be shown that, for certain matching
strategies based on independent variables T and U the distributional
properties of the number of correct matches are the same as those
mentioned in Proposition 2.3.1. 1In other words, as far as statis-
tical properties of N are concerned, matching files of data on inde-

pendent random variables is only as good as no-data matching in which

we randomly assign units in one file to the units in the other file.
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2.4 Repairing a Broken Random Sample
2.4.1 The Basic Matching Problems

Let us consider matching the broken random sample xl. x2, ey

X - yn by pairing x1 with yw(i). for i = 1,2, ..., n where

n® Y10
¢ = (e(1), ..., ¢(n)) is a permutation of 1,2, ..., n. As we seek a
¢ from & that will provide reasonably good pairings of the x's with
the y's, we need to clarify the fundamental role of ¢rin the statis-
tical model described in Section 2.1. If we treat ¢ as an unknown
parameter of the model, then the likelihood of the data will include
¢. For instance, if T aﬁd U are jointly bivariate normal with means
My My variances ai, og and correlation coefficient P, then the

log-likelihood function of ®, p i My ai. og, given the broken

random sample, is

L{( 2 2Ix X )
‘P’P!"lluz’alioz 1' MRS n) yl’ ey y

n
n 2 n 2 n 2
= -5 log(l - p°) - > log o, - > log °2
2,2 1B 2,2
- —g—z(l_p y L Z (X3 - w) /o] + I (y; -y /s,
i=1 i=1
) n
-2p 1§1 (xi - "1)(y¢(i) - "2)/°1°2] (2.4.1)

A constant term not involving the parameters has been omitted in
(2.4.1). 1In subsection 2.4.2, we shall seek ¢'s that maximize the
likelihood such as this. On the other hand, some s;atisticians

would regard ¢ as some sort of missing data and not as a parameter
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of the underlying model. The problem of pairing the two files will
not arise in such situations. However, one may still want to do
statistical inference for other parameters of the model based on the
broken random sample. Such issues are not pursued in this thesis
and one may refer to DeGroot and Goel (1980) for an approach to
estimating the correlation coefficient p while treating ¢ as
missing data in the bivariate normal model.

2.4.2 The Maximum Likelihood Solution to the Matching Problem

We start with a bivariate model used in DeGroot et al. (1971)

which assumes that the parent probability density function of (5) is

h(t,u) = a(t) B(u) exply(t) &(u)] (2.4.2)

where o, 8, Y, § are known but otherwise arbitrary real-valued

functions of the indicated variables. Suppose now that x X

1* " X

and yl, ey yn are the observations in a broken random sample from

a completely specified density of the form (2.4.2). If x, was paired

with yw(i) for i = 1,2, ..., n, in the original unbroken sample, then

the joint density of the broken sample would be

n n n

n
I hix,,y ] =[Nea(x)Il O B(y,)lexpl I v(x,) &(y )]
io arYeq) R L 12 T S

(2.4.3)

Thus the maximum likelihood estimate of the unknown permutation ¢ is
n

the permutation for which J v{x3) é(yw(i)) is maximum. Without
i=1

loss of generality, we shall assume that the xi's and yj's have been

reindexed so that Y(xl) € ... % Y(xn) and 6(y1) € ... < é(yn).
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T _
Since (y) is assumed to have an absolutely continuous distribution,

with probability one, there are no ties among Y(x3)'s or a(yj)'s.
DeGroot et al. (1971) shows that the maximum likelihood solution is
to pair xi with yi. for i =1, ..., n. 1In other words, the maximum
likelihood pairing (M.L.P) is " = (1, ..., n).

In particular, if the density in 2.4.2 is that of a bivariate
normal random vector with correlation P, then M.L.P,can be described
knowing only the sign of p. If p > 0, the M.L.P. is to order the
observed values so that x1 < ... < xn and yl < ... < yn and then to
pair xi with yi, for it = 1,2, ..., n. 1If p < 0, the solu;ion
is to pair x1 and y(n+1_1), for i =1,2, ..., n. 1If p = 0, all
pairings, or permutations, are equally likely.

Chew (1973) derived the maximum likelihood solution to the
(bivariate) matching problem for a larger class of densities h(t,u)
with a monotone likelihood ratio. That is, for any values tl' tz.

u1 and u2 such that tl < t2 and u1 < u2.

h(t »4 ) h(t ,u) > h(t ,u) h(t , u) (2.4.4)
11 2 2 1 2 2 1

As before, we shall assume that the values xl. ...y X and
n

yl, iy yn in a broken random sample are from a density h(t,u)
satisfying (2.4.4). Without loss, relabel the x's and ¥y's so that
xl < ... < xn and yl < ... < yn.
is again the M.L.P.

Then permutation ¢* = (1, ..., n)
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2.4.3 Some Bayesian Matching Strategies
DeGroot et al. (1971) studied the matching problem from a
Bayesian point of view as well. They proposed three optimality
criteria, subject to which one may choose the matching strategy e¢.
Before we state these criteria, we need some notation and definitions.

Let x s+ X_ and yl, ceey yn be the values of a broken

1* - n
random sample from a given parent distribution with density h(t,u).
If x1 is paired with y¢(1). i=1,2, ..., n, then the likelihood

function of the unknown permutation ¢ is given by the equation

), (2.4.5)

n

i=1

Assume that the prior probability of each permutation is %?. Then
the posterior probability that ¢ provides a completely correct set

of n matches is

Plep) = L(e)/ I L(y) (2.4.6)
yED

For j =1,2, ..., n, let
B(J) = {p€8: (1) = j} (2.4.7)

be the set of (n - 1)! permutations which specify that x; is to be
paired with yj. Using the definitions in (2.4.6) and (2.4.7), we get
the posterior probability that the pairing of xl and yj yields a

correct match to be

Pj= ¥ pPle),1<3i<n (2.4.8)
¢E2(]J)

For any two permutations ¢ and ¥ in &, let
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K(p,¥) = # {1: 9(1) = ¥(1)]}

That is, K(¢,¥) is the number of correct matches when the observa-
tions in the broken random sample are paired according to ¢ and the
vectors in the original sample were actually paired according to y.

It then follows that for any permutation ¢€®, the quantity

M) = I K(o,¥) pl(y) (2.4.9)
S

-

1s the posterior expected number of correct matches when ¢ is used
to repair the data in the broken random sample.
Finally, let §1 n be the set of all permutations ¢ such that
’

and y y._.

Yo(1) = 91 o(n) = In

DeGroot, Feder and Goel (1971) have proposed three optimality
criteria, subject to which one may choose the matching strategy o:
(1) maximlze the probability, p(¢), of a completely correct set of
n matches,

(ii) maximize the probability, pj, of correctly matching x1 by
choosing an optimal j from {1,2, ..., n} and

(iii) maximize the expected number, M(¢), of correct matches in the
repaired sample.
Assuming that the bivariate density of T and U was given by
h(t,u) = a(t)b(u) etu, (t,u) ERZ, the following results, among
others, were established by DeGroot et al. (1971):

(a) The M.L.P ¢" maximizes the probability of correct pairing of all

n observations.
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(b) The probability of pairing xl(xn) correctly is maximized by

pairing xl(xn) with yl(yn).

(c) The class of permutations §1 n is complete; that is, given any
permutation ¢¢§1 n’ there exists a wE@l n which is as good as
¢ in the sense that M(y) > M(e¢).

(d) Sufficient conditions in terms of the data x ...y X_ and yl.

1’ n

ey yn for the M.L.P ¢* to maximize M(p) were also given.

The results in Chew (1973) and Goel (1975) are extensions of (a)
through to (d) to an arbitrary bivariate density h(t,u) possessing the
monotone likelihood ratio. The “completeness" property in (c) implies
that the permutation ¢E maximizing M(y) satisfies ¢E(1) = 1 and
wE(n) =n, forn =2, 3, ¢o* = ¢E. DeGroot et al. (1971) show that for

E
n >3, ¢ 1is not necessarily equal to the M.L.P ™ by means of a

counter—example.

2.4.4 Matching Problems for Multivariate Normal Distributions

In our review so far, we have discussed optimal matching
strategies only in the case of bivariate data, one variable for each
of the two files. However, multivariate data are often available in
both files. Suppose then that we have a model where (5) has a (p+q)-

dimensional normal distribution with known variance-covariance matrix

Y. Let us write § and its inverse in the following partitioned form:

I P ) 9,

I = and 3! - ,

Z21 z22 21 22
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where both 212 and 912 have dimension p x q.

As before, we shall let 51, ey En and xl, ceoy xn denote the
values in a broken random sample from this distribution, where each
51 is a vector of dimension p x 1 and each xj vector has the dimen-
sion q x 1. The results to be presented here were originally des-
cribed by DeGroot and Goel (1976).

The likelihood function L, as a function of the unknown permu-

tation ¢, can be written in the form

L(¢) = exp[-} % 9, Lo(1)de (2.4.10)

since the other factors in the joint density of the sample do not
depend on ¢. If we again assume that the prior probability of each
permutation ¢ is %?, then the posterior probability that ¢ provides
a completely correct set of n matches is given by (2.4.6). Thus,

maximizing p(¢) is equivalent to maximizing L(¢), or equivalently

minimizing

Qly) = (2.4.11)

i

il ™MB

! 22 ¥o(1)

There is no simple way, in general, to describe the maximum likeli-

hood solution.

However, if rank (212) 1, then rank (912) = 1 and 912 can be

represented in the form 912 = a'b, where a and b are vectors of
dimensions p x 1 and q x 1. If we let Y(%;) = a'x, and 3(y,) = by

for 1 = 1,2, ..., n, the ¢* will be the permutation that minimizes
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n
Qe) = z Y(x,) $(¥p(1)) (2.4.12)

i=1

Now, minimizing (2.4.12) is achieved by arranging Y(x3)'s from

smallest to largest, arranging é(yj)'s in the reverse order from
the largest to smallest and then pairing the corresponding elements
in the two sequences.

Suppose next that rank (912) > 2. Without loss of generality,
we shall assume that p £ q and let vj = leyj. for j = 1,2, eeey N.

Then, both x. and !j are p-dimensional vectors, and the maximum likeli-

i
hood solution ¢* will be the permutation that minimizes

n
Qe) = ¥ x!' v
i=1 1 ~e(1)

Let D denote the n x n matrix ((dij)) whose elements are dij = xigj.

Then minimizing (2.4.14) is equivalent to minimizing

n n

Qe) = ¥ T4d,. a
1=1 j=1 13 13

subject to the constraints

n
a =1, for = 1,2, ..., n,
151 1 .
n
351 aij = 1{ for i =1,2, ..., n,
a =0or 1,
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which 1s a standard assignment problem with cost matrix D. Although,
there is no simple form for the solution of an arbitrary assignment
problem of this type, efficient algorithms are available for finding
numerical solutions.

The permutation ¢E that maximizes the expected number of
correct matches 1is very difficult to calculate when p and n are
moderately large. No efficient algorithms are known. A Monte Carlo
study was reported by DeGroot and Goel (1976) in which they compare
¢E and ¢” for p = 2 and 50 different covariance matrices Y with the
sample size n = 3, 4 and 5. In all cases, the proportion of samples
for which ¢E and ¢" were identical was between 0.925 and 0.995.

Thus, it is not unreasonable to use ¢" even when the goal is to maxi-
mize the expected number of correct matches.

DeGroot and Goel (1976) studied two other simple matching
strategies which provide good approximations to the M.L.P ¢* or to
the rule ¢E. We shall not discuss them here. In the rest of this

chapter, we shall discuss matching problems only in the bivariate case.

2.5 Reliability of Matching Strategies for Bivariate Data

Consider a random sample of size n, (gi). ey (Eﬂ), from a
n

bivariate population with density h(t,u). If the pairings in this
sample are lost before the entire data was recorded, we still can
observe the marginal order-statistics. 1In fact, if xl, ey xn and
yl. ceey yn 1s the broken random sample corresponding to the

unobserved sample on (5). then clearly the order-statistiecs
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x(l) < ... < x(n) of the x's are exactly the same as the order—-stat-

istics T(l) < ... < T(n) of the T's. Similarly, the order-statistics
cen Y . .

Y(l) < Y(2) < < (n) are the same as U(l) < < U(n) The

repairing of the x's and y's was introduced in Section 2.4. Thus
for each permutation ¢ in $, there is a matching strategy and the
typical merged file consists of the pairs

X1

) . 1= 1,2, ..., n. (2.5.1)
Yie(1))

Some optimal matching strategies were discussed in Section 2.4,

Here, we are concerned with the quality of the file in (2.5.1).
Ideally, we would like to choose a ¢ for which the file in

(2.5.1) recovers all the (5) pairs that we did not observe. It is

therefore natural to look at the random variable N(p), the number

of correct matches due to o or, equivalently, the number of
unobserved sample points which have been recovered in (2.5.1). It
should be pointed out that M(¢), which was defined in Section 2.4.3,
is different from E[N(¢)] because the former quantity is a posterior
expected value given a particular broken random sample and,
in the latter, the expectation is taken over alil possible samples.
Situations often arise where it is not crucial that, after the
two files are matched, the matched pairs are exactly the same as the
pairs of the original data. For example, when contingency tables are
contemplated for grouped data on continuous variables T and U, we
may, in the absence of the knowledge of the pairings, would like to

reconstruct the pairs but would not worry too much as long as the
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U-value in any matched pair came within a pre-fixed tolerance ¢ (a
non-negative number) of the true U-value that we would get in the
ideal match of recovering all the original pairs. This type of
"approximate matching" was first introduced by Yahav (1982) who
defined e-correct matching as follows:

Definition 2.5.1 (Yahav): A pair in the merged file (2.5.1),

X(1)
<Y¢(1)) » say, 1s e-correct if IU(¢(1)) - U[i]' < €, where ¢ > 0

and U[i] is the concomitant of x(i); that is, the true U-value that

was paired with X in the original sample.

(1)
The number of e¢-correct matches, N(g,¢), in the merged file

(2.5.1) is given by

n
N(p,e) = z I (2.5.2)
121 peay) = Upggl 2 €1

Note that as ¢ ¢ 0, N(y;ec) converges (almost surely) to N(¢;0), which
is a count of the exact (O-correct) matches. Hence N(¢), the number
of correct matches due to ¢ can be obtained from N(¢;e¢) by formally
letting ¢ = O.

In the light of the definition of reliability of a merged file,
given in Section 1.7, the counts N(¢) and N(¢,c) are useful indices
whose statistical properties reflect the reliability of the merged
file resulting from ¢. We shall study these performance character-

istics in the following sections.
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2.6 An Optimality Property of the Maximum

Likelihood Pairing o*
The known results about the optimality of the maximum likelihood

pairing ¢* = (1, ..., n) with respect to some Bayesian criteria
were reviewed in Section 2.4. Here, we shall Propose a new criterion
and establish that ¢™ is optimal with respect to that criterion.
Consider the random variable N(¢), the number of correct
matches which result when a permutation ¢ in & is used to merge
the broken random sample from a bivariate population. In this
section, we shall show that ¢* maximizes E(N(¢)), the expected
number of correct matches, provided that the parent density h(t,u)
exhibits certain dependence structures.
We begin with quoting a very useful result on the exchange-

ability of random variables from Randles and Wolfe (1979).

Lemma 2.6.1: If § 9y and K(-) is a measurable function (possibly
vector valued) defined on the common support of these random vectors,

then
K(E) & K(n)

We now establish a representation for N(¢,e) as a sum of
exchangeable Bernoulli random variables, which will be useful for
extending results of Yahav (1982).

Theorem 2.6.1: Let N(¢,c) and vni(¢,e) be as defined by (2.5.2) and

(2.2.4) respectively. Then
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V¢ in &, N(p,e) =

. Vni (p,¢), (2.6.1)

1

i 1153

where the summands are exchangeable random variables.

Proof: The order-statistic U(w(i)) and the concomitant U[i] of T(i)’

used in (2.5.2) can be written in terms of ranks of T's and U's as

follows:
n
v = 1 U I - (2.6.2)
(1)) ac1 @ (R, = @(1))
n
Yrap = 1 U Tg ) (2.6.3)

Note that N(¢,e) is simply a count of how many pairs in the merged-
file due to ¢, namely,

T(y)

y 1 =1,2, ..., n (2.6.4)
Ulp(1))

satisfy

IU(¢(1)) - U[i]' <e€ (2.6.5)

If (2.6.5) holds for some i, then 3 a J such that

lu -U.] <¢
J

(o(1))

In view of the continuity of (T;,U;), this correspondence is one-to-

one. Therefore, the count N(¢,c) must be the same as the count given

by
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N(p,e) =
i

(2.6.6)

Il ™MS

I
1 (ju - Uil < €)

(e(R,,))
Hence, (2.6.1) holds by virtue of the definition (2.2.4) of Vni-

Towards showing the exchangeability of the Vn 's, note that the

i
original sample in (2.6.5) are independent and identically
distributed vectors. Hence, using the equal-in-distribution

notation, we get

d
(Hal' ey !an) e (\11, cees gn) (2.6.7)
where (al, cees an) is an arbitrary permutation of (1,2, .y D).

2n

Define a function f = (fl. ceesy fn) from R to Rn by the equations

n n n
14f 3 I <eo(Y I )< ¥ 1
=1 (bj-bizc) 121 (aj—aiap) i=1 (bj—bigfe)
f. =
J
0 if otherwise
jJ=1,2, ..., n, (2.6.8)
where ¢ is the matching strategy we started with and (al,bl. ey
an,bn) is an arbitrary point in Rzn.
It follows from (2.6.7) and Lemma 2.6.1 that
a
g(!al' ceey !an) g g(gl, ey !1’1 » (2.6.9)

Fix j as an integer in {1,2, ..., n}. Then, using (2.6.8) we see

that fj(gal' cens Han) is the indicator function of the event

n n n
I <e( ¥ I )< ¥ I
o1 (Uyy7Up2e) 121 Toy7T32007 = 45y " -0 >-)

i J 1
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or, equivalently, in terms of the ranks R R of the T's and

11 °°°’ T1n
the empirical C.D.F Gn(-) of the U's,

G (U - €) < ¢(R Y/n <G (U + ¢)
n aj laj n aJ

Observing that G;I(k/n) =U k=1,2, ..., n, we find

(k)°®

fj(!al’ ces !c ) is 1 iff lU(¢(R )~ Uc | < e. By the same token,
n 1°J J
fj(gl. .y Hn) is the indicator of the event IU(v(le)) - UJI < €.

So that fj(gl, ooy gn) = an(¢.c). From these facts and (2.6.9) it

follows that

(v o (¢,€)y ..., vna (¢,€))

n 1 n

d
. (an(¢,c). ey Vnn(w,c)) (2.6.10)

Because (a3, ..., ap) is an arbitrary permutation of 1,2, ..., n,

we conclude from (2.6.10) that the summands in (2.6.6) are exchange-
able random variables.

Corollary 2.6.1: The number of correct matches resulting from the

matching strategy ¢ has the representation

n
N(p) = Y I

_ (2.6.11)
121 (Rpy=e(Ryy))

Proof: Set ¢ = 0 in Theorem 2.6.1. a
We will need the following special dependence structures for
the population density h(t,u). (see Shaked 1979).

Definition (2.6.1): Exchangeable random variables T,U are said to
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be positive dependent by mixture (PDM) iff the joint distribution of
T,U is that of g(go.zl) and g(go,Ez), where El and 52 are i.i.d
random variables, 50 is a random vector which is independent of El

and §; and g is a Borel measurable function.

Definition (2.6.2): Exchangeable random variables T,U are said to

be positive dependent by expansion (PDE) iff the Jjoint distribution

of T and U admits the following series expansion:

dH(t,u) = [1 + } ai“i(t)"i(U)] dF(t)dF(u) (2.6.12)

where F(+) is the marginal CDF of T or U, ai's are nonnegative real

numbers, and {ni} is a set of functions satisfying

(x) dF(x) =0, 1 =1,2, ..., (2.6.13)

88

5

According to the Definitions 2.6.1 and 2.6.2, the dependence
concepts will apply only to pairs of exchangeable random variables.
It may also be noted that for most of the known expansions of PDE
distributions, the set of»functions {nk(-)} satisfies, in addition to

(2.6.13), the orthogonality conditions

o0
_i nk(x)nl(x) dF(x) = sk! . (2.6.14)

where k, & = 1,2, ..., and 8yy is the kronecker delta.

We now give two examples to illustrate these concepts of

dependence.



40
Example 2.6.1: Let {5, £y, §2 be i1.i.d standard normal random

variables. Let p be any constant in the interval [0,1]. Define new

random variables

T=vI-p+¥ +Vp ¥,

U=vIp - 52 + Vp EO

Then, it is easy to verify that T,U are jointly normal and that the
definition (2.6.1) can be applied to T and U with the above choice
of Eo. El and EZ. Hence, the standard bivariate normal distribution
with nonnegative correlation has the PDM property.

Also, Mardia (1970, p. 48) gives the following series expansion

for the bivariate-normal density

h(t,u) = [1+ 3 pknk(t)nk (w1 £(t) £u), (2.6.15)
k=1

where f(t) is the density of the univariate standard normal random
variable and {nk(-)} is a set of orthonormal Hermite polynonomials.
Thus, if p » 0, bivariate normal distributions possess the PDE
property as well.
Example 2.6.2: A class of bivariate densities due to Farlie-Gumbel-
Morgenstern is given by the formula

h(t,u) =1 + a(l - 2t)(1 - 2u), where 0 < t, u<1l

-1

|A

a<l (2.6.16)
It is easy to check that T and U are PDE for « > 0 in (2.6.16).
Note that the expansion 2.6.16 has only a finite number of terms,

unlike the expansion for the bivariate normal distribution.
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We now prove that the PDM/PDE structures are inherited by a pair

of new variables obtained from a given sample by computing the same
function of the marginals. These results are generalizations of
theorems in Shaked (1979), which were proved only for n=2. However,
mathematical induction does not help to show the results for an
arbitrary n.
Theorem 2.6.2: Let (Ei). i=1,2, ..., n be a random sample from a
PDM parent with densit;.h(t.u). Then, for any measurable function
g:Rn 2 R, the random variables g(Tl,Tz, ey Tn) and

g(Ul.U ey Un) are jointly PDM.

2’
Ty

Proof: By hypothesis, the vectors (Ui) are 1.1i.d, Furthermore, since

PDM property is defined only for exchangeable pairs of random

variables, we have

d =
(Ti'ui) - (Ui’Ti). 1 - 1’2’ e e 2y n (?.-6-17)

Equation (2.6.17) together with the independence of T,U pairs yields

{[=1

(T cevy Tn, Ul’ ooy U) (u., U

! = Uy ug , T <oy T)

1’ 2 77 Tn 1 - n
(2.6.18)

Consider the function _lS:R2n > R° defined by the equation

E(al, cesy @3 bl' v bn) = (g(al, ey an), g(bl, vees bn))

where (al, ey an. bl’ ey bn) is any point in Rzn. Applying the

function K to both sides of (2.6.18) and invoking Lemma 2.6.1 we get
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o]
(g(Tlv LR ] Tn). g(ulo AR Un)) = (g(ulp LA 3 Un)| S(Tl, LY Tn))

(2.6.19)

Hence, (g(T), g(U)) is an exchangeable-pair of random variables.

The PDM property of (Ti’ Ui)’ 1 =1,2, ..., n further implies

that there exist n i.i.d. vectors (501.511,521), i=1,2, ..., n and

a measurable function f such that

(1) For each j, Elj’EZj are i.i.d univariate random variables

and the vector 503 is independent of Elj and EZJ'
(i1) For each j,
Tj = f(zlj.goj) and U = f(Ezj.goj) (2.6.20)

Introducing the random variables,
81 =80 5 =%,

and

ES = (Bppv -oos Bype Eppn woon Bpps Eopo coos Eon)  (2.6.21)

We find that Ei and E; are i.i.d univariate random variables and §5
is independent of EI and EE in view of the assumptions (i) and (ii).

Note that (2.6.20) and (2.6.21) imply that

g(z) = g(f(gll.EOI). LS ] f(gln’EOn))

is a measurable function g*, say, of Ei and ga. Similarly, g(l) is
also the same function g* of the random variables E; and ;5. Hence,

by definition, g(T) and g(U) are PDM. 0
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The next theorem is similar to Theorem 2.6.2 except the parent

distribution has the PDE property.

T
Theorem 2.6.3: Let (U?). i=1, ..., n be a random sample from a PDE
i
parent. Then, for any measurable function g:Rn 2 R, the random

variables g(Tl, ooy Tn) and g(Ul, ey Un) are PDE,

Proof: The exchangeability of the Jjoint distribution of g(T) and
g(U) has already been proved in Theorem 2.6.2 (see equation 2.6.19).
It remains to be shown that, when the joint density of each of the n
copies of T,U admits an expansion of the type 2.6.12, the joint
density of g(T) and g(U) also admits a similar expansion.

Assume therefore that there exists nonnegative constants {ak}
and a set of orthonormal functions {nk(o)] such that the joint density

of '1'.1 and Ui is of the form.

dH(ti.ui) = dF(ti)dF(ui)[l + kzl aknk(ti)nk(ui)] , (2.6.22)

where i1 = 1,2, ..., n.

For any real x, define the measurable set in R®

A(x) = {(xl, ees X ) B(x), ..., x,) < x} .

‘Then, the distribution function Q, say, of (g(T),g(U)) is

n
Qxyy) = ... [ ... ] I aH(tyuy) . (2.6.23)
tEA(x) u€A(y) j=1

Using the expansions in equation (2.6.22) we get
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Qx,y) = E(x)a(y) +

(1) (1)
n Y Xy (x)xk (y) +
k=1
n, © (2) (2)
() T I =aax (x)x, o (¥)
2 k=1 %=1 kK %%, kK,
o -
see 3 0 Y a e e ™ (¥)
k1=1 k =1 1 n 1'"""'"n 1" "'n
n
(2.6.24)
. n
where Qx) =] ... ] 1 dF(ti)
A(x) i=1
n
xél)(x) =1 ... [n(t) T aF(t)
A(x) i=1
oy = [ ... ] n, (t)n (t,) 1 aF(t,)
’ A(x) i=1
and
(n) n n
X (x) =J ... ] m #u_ (t,) 0O ar(t.)
kl,...,kn A(x) 1=1 ki i 1=1 i
(2.6.25)
Note that Vv k1 =1,2, ... and Y i=1,2, ..., n the signed measure

(L)

induced by Xy

K (x) is absolutely continuous with respect to 5
1* 0Ky
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(%)

so that there exists wk

()

K (x) - the Radon-Nikodym derivative -
170Ky

of x (x) with respect to Q such that
é“’ (X = 1 v (e dae) . (2.6.26)
1’ -0k L -0 1""’ L

Hence, from equations (2.6.24) to (2.6.26) we get

(1) (1)

aQ(x,y) = dQ(x)dQ(y)[l +n Z a v () T (y)
k=1
n, « o (2) (2)
+ () Z z ¥ (x)y (y)
2 ka1 k=1 k1 kz kyoky Tk 0K,
=1k,
+
(3 o
(n) (n)
+ 3 ... ¥ a, ...a ¥ (x)w (y)
k1=1 k =1 kl k klgooo.k -oo,kn

(2.6.27)
Representation (2.6.27) holds almost everywheré (5 measure) because
Radon-Nikodym derivatives are defined up to sets of measure zero.
Also, the coefficients in (2.6.27), being products of the nonnegative
ak's, are themselves nonnegative. Hence, to complete the proof we
only have to show that the orthogonality conditions (2.6.13) hold for
the wk's of the expansion in (2.6.27)

For £ = 1,2, ..., n, and 1 < kl’ ceey K, € @

we have



(%) =
(t)k aQ(t)

. %

() e (ty)AF(t)IL | _i

-~ 1 —
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(t,)

arF(t. )]
N i

2

(==

By hypothesis {nk(-)} are a set of orthonormal functions on the

marginal distribution F(+) of T so that

[--]
J n, (t)) dF(t.) = 0
= k1 1
o

Hence, ) w(a)(t) aQ(t) = 0
-, . }

where % = 1,2,

and this completes the proof.

(2.6.28)

(2.6.29)

The following facts about bivariate ranks are easy consequences

of Theorems 2.6.2 and 2.6.3.

T
Corollary 2.6.1: Let (Ui) be a random sample from a PDM (PDE)

parent. Consider the marginal ranks

R

[ =]

= I
1 a=1 (TiZIa)

and
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[ =1

R,, = I
21 7 & T(uypu )

R
of Ti and Ui respectively, where i = 1,2, ..., n. The pair (Rli) is

2i
PDM (PDE), i = 1,2, ..., n.
Proof: Fix i and define a function g: R" » R by the equation
: n
gi(alo e s ey aﬂ) = 2 I(a >a )
a=1 i a
and observe that
Rli = g.l('l‘l. ey Tn). R21 = gi(Ul, ceey Un)

By invoking Theorems 2.6.2 and 2.6.3, the result follows. (]

We need one more result before we establish an optimality property

of ¢*™.

T
Theorem 2.6.4: Let random vectors (Ui)' i=1,2, ..., n, be PDM/PDE

and denote the ranks of Tl.U among T,'s and U.'s by R

1 i J
tively. Consider the joint probability mass function

11,R21 respec-

=1, R,. =3), 1 <1, j<n

21

of R and R,.. Then, wij's satisfy the following inequalities:

Vij, » + 7 > 2w, . (2.6.30)

ii 3d i3

Proof: By hypothesis, the parent distribution is PDM or PDE. Accor-
ding to Corollary 2.6.1, R11 and R21 are also PDM or PDE. Conse-

quently, Rll and R21 are exchangeable random variables. Hence,
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“ij = ”31' for 1 <i, j<n (2.6.31)

To establish (2.6.30), first consider the case when T and U are PDM.

By Theorem 2.6.2, R.. and R2 are PDM. Hence, there exists a

11 1
distribution function Q(+) say, such that

j(t) aQ(t), 1 <i, j<n (2.6.32)

w©
w..= [ w, (t) «
> »

where w3.(t) and v,j(t) are the conditional mass functions of R11

and R21, given a value t from the Q-distribution.

It follows from equation (2.6.32) that

L g + -~ 2%

ii kR 13

(€)% - 2n,_(t)w, ()] da(t)

i [(my (07 + (r,

J J

= 1 (ny (8) - w60 dae)
-0

>0 .

We thus obtain (2.6.30) when T,U are PDM. Suppose now that T and U
are PDE. Then, by virtue of Corollary 2.6.1, Rll and R21 would be
PDE. R11 and R21 are ranks that are based on independent random
variables, hence, R11 and R21 are both discrete uniform random variables
on 1,2, ..., n (see Randles and Wolfe (1979), p. 38).

As R11 and R21 have f;nite supports the series expansion of Rll

and R21 will have a finite number of terms. In fact, Fisher's
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identity (see Lancaster (1969), p. 90) holds:

n-1

1,
“ij = n (1 + kzl aknk(i)ﬂk(j))

=N

l<i, j<n (2.6.33)

where {ay} are nonnegative constants and {nk(*)} are orthogonal

functions on 1,2, ..., n. The representation (2.6.33) leads to the
following reasoning:

For 1 <1, j < n,

n-1

1 2
Tig * ﬂjj - 2«13 = ﬂz (1 + kzl ak(nk(i)) + 1+
n-1 2 n-1
I a3 -2-2 3 an(i)n ()]
k=1 kK''k k=1 kK'k k
n-1
1 2
== Y a/n (1) - n (I
n° ko1 K 'k K
>0 (2.6.34)

Hence, we obtain the inequalities in (2.6.30). An optimality of

property ¢* can now be established:

T
Theorem 2.6.5: Let (Ui)' i=1,2, ..., n be as in Theorem 2.6.4.

Then, V ¢ € ¢,

E(N(9)) < E(N(o™)) (2.6.35)
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Proof: 1In Corollary 2.6.1, N(¢) was written as a sum of exchangeable

indicator random variables. Hence, using equation 2.6.11, we get

E(N(¢))

nP(R21 = ¢(R11)) (2.6.36)

n
n } P(R,, = o(k), R,. = k)
k=1 21 11

n
n } w
k=1

k,p(k) °’

where v is the joint mass function of R11+R23. Invoking the
inequalities on “13 in (2.6.30) we obtain

n
1
E(N(#}) < n 22 Uikt o000 72
n n
1l 1
=nl; I =« + = o ]
2 ko1 Kok T2 k=1 (K),e(k)
n
=n z v
121 i,i
= n P(R21 = Rll)
= E(N(¢"))
Which establishes the desired result. o

To interpret Theorem 2.6.5, we first recall from subsection 2.4.2

that ¢* = (1,2, ..., n) is M.L.P if the parent density has the
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monotone likelihood ratio (MLR) property. As demonstrated by Shaked
(1979), there is no general relationship between PDM/PDE concepts of
positive dependence and the MLR property. We can therefore state the
optimality of ¢* in Theorem 2.6.5 as below:

Let T,U have a joint density that has MLR property. In addition,

let T and U be either PDM or PDE random variables. Let x ceey X

1'
yl. ooy yn be a broken random sample from the T-U population. Then

n'

the M.L.P ¢* is an optimal strategy to match the x's with the yv's

in the sense of maximizing the expected number of correct matches.

2.7 Monotonicity of E(N(e*))

with Respect to Dependence Parameters

Repairing of broken random samples based on the available data
in two files was discussed in Section 2.4. It was observed that
data-based optimal matching strategies exist when data come from
populations having certain types of positive dependent structures.
It is therefore reasonable to expect an optimal matching strategy to
perform better when there is some kind of positive dependence in the
population than when the data in the two files are stochastically
independent. Our objective in this section is to present a precilse
account of such intuitive results with regard to the maximum likeli-—
hood pairing ¢*. To this end, we will draw upon the results of
Section 2.6. We begin with a definition from Shaked (1979):

Definition_2.7.1: Let J be a subset of R. A kernel K defined on JxJ

is said to be conditionally positive definite (c.p.d) on JxJ iff
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(1) K(x,y) = K(y,x), V x,y € J; that is K is a symmetric kernel.
(11) Let m be any positive integer. For arbitrary real numbers

a . am and for every choice of distinct numbers x

1’
xm from J, it holds that

1y e

m m m
! Y K(x,,x.) a,a, >0 whenever § a, = 0 (2.7.1)

It is pertinent to note that this definition is related to the
well-known concept of a positive definite kernel, which is used in,

among others, the theory of characteristic functions. The nonnega-

m m
tivity of the quadratic form § § K(x,,x,) a.a. without requiring
1’73 i3
n i=1 j=1
the condition § a, =0 in (2.7.1) is a standard way of defining
i=1

positive definite kernels (Widder, 1941, p. 271). We shall now glive
an example of a c.p.d kernel which will be used in the sequel.
Example 2.7.1: Let J = {1,2, ..., n}, where n is a fixed positive

integer. To verify that the kernel K(x,y) = I is conditionally

(x=y)
positive definite on JxJ, let m be a positive integer. For arbitrary

real numbers a . am and for every choice of distinct integers

1'
11. o im from J, we have
m m
a§1 B§1 K(1 ,1p) a a,

= 1 2 aaaB
o.,B:ia=iB
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m
= Z a:
a=1
>0 (2.7.2),
where we have used the fact that, in view of the integers 11. ey im
being distinct, 1a=iB iff «=B.
m
Note that we did not have to impose the condition Y ai =0 to
i=1

arrive at (2.7.2). Also, the function I(x=y) is clearly symmetric in
X and y. Hence, it follows from (2.7.2) that K(x,y) is positive

definite and, consequently, is also c.p.d.
We will need the following lemma.

Lemma 2.7.1 (Shaked, 1979): Let T and U be PDM or PDE random vari-

ables with joint distribution function H(t,u). Letting F(+) stand
for the common marginal distribution of T and U, define Ho(t,u) =
F(t)+F(u), the distribution function of T and U in the case of

independence of the variables. Then we have the ordering

EH(K(T,U)) > EH (K(T,U)) (2.7.3)
[o]

iff K(.,.) is a c.p.d kernel, provided the expectations exist.

Theorem 2.7.1: Let the Jjoint density of T,U have MLR property

(2.4.4). Let HO,H be as in Lemma 2.7.1. If N = N(o*) is the number
of correct matches due to the M.L.P ¢*, then

E (N) > 1. (2.7.4)
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Proof: It follows from the general representation of N(¢) in

equation (2.6.11) that

EH(N) =n PH(R11 = R ) =nkE ((K(R (2.7.5)

11’ 21))

where K(x,y) = 1 Now, recall from example 2.7.1 that K(x,y) is

(x=y) "
c.p.d. on the domain JxJ, where J = {1,2, ..., n} is the common
support of Rll and R21' It was established in Theorems 2.6.2 and

2.6.3 that R11 and R21 are PDM (PDE) according as T and U are PDM

(PDE). Invoking Lemma 2.7.1, we therefore obtain

EH(K(R1 )) > E (K(R11 21)) (2.7.6)
Under Hy, R1j and Rp; are independent. Also, these ranks are
marginally discrete uniform random variables on 1,2, ..., n. Hence,
we get

H (K(Rj1+Ryy)) = Pﬂo‘Rn = Ry)
n
= 3 P(R = k) P(R21 = k)
k=1
n
1
= Z _2
k=11
=1/n . (2.7.7)

Equations (2.7.5) to (2.7.7) imply the desired inequality:

1_
By(N) >mn = =1. 0
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We conclude from (2.7.4) that ¢* provides, on the average, more
correct matches when the data in the two files come from certain
positively dependent populations than when they are independent. 1In
particular, this fact holds for the bivariate normal distribution
with positive correlation as well as for Morgenstern distributions
in Equation (2.6.14), where the dependence parameter a > 0. In the
light of Theorem 2.7.1, it is natural to conjecture that EH(N). as a
functional of the distribution function H, is order-preserving with
regard to certain partial orderings of the space of all continuous
bivariate distributions which have fixed marginals (those of T and U)
and exhibit positive dependence. Although no proof of this conjec-
ture is avallable at this time, we offer further evidence in support
of this conjecture in the next two theorems.
Theorem 2.7.2: Suppose that a broken random sample comes from the

family of densities given by the equation
h(t,u) =1 +a (1-2t)(1-2u), 0 <t,u<land 0<a<1l (2.7.8)

Then, E,(N) is monotone increasing in «a.

Proof: Note that in (2.7.8), « = 0 means T and U are independent
and we might say that the farther « is from 0 the more the positive
dependence between T and U. For this family, the marginal distribu-
tions of T and U are uniform on [0,1].

It follows from equation (2.6.27) and Corollary 2.6.1 that the

Jjoint probability function of the ranks R and R2 can be canoni-

11 1l

cally expanded as follows:
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n
=Ln.e 3 @ aknk(i)nk(J)] (2.7.9)
n k=1
where 1,j = 1,2, ..., n and {nk(-)}; 1s a set of functions satisfy-

ing the orthogonality conditions in (2.6.13). Using the expression

(2.7.9) for ﬂij we get

E (N)
«

n P(Rll = R,.)

21
n
=n ¥ w,
1=1 ii
n n
=nelhme § 3 (E)ak(nk(i))zl
i=1 k=1
1 B K
=1+= 5 Mba (2.7.10),
n K
K=1

where, after change of the order of summations on i and k, we have

used nonnegative constants bk given by the equation

MZ

b, =

y (n (1% k=1,2, ..., n

i=1

It follows from (2.7.10) that Eo(N) is a polynomial in « and hence

it increases with a, as a goes from 0 to 1. o

Theorem 2.7.3: Suppose that a broken random sample comes from the

bivariate normal distributions given by (2.6.15), where we assume
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that the correlation parameter P 1s nonnegative. Then EP(N) is
increasing in p.

Proof: It follows from equation (2.6.27) and Corollary 2.6.2 that

] P(R,, =1, R

ij 11 21 = J)

1
n2 [1

+

T oD 1) § (1)
n oy P ¥y Kk

(-]
@ 33 AP we®
k.=1 k. =1 1'72 1’72
1 2
+
. -] «©
n _(n) (n)
Y Rig v K h, P (1) ¢ (N1,
kl—l kn—l kl..... kn kl...., kn
(2.7.11)
where, for fixed & = 1,2, ..., {w;n) K } is a set of ortho-
1’°°"'"n
gonal functions on {1,2, ..., n}. Using the expression (2.7.11) for

“ii’ we obtain

nP(R )

E, (M) 117R1

ii

i=1
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k1=1 k2=1 i=1 1’72

+ ...
ept 33 31 ™ and,
k1=1 k2=1 kn=1 i=1 1'°""*"n

(2.7.12)

where the order of summations over i and ky, ..., kp have been

reversed because the terms in the expansion (2.7.11) are all non-
negative. We conclude from (2.7.12) that EP(N) is a polynomial in
p and hence it increases with p as p goes from 0 to 1. ()
As we close this section, we shall state a result due to Chew
(1973) which somewhat resembles, though conceptually different from,
the inequality EH(N) > 1 in (2.7.4). Recall the notation M(¢) in
(2.4.9), which denotes the posterior expected number of correct
matches due to the strategy ¢. Arguing that M{y¢) = 1 when ¢ is
randomly chosen from &, he proved the following result:

Theorem 2.7.3: (Chew, 1973): Let x . xn and yl, ceey yn be a

1’
broken random sample from a bivariate distribution possessing mono-

tone likelihood ratio. If xl < ... < xn and yl < ... < yn, then the
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posterior expected number of correct pairings using the M.L.P ¢* is

at least unity, that is

M(e®) 2 1 (2.7.13)

It should be noted that the inequality (2.7.13) was derived
from a Bayesian perspective, whereas in our inequality (2.7.4) the
expectation is over all possible samples. Finally note that while
our comparison is between dependent and independent populations for

the M.L.P., Chew's inequality compares M.L.P with random pairing.

2.8 Some Propertieé of N(e",g)

The maximum likelihood pairing, ¢*, was introduced in sub-
section 2.4.2 and some of its small-sample properties were studied
in Section 2.7. Specifically, the behavior of E(N(¢*)) was discussed
while holding the sample-size n constant and changing only the degree
of dependence in the population. We shall now fix the parameters
describing dependence in the population of (5) and allow n to tend to
infinity in order to study the behavior of N(¢”*,e). Later, in this
section, we shall present the results of a Monte Carlo study about
N{(o¢™,e) in which we vary the dependence parameters even as n takes
different values.

In this section, the notations of Section 2.2 will be used
freely. Recall that N(¢*) and N{(¢”*,c) have the shorter notations N
and N(e) respectively. We start with a review of Yahav (1982)'s

results concerning E(N(e)).
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Assuming that the distribution of T and U is such that the con-
ditional distribution of U given that T = t is (univariate) normal
with mean t and variance 1, Yahav (1982) derived the limiting value
of pn(c) = E(N(e)/n), as n » », by using the representation (2.5.2)
in which the summands are functions of the order-statistics of

U cees Un and the concomitants of the order-statistics of

1’

T T . His proof relied on an approximation theorem

1t e I
(Bickel and Yahav, 1977) about the order-statistics for the above
model. Furthermore, he reported the findings of a Monte-Carlo study
for a particular case of his model, namely, T and U are bivariate
normal with correlation p.

First, we discuss the large-sample behavior of N(e)/n in case of
samples from an arbitrary population. The properties of its expected
value are avallable as a consequence. Second, we indicate
how Yahav's simulation study of the small-sample properties of pn(e)
can be improved upon. We shall then present the results of our own

Monte-Carlo study of un(c) when n is small.

Theorem 2.8.1: For broken random samples from an absolutely

continuous distribution, !ﬁgl pg p(e), as n » o, (2.8.2)
where u(e) = P(F(T-¢) < G(U) < F(T+e)).
Proof: Let Ln = Hﬁgl_ Recall the representation (2.6.6) for N(e¢) as
a sum of exchangeable indicators:
n
N(e) = ¥ I (2.8.3)

ie1 Ani(c)
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It follows that

E(Ln) = nP(Anl(c))/n = P(Anl(c)) . (2.8.4)
Note that,
B(L2) = n 2rE(N(e)) P« B(NCe))], (2.8.5)

where E(N(c)fz) is the second factorial moment of N(e). Using the

exchangeable representation (2.8.3) again, we get

2. -2 (2
E(L0) = n"2[n )P(Anl(c)Anz(c)) + nP(A_, (¢))]
n o
Let n), = 151 et
n
n, = 121 €000 @ = 1.2, ..., n, (2.8.6)

where the sequences {Elai} and [Ezai] are defined in (2.2.12)

Using (2.8.6), we get

Anl(c) = (nllln < 0, n21/n < 0) (2.8.7)

and

2
N (n
1 j=1

DN

Anl(c)Anz(e) = /n < 0) (2.8.8)

i
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T
Note that, given v, = (Ui), the infinite sequence

5112, 5113, ves ad inf.

is exchangeable. Hence, by the Strong Law of Large Numbers (SLLN)

for exchangeable random variables (see Chow and Teicher, p. 223),

ass
n,,/n > E(E Igl) as now (2.8.9)

112

where the conditional expectation is equal to F(tl—e) - G(ul). It

follows from (2.8.9) that

ass
n,,/n 2 F(Tl—c) - G(Ul) (2.8.10)

We can show by similar arguments that

ass
/" * F(T -e) - G(U ) (2.8.11)
[+ 3 & [+ 2

ae*s
n, /n > G(U ) - F(T +¢) (2.8.12)
2a a a :

where a = 1,2.

Using the fact (see Serfling, 19%0 p. 52) that a sequence of
vectors converges almost surely to a given vector iff the component-
wise sequences converge almost surely to the appropriate components

of the limit, we get from (2.8.11) and (2.8.12)
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nll/n F(Tl—e) - G(Ul)
nzl/n G(Ul) - F(T1+c)
ae*s
> (2.8.13)
nlzln F(Tz—e) - G(Uz)
n22/n G(UZ) - F(T2+c)

It follows from (2.8.7), (2.8.8), (2.8.13) and the independence of

T T
(gy) and (y2) that

P(Anl(c)) -+ ple) (2.8.14)
and

P(A_L ()A_,(c)) » u’(e) (2.8.15)

Using (2.8.4), (2.8.5), (2.8.14), (2.8.15) it is easy to verify that,

as n-owo,
E(Ln) < u(e)

and (2.8.16)

var(Ln) » 0

It is well known that (2.8.16) implies the convergence in probability
in (2.8.2). | o
The following corollary generalizes Yahav (1982)'s result concerning
un(e), the first moment of N(e¢)/n.

Corollary 2.8.1: For p > 0,
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L

(1) Hiﬁl 3 u(e), as noew, (2.8.17)
(i1) EMN(e)/n)P » [u(e)1P, as now. (2.8.18)

Proof: The number of e¢~-correct matches can at most be n, the

number of pairs in the unobserved bivariate-data. Hence,

N(e)

0 <
= n

<11l, vn=1,2, ...

In other words, {N(e¢)/n} is a uniformly bounded sequence of random
variables. It is well known that convergence in probability and Lp—
convergence are equivalent for such sequences. Hence, (i) is an easy
consequence of Theorem 2.8.1. It follows from (i) and Theorem 4.5.%4
of Chung (1974) that the pth moment of N(e)/n converges to
[p(c)]p. Hence (1i) also holds. a
Note that no assumption about the conditional distribution of U
given T was made either in Theorem 2.8.1 or Corollary 2.8.1.
Yahav generated samples from a bivariate-normal parent with mean
vector (8) and covariance matrix

p2/(1-p%) p2/(1-p%)
(2.8.19)

2
p2/(1-p?) 1/(1-p°)
Note that in (2.8.19) the variances of T and U are functions of the
correlation of T and U because Yahav requires that the conditional

distribution of U given T = t be normal with mean t and variance 1.
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The 1imiting value of pn(c) for his particular model was given by

the integral

vip € vi-p €
(e) = &(x 5) - & - 2} as .8.
ute) = J{ st P (XVIIF o)} a®(x) (2.8.20)

He computed u(e¢) by numerical integration for ¢ = 0.01, 0.05, 0.1,
0.3. He also provided Monte Carlo estimates of un(e), for n = 10,
20 and 50 using the simulated data on T and U. The following table

is a reproduction of some of his results.

Table 2.1 Expected Average Number of
e~Correct Matchings, ¢ = .01

(Yahav (1982))

P H1ofe) Hon(€) Mg () u(e)

.01 . 5864 +5326 52752 .52269
.01 .1984 .1648 .12712 .11522
.10 .1512 .1058 .07600 .05912
.30 .1084 .0686 .03888 .02144
.50 .1020 .0582 .02720 .01382
.70 .0960 .0614 .02616 .01051
.90 .0972 .0540 .02064 .00864
.95 .0976 .0496 .02144 .00829
.99 .0960 .0484 .02128 .00804

It is clear from Table 2.1 that un(e) and u(e¢) are decreasing
as p ranges from 0.01 to 0.99. However, one expects that an optimal
strategy such as ¢" has the property that un(c) as well as u(e¢) are
monotone increasing in p. The problem here is not with the M.L.P,

¢”, but with Yahav's model in (2.8.19) because, as the correlatioﬁ
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changes its value, so do the marginal variances of T and U. To
rectify this problem, we assumed a bivariate normal model for T and U

in which the means were zero and the covariance matrix was

(2.8.21)
P 1l

For each combination of four values of n, namely 10, 20, 50 and 100,
and twelve values of p, namely 0.00, 0.10 (0.10), 0.90, 0.95, 0.99,

a sample of size 1000 was generated from the bivariate normal popula-
tion using the IMSL subroutines. These data were used to obtain
Monte-Carlo estimates of un(c), where ¢ was given the values 0.01,
0.05, 0.1, 0.3, 0.5, 0.75, 1.0. Furthermore, it is easy to show

that, for the model in (2.8.21),

ule) = P(12| < e/vZ{IpY), (2.8.22)

where Z is a standard normal random variable. It is clear from
(2.8.22) that u(e) is a monotone increasing function of p. Using
standard-normal CDF tables, u(e) in (2.8.22) was computed for each
combination of the twelve values of p and the seven values of ¢
mentioned above. We have presented the estimated values of pn(e)

and the 1imiting value u(e) in Table 2.2 to Table 2.8.



Table 2.2 Expected Average Number of
e-Correct Matchings, ¢ = 0.01
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P ulo(c) uzo(c) u5o(c) "100(5) u(e)
0.00 0.106 0.054 0.025 0.015 0.008
0.10 0.113 0.059 0.028 0.017 0.008
0.20 0.127 0.068 0.031 0.018 0.008
0.30 0.138 0.075 0.034 0.020 0.008
0.40 0.155 0.083 0.038 0.023 0.008
0.50 0.174 0.095 0.044 0.026 0.008
0.60 0.199 0.109 0.051 0.030 0.008
gu70 0.231 0.129 0.061 0.036 0.008
0.80 0.279 0.162 0.077 0.046 0.016
0.90 0.374 0.222 0.109 0.067 0.016
0.95 0.476 0.296 0.151 0.094 0.024
0.99 0.700 0.521 0.299 0.191 0.056

Table 2.3 Expected Average number of
e-Correct Matchings, ¢ = 0.05

P ulo(c) uzo(c) "50(‘) uloo(c) u(e)
0.00 0.127 0.076 0.047 0.037 0.032
0.10 0.134 0.082 0.051 0.040 0.032
0.20 0.149 0.093 0.056 0.043 0.032
0.30 0.161 0.099 0.061 0.047 0.032
0.40 0.180 0.109 0.066 0.052 0.040
0.50 0.201 0.124 0.074 0.057 0.040
0.60 0.228 0.141 0.085 0.065 0.048
0.70 0.262 0.166 0.101 0.076 0.048
0.80 0.317 0.205 0.124 0.094 0.064
0.90 0.420 0.280 0.174 0.135 0.088
0.95 0.529 0.368 0.237 0.186 0.127
0.99 0.769 0.631 0.459 0.377 0.274




Table 2.4 Expected Average Number of
e-Correct Matchings, ¢ = 0.1

P ulo(c) "20‘“’ uso(e) uloo(c) u(e)
0.00 0.154 0.102 0.075 0.065 0.056
0.10 0.160 0.110 0.080 0.069 0.056
0.20 0.177 0.121 0.087 0.074 0.064
0.30 0.189 0.130 0.093 0.080 0.064
0.40 0.210 0.143 0.101 0.088 0.072
0.50 0.234 0.161 0.112 0.096 0.080
0.60 0.264 0.181 0.127 0.108 0.088
0.70 0.302 0.210 0.149 0.126 0.103
0.80 0.363 0.258 0.182 0.154 0.127
0.90 0.477 0.347 0.254 0.218 0.174
0.95 0.594 0.452 0.342 0.299 0.251
0.99 0.839 0.744 0.630 0.580 0.522

Table 2.5 Expected Average number of
e-Correct Matchings, ¢ = 0.3

P ulo(c) uzo(c) u50(c) uloo(c) uie)
0.00 0.255 0.208 0.184 0.175 0.166
0.10 0.265 0.223 0.195 0.186 0.174
0.20 0.284 0.237 0.207 0.197 0.190
0.30 0.305 0.253 0.221 0.211 0.197
0.40 0.334 0.275 0.240 0.229 0.213
0.50 0.363 0.304 0.263 0.250 0.236
0.60 0.401 0.336 0.293 0.278 0.266
0.70 0.455 0.382 0.337 0.320 0.303
0.80 0.532 0.457 0.403 0.386 0.362
0.90 0.670 0.593 0.540 0.519 0.497
0.95 0.802 0.733 0.689 0.674 0.658

0.99 0.978 0.968 0.961 0.961 0.966




Table 2.6 Expected Average Number of
e—Correct Matchings, ¢ = 0.5
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P ulo(e) "zo(c) uso(c) uloo(e) nie)
0.00 0.353 0.311 0.290 0.281 0.274
0.10 0.367 0.330 0.306 0.298 0.289
0.20 0.390 0.348 0.325 0.315 0.311
0.30 0.417 0.371 0.344 0.336 0.326
0.40 0.452 0.400 0.373 0.362 0.354
0.50 0.485 0.437 0.404 0.393 0.383
0.60 0.528 0.478 0.446 0.435 0.425
0.70 0.591 0.536 0.506 0.495 0.484
0.80 0.675 0.628 0.594 0.584 0.570
0.90 0.811 0.773 0.752 0.744 0.737
0.95 0.917 0.896 0.888 0.885 0.886
0.99 0.998 0.999 0.999 0.999 1.000

Table 2.7 Expected Average number of
e-Correct Matchings, ¢ = 0.75

P ulo(C) uzo(e) u50(c) uloo(c) u(e)
0.00 0.468 0.433 0.416 0.409 0.404
0.10 0.488 0.454 0.437 0.429 0.425
0.20 0.514 0.477 0.461 0.453 0.445
0.30 0.539 0.505 0.487 0.480 0.471
0.40 0.582 0.542 0.522 0.514 0.503
0.50 0.621 0.586 0.560 0.555 0.547
0.60 0.662 0.633 0.613 0.606 0.599
0.70 0.727 0.694 0.679 0.673 0.668
0.80 0.810 0.786 0.772 0.768 0.766
0.90 0.919 0.908 0.906 0.904 0.907
0.95 0.979 0.976 0.978 0.979 0.982
0.99 1.000 1.000" 1.000 1.000 1.000
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Table 2.8 Expected Average Number of
¢~Correct Matchings, ¢ = 1.0

P ulo(e) uzo(c) uso(c) "100(5) ule)
0.00 0.570 0.545 0.531 0.524 0.522
0.10 0.593 0.566 0.555 0.549 0.547
0.20 0.621 ' 0.595 0.581 0.576 0.570
0.30 0.646 0.622 0.611 0.605 0.605
0.40 0.690 0.664 0.650 0.644 0.627
0.50 0.729 0.707 0.691 0.688 0.683
0.60 0.772 0.753 0.744 0.74]1 0.737
0.70 0.830 0.812 0.807 0.805 0.803
0.80 0.898 0.889 0.887 0.885 0.886
0.90 0.970 0.970 0.972 0.972 0.975
0.95 0.996 0.996 0.997 0.997 0.998
0.99 1.000 1.000 1.000 1.000 1.000

Note that, as expected, un(c) is a monotone increasing function
of p for each fixed ¢. Furthermore, the quality of the merged file is
quite good if we want to recreate contingency tables with

intervals of size .50 or more and the correlation p is > 0.5.
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2.9 Poisson Convergence of N(e¢*)

Let us revisit, for a moment, the card-matching problem which
was discussed in Section 2.3. Some of the distributional properties
of the number of correct matches in randomly arranging one pack of
cards against another were stated in Proposition 2.3.1. 1In partic-
ular, the well-known approximation of the distribution of the number
of correct matches by a Poisson distribution with mean 1 was
mentioned. This Poisson approximation may be motivated by the
observation that the occurrence of a match tends to be a rare event
when the number of cards in the matching problem grows indefinitely.
Inspired by this result, it is natural to ask whether Poisson distri-
butions can approximate the distribution of the number of correct
matches due to data-based matching strategies. The answer is in the
affirmative in the case of the maximum likelihood pairing ¢*. Our
aim in this section is to establish the Poisson convergence of N(ep*).

Using the general representation in Corollary 2.6.1 for the

number of correct matches, we can write
n
N=Neo*)= 3} I (2.9.1)

where Ap; = (Rj3 = Rp3), 1 = 1,2, ..., n are exchangeable events. It

follows that E(N) = nP(Anl)' Zolutikhina and Latishev (1978)
sketched a proof of the fact that the expectation of N converges to a
constant as n tends to «». Their approach starts with writing P(Ani)

as the triple integral
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exp[(n-1)n(s(x,y,0))]dedH(x,y)

4 (=
.
b

il «=0

0=0

where s(x,y,0) = p3(x,y) + 2¢pl(x,y)p2(x.y7'- cos20,

F(x) - H(x,y),

pl(X.y)

G(y) - H(x,y),

and p3(X.y) 1l - pl(x,y) - pz(x,y), VX,yER 0<O0< g .

Using the well-known method of Laplace (Bleistein and Handlesman

1975), they expanded this integral in powers of % and concluded that

P(Anl) = ﬁ for large n, where the constant « is given by
T 1 1
a = [ [h(x,G F(x))/hz(G_ F(x))ldx (2.9.2)
-0

They concluded that, in large samples, E(N) =z a.
In this section, we shall generalize the result of Zolutikhina
and Latishev (1978) by showing that the dth factorial moment of

(d)), converges to ad,d > 1, under certain conditions-on the

N, E(N
distribution of (E). As a consequence, we shall obtain the weak
convergence of N to the Poisson distribution with mean «.

We begin with the observation that the ranks

R. = (R

R, .y Rln) and 52 = (R21, eoy R2n) are invariant under

11’
increasing functions of T and U respectively. For this reason, N is
also invariant under such transformations. Without loss of general-

ity, we therefore replace T and U by F(T) and G(U) respectively,
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where F(G) is the marginal distribution function of T(U). This so-
called probability integral transformation allows us to assume that
T and U are marginally uniform random variables and that the parent

CDF, H(t,u), is the joint CDF of F(T) and G(U). Furthermore, the

1
integral (2.9.2) simplifies to @« = [ h(x,x)dx. We might recall
0

from Section 2.2 that this simpler version of o« was called A, VWe
shall henceforth use these simplifications and seek to prove that N
weakly converges to the Poisson distribution with mean A.

Following Schweizer and Wolff (1981), the joint CDF of F(T) and
G(U) will be called a copula. 1In general, a copula is denoted by the

symbol C(.,.) and the following Frechét bounds apply to any copula:

max(x+y-1,0) < C(x,y) < min(x,y), V (x,y) € [0,1]2 (2.9.3)

However, for the purpose of deriving the distribution of N, we shall
consider only a part of the spectrum (2.9.3) of all possible copulas.
To motivate our choice of the copulas, first note that, in this
chapter, only absolutely continuocus joint densities are allowed for
T and U. This means that the extremes min(x+y-1,0) and min(x,y) are
ruled out because these copulas correspond to degenerate joint
distributions for T and U (Mardia 1970, p. 32). Second, Goel (1975)
has observed that ¢* = (1,2, ..., n) is M.L.P iff the joint density
of T and U has the M.L.R property. However, M.L.R property neces-
sarily implies that the distribution function of (E) must be such
that C(x,y) > xy, for all (x,y) in the unit-square (Tong (1980),

pP. 80). Ve shall henceforth assume that the Joint CDF of T and U will
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satisfy the inequalities

Xy < C(x,¥y) < min{x,y), ¥ (x,y) € [0,13°. (2.9.4)

Note that, in (2.9.4), T and U are independent iff C(x,y) = xy.
Positive dependence of T and U occurs when C(x,y) > xy, for all x and
¥. In the remalnder of this section, the joint CDF of T and U will
be a copula C in the class (2.9.4) and the corresponding joint density
function will be denoted by c(x,y). ha

Since Bl and 52 are some permutations of (1,2, ..., n), we find
it convenient to use the notation ¢ for realizations of Bl or 52.
The common support of 51 and 52 is denoted by &, the set of n!
permutations of 1,2, ..., n.

We will now formally establish an equivalence between the card matching

problem and the M.L.P in the independence case.

Proposition 2.9.1: Let T and U be independent random variables.

Then the distribution of V = (V ey vnn) defined in (2.2.6) is

nl’

the same as that of the vector $ = (61. ey én) where
6ni = I(R =1)° 1=1,2, ..., n v (2.9.5)
1i
Furthermore, the random variables &3, ..., 8, are exchangeable.

Proof: Note that the rank vectors

R = (Rll' .y Rln) and R, = (R21. e ey RZn)

are independent because T and U are, by hypothesis, independent

random variables, and that R, and R, are discrete uniform on ¢.

1 2
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That is,

P(R = ¢) =

R, y Vo€ ®and o« = 1,2. (2.9.6)

2

As Vp3's are lndicators of the occurrence of matches, the

Bernoulli variables 6n1’ ceey & n in (2.9.5) can be looked upon as

n
indicating whether Rli matches with i or not, i =1,2, ..., n. It is

clear that the common support of Vand $ is

n
=0 or1l, i=1l,2, ..., n, ¥ a
i=1

A= {(al. cees an):a #n - 1}

i i

(2.9.7)

Note that A has 2N-n sample points.
Let a = (al. ey an) be a fixed but otherwise arbitrary point

in A. Define the events

D(a,¢) = [y € &:1 i=1,2, ..., nl,

(p(i)=p(1)) = 21°
(2.9.8)

where ¢ € . Then, using the independence of R. and 52 and

1
(2.9.8) we get

P(Y = a) = P(I

(R11=R21) i
R
= E P(I(R =p(1)) = ai, i=1,2, ..., nlg2 = ¢)
1i
R,
= E P(I(R11=¢(i)) = ai, i1i=1,2, ..., n)
R

E 2 P(R, € D(a,0)) (2.9.9)
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We now observe that the components of a dictate which positions
of ¢ = (¢(1), ..., ¢(n)) must be matched or mismatched by any permu-—
tation ¢ in order that ¢y € D{(a,g). Clearly, the number of ways in
which we can permute the integers 1,2, ..., n and produce ¢¥'s that
belong to D(a,y) depends only on the fixed vector a and the fact that
¢ 1s an arrangement of n distinct integers. Hence the cardinality of
D(a,¢) does not change as ¢ ranges over &. In particular, D(a,s)
and D(a,¢") have the same number of sample points, where

o* = (1,2, ..., n). Using (2.9.6), we therefore obtain
P(R, € D(a,¢)) = P(R, € D(a,¢")), Vo €& (2.9.10)
The right-hand-side expression in (2.9.10) is a fixed number depen-

ding on ¢* and the chosen a. This means that in (2.9.9), we seek

the expectation of a degenerate random variable. Hence, we obtain

P(Y = 8) = P(R, € D(a,¢"))
= P(I sy =a,, 1=1,2, ..., n)
(Rli—l) i
= P(8 = a) (2.9.11)

Because a was arbitrarily chosen from A, we finally infer from

(2.9.11) that

) 2 (s

(an, ceny vnn ER ORIy énn)

(2.9.12)
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The exchangeability of 61, ceey én follows from the fact that the
distribution of 51 is uniform over &.
It readily follows from Proposition 2.9.1 that, in the indepen-

dence case,

(2.9.13)

oo
<
e
R~
On

ni

1 1 ni

i 1

n
In view of (2.9.13), if we let Zn = 3 éni’ then the exact as well
i=1

n
as asymptotic distributions of N(e¢*) = J Vni can be derived by

i=1
studying Zp, which is same as the no. of matches in the card matching

problem. As stated in Proposition 2.3.1, the asymptotic distribution
of Zn is Poisson with mean 1. We now present another proof of this
well-known result. The novel part of our proof is that we establish
certain dependence propertles of 6n1. crey énn and consequently
derive the 1limiting distribution by using only the first two moments
of Zn.
Our program can be stated as below:
(1) Show that éni’s have a certain positive dependence structure.
(11) Invoke a theorem due to Newman (1982) to arrive at the Poisson
convergence of N in the independence case.
We start with the definitions of some concepts of dependence of

random variables.
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Definition 2.9.1 (Lehmann, 1966): x1 and x2 are said to be positive

quadrant dependent (PQD) iff

P(x1 > xl. x2 > x2) > P(x1 > xl) P(x2 > x2). v xl, x2 €

(2.9.14)

Definition 2.9.2 (Newman, 1982): x;, ..., X, are said to be linearly
positive quadrant dependent (LPQD) iff for any disjoint subsets A,B

of {1,2, ..., n} and positive constants Ay ooy A,

Y a,x _and } a x, are PQD. (2.9.15)
ken KK e KK

Definition 2.9.3 (Esary, Proschan, Walkup, 1967): X1y -..y Xp are
said to be associated iff for every choice of functions
fl(xl. e xn) and fz(xl. ey xn). which are monotonic increasing

in each argument,

cov(fl(xl, ey xn), fz(xl, ey xn)) > 0, (2.9.16)

provided fj3(xy, ..., Xp) and fo(x3, ..., Xp) have finite variance.

It is well-known that association is a stronger property than

LPQD property of n random variables x .oy xn. We will now

1,

é in (2.9.5) possess a weaker version of

establish that & ., ...,
nl nn

the LPQD property.

Lemma 2.9.1: For k = 1,2, ..., n-1,

I ™M

6n1 and énn are PQD. (2.9.17)

i=1

Proof: Fix k =1,2, ..., n-1. Then, using (2.9.14), we see that
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121 ni
k k
P( Y 6n1 > X5 ann > x2) > P( Y éni > xl) P(&nn > x2). v X xzeR
i=1 i=1
(2.9.18)
Because 6ni's are binary random variables we obtain
1 if x, <0
P(ann > xz) = (2.9.19)

0 if X, >1

It is clear from (2.9.19) that (2.9.18) holds for any X3, provided

x2 < 0 or x2 > 1. Hence, it suffices to show (2.9.18) for

0 < X, < 1. However, if 0 < X, < 1, then (6nn > x2) = (ann =1).
It therefore remains to be shown that
k K
P( 3 6n129.. ann=1)gp(z anign) P(ann=1),
i=1 i=1
ve=0,1, ..., k. (2.9.20)
By definition of éni.
P(§ , =1) = P(R,, =1) = &
ni = - 11 n’
(2.9.21)
1
and P(&ni =0) =1 - n .

k
Writing P( ¥ 8§
i=1

- L) in the form
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n
P(Y &.20, 8 =0)+P(Y &§.>8, 8 =1)
1=1 ni nn 1=1 ni nn

and using (2.9.21) we can rewrite (2.9.20) in a more useful form:

P( 1 6ni 2 llsnn

It
[=]
~
A
o
~~
™
On

L =0, oo K (2.9.22)
Note that, in (2.9.22), k is a fixed integer. For a given k,
we now fix the value of % and proceed to establish the inequality
in (2.9.22) by means of a combinational argument.

It is clear that we can express the event (6nn = 0) or

n-1
as U (R, = a). Hence we can write,
1in
a=1
k n-1
(Y 86.2>2 8 _ =0)= U J (2.9.23)
1=1 ni nn =1 ©
where
k
Ja = (121 6n1 >, Rln =a), a=1,2, ..., n-1 (2.9.24)

Observe that, in (2.9.24), Ja's are mutually disjoint measure-
able subsets of &. Let us now fix «a = 1,2, ..., n-1 as well. Then,

any permutation ¢ in J, satisfies ¢(n) = « and (¢(1), ..., @(n-1))

is an arrangement of the integers 1,2, ..., ¢-1,6+1, ..., n producing
at least 2 matches of the type (i) = 1 in the positions

i=1,2, ..., k. On the other hand, any permutation ¢ in
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(
i

éni >R, snn = 1) satisfies ¢(n) = n and

I MR

1

(e(1), ..., ¢(n-1)) is an arrangement of the integers 1,2, ..., n-1
vielding at least % matches such as (i) = 1 in the positions

i=1,2, ..., k. Because o« # n, it is clear that

k
I ) <# Y &
a i=1 n

>0, 8 =1), (2.9.25)

i nn

where #(A) denotes the cardinality of the set A.

Since «, k and % were arbitrary choices, we get from (2.9.23),

k k
#( Y én 22,8 =0) < (n-1) #( I 6n

2 > 1,8 = 1)
41 ™ nn 1=1

i-= nn

k=12, ..., n-1; =0, ..., k (2.9.26)

Since 51 is discrete uniform on & it follows from (2.9.26) that

~

k

P(Y 8§ .>%8 =0)<P() &
121 ni nn 321

ni 2 l’énn = 1) « (n-1)

(2.9.27)

Multiplying both sides of the inequality in (2.9.27) by n and using
(2.9.21) we establish (2.9.22), which implies that (2.9.20) holds. 0O

We now state two useful results due to Newman.

Lemma 2.9.2 Newman (1982): 1If Xy and x2 are PQD, then
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IE(exp(irx1+isx2)) - E(exp(irxl)) E(exp(isx2)|

< |rs| cov(xl,xa) for all r,s € R (2.9.28)

a

Lemma 2.9.3 Newman (1982): Supposelthat b4 EREL x are LPQD. Then

n n n
|¥ (reyeeosr ) - I ¥ (r )l < ¥ ¥ |Ir.r. | covix ,x, )
xl,....xn 1 n 3=1 xj J K=l =1 k' % k'R
k<2t
v Ty s T ER, (2.9.29)
where ¥'s are given by
n
¥ = E(exp(i ¥ r.x.))
xl,. ,xn j=1 J ,
ij = E(exp(i rjxj). j=1,2, ..., n. o

Suppose now that we choose the arguments ry, ...y p in (2.9.29)

equal to an arbitrary real number r, say. Assume further that
xl, cees xn are exchangeable random variables so that they have

common characteristic function, namely Wx (r) and that the covariance
1

between any pair of the x.'s is equal to cov(xl.xz). It follows from

J
(2.9.29) that

.. (r) - ¥" (r)] < 281 102 Couix x) (2.9.30)
X, X, 2 1'%
n

This estimate for approximating the characteristic function of I x

i=1 a
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by the product of the marginal characteristic functions of the x's

depends on the fact that x cey xn are LPQD. We now use Lemma

1’
2.9.2 and show that, with regard to the variables §

n1® ‘e 6nn’

an estimate similar to (2.9.30) can be obtained under the weaker

version of the LPQD property which is given by (2.9.17).

Lemma 2.9.4: Let sni's be the Bernoulli variables in (2.9.5) and

é .. Then,

let Z =
n 1 ni

I ™MD

i

n n(n-1) 2
ITzn(r) - Qanl(r)l <7 Irl cov(énl.énz),

Vn>2, rer, (2.9.31)

é was established in

Proof: The exchangeability of snl’ cees 8

Proposition 2.9.1. Hence, we obtain

cov(6n1.6 ) = cov(énl.énz). vie#), (2.9.32)

nj

b (r) = ¥

s (r), v j, (2.9.33)

nj 6ni

Note also the well-known property that

|'r6 (r)] <1, Vjand Vr (2.9.34)

nj

From Lemma 2.9.1, we have

k
P 8§ .and § are PQD, V k = 1,2, ..., n-1.
121 ni nn

In view of the exchangeability of &py, ..., dnns» We can restate this

property of the 6ni's as follows:
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Let A and B be non-empty disjoint subsets of {1,2, ..., n} such

that B 1s a singleton. Then

Y & .and I & . are PQD (2.9.35)
1€A ni 1€B ni

Fix n > 2 and consider the following finite sequence of statements:

¥ (1) - ¥ (] < 'ﬂg’—‘ll Ir]? cov(s
$

nl
ni

)

nl’ n2)’

[ k=)

i=1

YVm=2,3, ..., n (2.9.36)

Note that (2.9.31) is obtained from (2.9.36) by letting m = n. Ve
shall now establish (2.9.36) by induction on m.

By choosing A = {1}, B = {2} in (2.9.35), we find that 6n1 and

6n2 are PQD. The Lemma 2.9.2 readily implies that (2.9.36) holds for

m = 2. Now, let us assume that (2.9.36) holds for m = 2,3, ..., (n=-1).

n n-1
Splitting ¥ ani as the sum of } sni and énn' we infer the PQD
i=1 i=1
n-1
property of Y § and & from (2.9.35). Hence we obtain again
421 ni nn

from Lemma 2.9.2 and (2.9.32)

e (r) - ¥ . (r) « ¥ (r)]
nn
E 6ni El 6ni

i=1 i

n-1

cov( ¥ &8..,8 )

|2
121 ni’ nn

ir

IA

Ir] 2(n-1) cov(s ) (2.9.37)

n1’6n2

Now, we shall invoke the induction hypothesis that (2.9.36) holds for



m=n-1.

for m = n as follows:

n

6nl

| (r) - ¥

'y
1 ni

(r)|

[ =]

i

IA

¥ (r) - Wn 1

i=1 i=1

¥

+

< ) wann
)

)M

< |r]® (n-1) cov(s _,&

nl’ n2

+ |¥

n-1

< nl
izl 6ni

2
Ir| cov(snl,

_ h(n-1) 2
== irl cov(énl,

n -_—
I 8 I 8

(r) - ¢

(r) - Y:_l(r)l

$

. T& (r)|
nn

(r)|

2 2 (n-1) (n-2)
< Ir|® (n-1) cov(6nl 6n2) + |r] —= cov(§__,§ )

2 nl’ n2

n-2
6n2)(n—1)[1 + 5 ]
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Using (2.9.33) to (2.9.37) we finally establish (2.9.36)

(2.9.38)

The proof of (2.9.36) is complete by our inductive argument and

(2.9.31) follows from (2.9.38).

o
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Our preparations so far in this section are adequate for the
purpose of establishing the Poisson convergence of N in the
independence case.

Theorem 2.9.1: Let T and U be independent random variables. Let

the number of correct matches, N, be given by (2.9.1). Then

N - Poisson (1), as n » = (2.9.39)

Proof: Ve obtain from (2.9.13)

Nndz,
n
n
where Z_ = 3 &_.. Using the exchangeability of & ,'s, we obtain
noya ni ni
2
cov(énl.énz) = P(Rll= 1,R12= 2) - [P(R11=1)] (2.9.40)

Since P(R11=1.R12=2) = 1/n(n-1), it follows that

1
n{n-1) cov(énl,snz) =5 vn>2,
and therefore
n(n-1) cov(énl,éna) = 0(1l) as nw» (2.9.41)

The proof of (2.9.39) consists of showing that the characteristic
function of Zn converges to the characteristic function of the
Poisson distribution with mean 1. In other words, we shall show that

Yz (r) » exp(exp(ir) - 1), Vr € R as nw (2.9.42)
n

To this end, Lemma 2.9.4 gives the following estimate of the
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difference between the characteristic functions in (2.9.49)

IYZ (r) - exp(exp(ir) - 1)|
n

< |¥, (r) - VA (r)] + l?n (r) - exp(exp(ir) - 1)|
YA 3 4
n nl nl
< n(n-1) |r|2 cov(d __,8 ) + IW“ (r) - exp(exp(ir) - 1)|
2 nl’ n2 6n1
(2.9.43)
Now, using the distribution of $pn1 given by (2.9.21) we get
1 °
¥ (r) = [1 + o (explir) - 1)1 .
n
nl
Clearly,
Yg (r) » exp(exp(ir) - 1), Vr €R, as n » o (2.9.44)
nl

It readily follows from (2.9.41), (2.9.43) and (2.9.44) that (2.9.42)

holds. Hence we obtain

a
Zn + Poisson (1) (2.9.45)

which is equivalent to (2.9.39). 0
We now assume that the broken random sample comes from a

population in which T and U are dependent random variables. It

should be noted that extensions of some of the techniques used in

the proof of the Poisson convergence in the independence case to the
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dependence case are not available at this time. Specifically, no

proof of the counterpart of (2.9.17), namely

Il ™ x

V.adV arePQD Vk=1,2, ..., n-1, Y¥n2
i=1 ni nn

(2.9.46)

is known. However, direct verification of the association of
an, ey Vnn has been carried out for n=2,3,4 when T and U have the
Morgenstern distribution given by (2.6.16). Since association of
random variables is a much stronger dependent structure than
(2.9.46), it is natural to conjecture that Lemma 2.9.1 holds even
when T and U are dependent.

In the absence of a valid proof of Lemma 2.9.1 in the depen-
dence case, we need extra conditions on the distribution of T and U
in order to derive the Polsson convergence of N. The following lemma

will be useful in deriving the main result of this section.

Lemma 2.9.5: For a fixed d, let L. = -n and L = (L., .y L)',
- ~n n ~ 1 d
S and L are defined in Section 2.2. Then,
a.s
L > L, asn->o® (2.9.47)
~n "~

Proof: Fix d > 1. It is clear from the definitions of Ek in

(2.2.10) and the sigma-field Aq in Section 2.2 that the infinite

sequence

§d+1' £d+2’ ceey se
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of d-dimensional vectors are conditionally i.i.d given Ad. Hence,

using the Strong Law of Large Numbers for exchangeable sequences

(Chow and Teicher, p. 223) we get

1 n a.s
na L E * E(E,,lAp (2.9.48)
k=d+1

In order to evaluate the limiting conditional expectation in

(2.9.48), note first that, for j = 1,2, ..., 4, Tj and Uj are

uniform random variables. Now,

E(Ejd+1lrj = tj, Uj = uj)

= P(tj - Td+1 > 0) - P(uj - Ud+l > 0)

= P(Td+1 < tj) - P(Ud+1 < uj)

= tj - Uy

=L,. (2.9.49)

Therefore, it follows from the definition of §d+1 in (2.2.10) and

(2.9.49)

E(§d+1lAd) = (lesz ceey Ld)'v (2-9.50)

Hence, (2.9.48) and (2.9.50) imply that

1 2 £ oL (2.9.51)
— > L,asn-> o .9.
n-d g+ K

Also, d being a fixed integer, we have
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1 9 a.s
— ) Ex” Qrasn-e (2.9.52)
k=1
Since,
n
1
L == Z E
~n n K=1 k
the lemma follows from (2.9.51) and (2.9.52) a

The following sufficient conditions will be used to prove the next
theorem.

Assumptions: 1In the notations of Section 2.2, let

(a) A< e (2.9.53)
(b) J IYL(e)I ae < = (2.9.54)
and (c) P(wa <t) = O(td) as t 2o, YVd>1 (2.9.55)

Theorem 2.9.2: If Assumptions (2.9.53) to (2.9.55) hold, then

a
N » Poisson (A) as n @ = (2.9.56)

Proof: Proof of (2.9.56) consists in showing that the factorial
moments of N converge to those of the Poisson distribution with mean

A, in other words,

(d) da

E(N )+ A ,VvVvad=12, ..., (2.9.57)

By the Fourier inversion theorem,
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a w w
P(S, = 0) = (2" [ ... | ¥ (9) a8, (2.9.58)
-1 - -~n

where YS (0) is the characteristic function of the d-dimensional
~n
random vector §n defined in (2.2.7).
The Assumption (2.9.54) ensures that the Fourier inversion

theorem can be applied to the continuous random variable L. Noting

1
that A = | c(x,x) dx is the value of the density function of L at 0,
0
we get
1 <«
A= gL(O) = (27) J YL(t) dat
-0
Since Lj = Tj - Uj, j=1,2, ..., d, are i.i.d4, with their common density

function equal to gL(.) it follows that

d d «© o
Moo= (2m) ] ... ] ¥ (0) a8 (2.9.59)
—00 e d ~

Recalling the representation

I
1 Ani

N{p*) =
i

i M3

from Corollary 2.6.1, we obtain

(d) a4

E(N"™7)

P(AnlAn2 . And)'

-n' Y e -0, (2.9.60)
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where n(d) =n(n-1) ... (n -4 + 1).

For fixed 4, it is clear that n(d) = nd as n > ». It therefore

follows from (2.9.60) that, in order to prove (2.9.57), it is

sufficient to show that

Lim |A(d,n)] = O, (2.9.61)
n-o

where a(a,n) = np(5_ = 0) - A°

From (2.9.58) and (2.9.59), we obtain

a a T H a‘s e
Ata,n) = n7(2m) [ ... J ¥ (wau-(2mT [ ... [ ¥ (9)ag
- -r ~n ~o - ~
(2.9.62)
On making the change of variables © = (nul, - nud) in the
first term of (2.9.62) and noting that
Ys (6/n) = WL (8), we get
~n ~n
q o nw« © ©
A(d,n) = (2w) I [ ¥ (e)dae - | I WL(g)dg
-na -nw  ~n —co - ~
(2.9.63)
For positive constants « and B, which will be determined
later, define four integrals as follows:
(1) J1 == ... ] TL(Q) a6 (2.9.64)
|

0)>a ~
~17e
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(i) J2(n) | ... 1 [wkn(g) - WE(Q)]dQ (2.9.65)

[8l<e

(1ii) Ja(n) ... YL (0)ae (2.9.66)

ol
2 |2<s
n—jin

(iv) Ju(n)

[ ... ] ¥ (98 (2.9.67)
8ng[@l<vn  ~n

It is easy to verify using these integrals and (2.9.62) that

-d 4
A(d,n) = (2m)° % J
k=1

K (2.9.68)

For appropriate choices of « and 8, we will show that

IJk(n)|+ 0Qas n~> o, k =1,2,3,4,

which will imply (2.9.61).

Let ¢ > 0 be a fixed number. Then, assumption (2.9.53) and the

expression (2.9.59) imply that YL(Q) is absolutely integrable

on Rd. Therefore, we can find a large enough o such that

3.1 < ... ] 1¥ (@) }ag
1 [8l>a L

< e/ (2.9.69)

From Lemma 2.9.5, we have

a.s
L =» L,
~N ~

which implies that (cf. Bhattacharya and Ranga Rao, 1976, p.44)

¥, (9) » ¥ (9) as n > =,
~rl ~
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the convergence being uniform on the compact subset

{e:6er%nd |@] < )
Hence, for the a chosen above, we can find n, such that
vn> nl.
13,(n)| < e/4 (2.9.70)

In order to show that IJ3(n)| 2 0, we transform © to

r = 8/n in J, and obtain

Jgm =n® [T (mar (2.9.71)
9<|r <B
n ~
n
Note that § = ) §; 1s a lattice random vector so all its

i=1

T
moments exist. Since (Ui) are i.i.q, it

follows from the definition of 51 in (2.2.10) that
E(S)=0 (2.9.72)
~n ~

It was argued in the proof of Lemma 2.9.5 that, for all n > q,

§d+1' ceny En are conditionally i.i.d given Ad with mean

: E(gled) =L, V3=a4a+, ..., n

It is easy to verify that the dispersion matrices D(gled),
J =d+1, ..., n, are positive definite. Moreover, for

=12, ... 4, Ej is degenerate given Ad and
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D(L) = o'1, (2.9.73)

where o = var(T-U) and I is the dxd identity matrix.

The dispersion matrix of §n is, for n > 4,

D(S) =D I &)

n n
E(D( ¥ 1A )) + D(E( § [A))
=1 51 121 si d )

]

(n-4d) ED(§d+1IAd) + (n—d)ZD(k)
We finally conclude that

2 2
D(§) - (n=d)"e I = (n-a) ED(E, .[A)
(2.9.74)

is positive definite.

As the second-order moments of §n exist, we expand W.S(r) around
~n

r=0 and using (2.9.72) obtain
1, 2
(£) = - 5 D8 )r + olicl™, as lizll » o0 (2.9.75)

In view of (2.9.73), we obtain

2
(n-d)¢ 2, .2 2
o“licll™ + olir™),

lexp(log¥y (£))| < exp(-

~n

as {irll » 0
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Hence, there exists a constant 8 > 0 such that for n > 4,

l¥g (D) < exp(- % (n-a)% o° "2“2).
=n

v licll < 8 (2.9.76)

o

n < B so that we obtain using

Now, 3 n2 such that v > n,,

(2.9.72) and (2.9.76)

19,1 <n® [ .. ] expt- 3 (-2 & i) ar
% <|ri<s
l 2
<] ... | exp(- 3 ° Hg"z) dar (2.9.77)
el > e

It is clear that we can choose a large enough o« in (2.9.77) such

that ¥ n > n,,

|J3(n)| < e/4. (2.9.78)

Finally, to show that |J4| » 0, we transform u = 6/n in (2.9.67)

and obtain

l,ml <n® 1 g (i qu (2.9.79)
8<|ul<wr  ~n

In view of the earlier remarks about the conditional distributions

of ;1, cees En given Ad , we obtain for n > 4,
A -
e <Oy NG R (2.9.80)
2n Fas1 ¥y oo¥

where §d+1 = Ed+1(gl’ eees gd) is the value of §d+1 given
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Ei = (Ti,Ui). i=1,2, ..., d. Since the characteristic function

YE (u) is uniformly continuous on the compact set
d+1
{u: 8 < lu] < %} of Rd, it attains its maximum inside this set, say

at u = u*. Furthermore, YE has period 27 so that, for almost
d+1
all realizations (gl, . gd),
sup |¥ (wl <1 (2.9.81)
B<luler  Edel
Letting Wa = - !n['i'E (u*)l, we get from (2.9.79) and (2.9.80),
d+1
a Ma
IJal <n E (exp(—(n—d)W&) (2.9.82)
a
=n Hwa(n—d)
where
.-} [+2] d
M(s) =[] ... | exp(-s¥*) I dC(xj.yj) (2.9.83)
0 0

is the moment generating function of ¥* with a real positive

argument.

Now, using the Abelian Theorem (cf. Widder (1941), p. 181), we

obtain
a P(¥§<t)
Lim sup t Mw.(t) < Lim supl td r{(da+1)] {(2.9.83)

too td0

By Assumption (2.9.55), the right-hand side of (2.9.84) is zero and

it follows that
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nd Hw,(n-d) 2 0, as n > o,
4

which implies, in view of (2.9.82),

IJq(n)I 2> 0, as n » o, (2.9.85)

It follows from (2.9.69), (2.9.70), (2.9.78) and (2.9.85) that

Lim |a(d,n)| = 0

n-o

The convergence of factorial moments in (2.9.57) follows immediately,
which in turn implies the Poisson convergence in (2.9.56) (0}

| The validity of Theorem 2.9.2 depends on whether the Assumptions
(2.9.53) to (2.9.55) hold or not. We shall now given some examples in
order to illustrate the fact that these Assumptions are not vacuous.
We start with a discussion of (2.9.53).

For any Copula C(x,y) on [0,1]2. one may define ¢2 (possibly an

infinite #) by the equation

2 1
¢ +1=]Q %X.Y) ax gy, (2.9.86)

where Q(x,y) = d4C(x,y)/dxdy is the Radon-Nikodym derivative of the
Jonit distribution of (5) with respect to the product measure of T and
U (i.e., the independent case). C(x,y) is a ¢2—bounded distribution
(with marginal uniform distribution) if ¢2 < 40,

The class of ¢2—bounded distributions is large, as is evident
from the following general result (see Lancaster 1969, page 95).

Proposition 2.9.3: If H(t,u) is a ¢2-bounded bivariate distribu-




99

tion with marginal distributions F(t) and G(u) then complete sets of
orthonormal functions TR 1 =12, ..., can be defined on the

marginal distributions such that

dH(t,u) = [1 + 1§1 Py nli(t) "21(u)] dF(t) dG(u) (2.9.87)

and ¢2 = pf (2.9.88)

I ™

i=1

It may be recalled from (2.6.12) that, when all Py > 0 in the above
canonical expansion of the joint distribution of T and U, we say T
and U are positive dependent by expansion (PDE). It follows from
(2.9.87) that, when a copula C(t,u) is ¢2—bounded. A in (2.9.53)
can be evaluated using the orthonormality of {“1} as

1

J elx,x)ax
0

>
]

1+ 3 Py (2.9.89)
i=1

It follows from (2.9.88) and (2.9.89) that the finiteness of ¢2 and
A are related to each other. Specifically, since V i > 1,
the canonical correlations Py < 1, we obtain

A< o3 ¢2< ®©

With regard to the Morgenstern distribution in (2.6.16), we obtain
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e if i=1

°
[
|

0 if i>1
where -l<e<l. However, we have

1l
J clx,x)ax

>
[]

"

[

+
wR

which is finite. Similarly, in the bivariate normal distribution

given by (2.6.15),
A
A= 1-p ° 0<p<l

In view of these examples, assumption (2.9.53) is not vacuous.

Bhattacharya and Ranga Rao (1976) (pp. 189-192), gives conditions
that are equivalent to the assumption (2.9.54). We cite one here:

.
Let GLm denote the nth convolution of the distribution of

*m
L

has a bounded (almost everywhere) density, then the modulus of the

L-T-1U, wherem > 1. If there exists an integer m such that G

characteristic function of L is integrable on (-=,»)(that is
assumption (2.4.54) is valid) and vice versa.

Another sufficient condition for absolute integrability of
YL(G) is due to Bochner and Chandrasekar (1949). If there exists
a bounded (almost everywhere density gL(t) of L =T - U and if its

characteristic function TL(G) is (real) and nonnegative, then
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_i ITL(G)l 40 < = .

We lllustrate the use of this sufficient (but not a necessary)

condition when (5) has the Morgenstern PDF,

C(x,y) =1 +a (1 - 2x)(1 - 2y)

Clearly, as |la|l <1, |x] <1, |yl <1, 3 a positive constant k

such that

C(x,y) < k, ¥ (x,y) €[0,1]2
Note that

1-t
gL(t) = | 2z(t+y,y)dy, Vt>0
y=0

By the symmetry of C(x,y) in and, it can be shown that

gr(-t) = g (t), vt > 0.
Now, using the bound k for C(x,¥), and the fact that [-1,1] is

the support of L, we get

1-t
g, (t) <k | dy <2k < o
L 0

Hence, it follows that the PDF of L is (almost everywhere) bounded.

We now show that WL(G) is real and nonnegative V o« > 0

1(T—U)9) = I +aI

TL(O) = E(e 1 >

where, I. = el (X-¥10 dxdy

1

Q =
O =
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1 -1
1l
with z. =] e 1xedx
1
0
11
I, = [ ] 8 (1 oxy(1-2y)axay
00
=z, %,,
1 ixe
with z, = | e (1-2x)dx
0

Hence, ¥, (0) = |z () |2 + 212,(0)1% > 0 if a > 0.

o
Invoking Bochner's sufficient condition, we get | |¢L(e)|de_ < o,

if « > 0. However, for all a,

i |¢L(e)|de = | |zl(e)| a9 + a | |22(9)|
-0 — -0

(2.9.90)

SO0 that the two integrals on the right hand side must be finite when

(-]
a > 0. It follows that, even when a < o, | |¢L(e)|de < «. Ve con-

clude that (2.9.5%) is valid for any membe;m;f the Morgenstern family
of densities. It may be remarked, in passing, that, in view of the
generality of the conditions of Bhattacharya and Ranga Rao (1976) and
Bochner and Chandrasekar (1949). (2.9.54) holds for many distribu-

tions of (E).
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Lastly, we discuss the validity of (2.9.55). To be specific,

when d=1, one can get the bound

(e)|

IA

e 1 - py(1-p) + sin’(B/2) VB <@ < v, w = ()

where P, = po(g) l-x-1y+ 2C(x,y)

Therefore,
11 .2
|J4(n.5)| <] |n e~ (n-1)4sin"8[Po(1-Py)] dxdy.
00

Thus, Jl4 > 0 as n > o if we show that nHPO(l_PO)(n ) > 0 as
n > o, where Hn(S) is the Laplace transform of n. A sufficient

condition for this to happen is

P(Po(l—Po) <£t) =0(t), ast->0 (2.9.91)

Let &(t) and 1-8(t) be the roots of the equation

Po(l—Po) =t

It suffices to show, as t » 0,

P(Po < &(t)) = 0(t) and (2.9.92)

P(Po 21 - 48(t)) = o(v) (2.9.93)

If (E) is independent, then the PDF of Po can be shown to be

gp (x) = -n({1-2x|)I(x)
o [0,1]



104
So that (2.9.92) and (2.9.93) are valid when C(x,y) = Co where

Co(x.y) = Xy. Also, if C(x,y) > xy, then PO(C) > PO(CO) so that

P(PO(C) < &(t)) < P(PO(CO) < &(t)) (2.9.94)

Thus, using the exact calculations based on the independence case,

it follows that

Y C > xy, P(Po(c) < &(t)) = o(t)

At this time, we are optimistically speculating that, when (5) are
dependent, (2.9.93) is also true. We are yet to demonstrate that
the assumption (2.9.55) is not vacuous for any d > 1.

Af'ter we derived the proof of Theorem 2.9.2, we discussed the
Poisson convergence problem with Professor Persi Diaconis, who

communicated the problem to Professor Charles Stein. In his Neyman

lecture at the IMS Annual (1984) meeting, Professor Stein outlined
an alternative proof of the Poisson convergence using his well-known
theorem concerning the approximation of probabilities. However, we

have not seen any rigorous version of the proof yet.
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CHAPTER 3

MERGING FILES OF DATA ON SIMILAR INDIVIDUALS

Problems of statistical matching were discussed in Chapter 2,
where we assumed that the two micro-data files being matched consis-
ted of the same lndividuals. Moreover, the files did not have any
common matching variables. In Chapter 1, practical and legal reasons
were cited for these assumptions not to hold in certain situations.
Suppose, then, we have two files of data that pertain to similar
individuals. Allowing for some matching variables to be observed
for each unit in the two files, we seek to merge the files so that
inference problems relating to the variables not present in the same
file can be addressed. This scenario was labeled Case III in
Chapter 1. In this chapter,we shall first review the existing
literature on Case III, and then briefly discuss some alternatives
to matching in certain models in which the non-matching variables
are conditionally independent given the values of the matching
variables. Finally, we will present the results of a Monte—Carlo
study carried out to evaluate certain matching procedures relevant

to Case III.
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3.1 Kadane's Matching Strategies for

Multivariate Normal Models

Distance-based matching strategies were introduced in Section
1.5. The choice of distance measures in the matching methodology can
be motivated using a model where the unobserved triplet W = (X,Y,2)
has a multivariate normal distribution. The set-up of the two files
to be merged is as follows:

File 1 comprises a random sample of size n. on (X,2), while File

1

2 consists of a random sample of size n. on (Y¥,Z2). Furthermore, we

2

expect very few or no records in the two files to correspond to the
same individuals. Statistically, this means that, for all practical
purposes, the two random samples are themselves independent. For

this reason, we shall denote the sample data as follows.

(Base) Flle 1: (51'Zi)' 1=1,2, ..., n,

(3.1.1)

(Supplementary) File 2: (gj,gj), J n.+l, ..., n +n

1 72

1
Once finished, the matching process leads to more comprehensive

synthetic files, namely

Synthetic File 1: (gi,g;,gi), i=1,2, ..., n

(3.1.2)
Synthetic File 2: ‘53-!3'23" J= n1+1, cees n1+n2

where, X; is an imputed value of Y that comes from the original File

2 and X% is an imputed value of X that is taken from the original

J

File 1 by means of some matching strategy. We shall now review
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Kadane (1978)'s development of the matching methodology for a multi-
variate normal model.

Suppose that W = (X,¥,Z) has a multivariate normal distribution

with mean vector (Bx'By'Bz) and variance-covariance matrix

Zxx ny sz
I = Zyx Zyy Zyz (3.1.3)
zzx zzy 2zz

The parameters zxx’zxz’zyy’zyz’zzz can all be estimated consis-

tently using the marginal information on (X,Z) and (Y¥,Z) respectively
in the two files. However, ny is an unidentified parameter, because

the joint likelihood of the data on (X,2) and (¥,Z) is free of the

matrix ny. In fact, in the domain in which ny is such that the

.. L

XX Xy is positive semidefinite, nothing is learned

zyx XYY

matrix

from the data about ny, except in a Bayesian framework, where Exy-

sz’zyz are, a priori, dependent. Even in this situation, the

posterior distribuion of zxy is updated only through sz and zyz'
Kadane's approach to merging File 1 and File 2 consists of the

following steps:

(1) Start with an imputed value of ny via some a priori distribu-

tion on the covariance matrix ¥, (ii) Complete Files 1 and 2 by

predicting the missing data, X or ¥, using the marginal information

in the files, (iii) Match these "completed" files based on a
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distance measure between records of the two files, (iv) Estimate

parameters such as
Yy = [ g(w) dF(w) , (3.1.4)

using the synthetic file resulting from Step (iii) and repeating the
Steps (il) through (iv) many times to find the sensitivity of the
estimates to the imputed value of ny and finally weight the results
using the a priori distribution on }.

Some further details of the steps outlined above are as follows:

Suppose that a an imputed value of ny is available. Then we can
assume that ny is known and complete the two files by means of condi-
tional expectations. Let Zab.c’ for any letters a, b and ¢, be given

by

-1
ac zcc ch

_—

Then the predicted value i. say, of a missing Y in File 1 is given by

¥ = E(LIX.2)
=p + X 57 Xew) 4+ 3 3! \;i— ) (3.1.5)
- Ey ¥yX.Z2 “xx.2 '~ Ey vz.x %zz.x ‘2Rz’

-~

Similarly, the predicted value, X, say, of a missing X in File 2 is

given by

X = E(X1%,2)

-1
(T-p,) + 2 Xzz_y (Z-p,) (3.1.6)

1
By + ) ) Xy.y

Xy.z “yy.z '~

Using (3.1.3), (3.1.5) and (3.1.6), it is now easy to show that

(X,+¥;+2,) is multivariate normal with mean vector (Bx'ny'ﬂz) and

variance-covariance matrix



zxx A1 zxz
Ql = Al A3 A2
2zx A2 zzz
where A, =) 2_1 .. + 2 Z_l )
1 ¥X.Z “XX.Z “xx ¥Z.X “2zz.x “2x
-1 -1
A2 N zzx Zxx.z zxy.z + Zzz zzz.x Ezy.x
and
-1 -1
A3 N zyx.z 2xx.z Zxx zxx.z ny.z

N T Sl S D

Yyz2.x "2z.x "2z ®zz.x “2y.X

> D e D D )

¥X.Z “xx.z “xz “2z.x “z2y.x%

+

Also, the vectors (i 2 X.,2,), J = n +1,
e e B R

.y N_+N
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(3.1.7)

o have a common

multivariate normal distribution with mean vector (Ex’Ey’Bz) and

variance-covariance matrix

A4 A5 A6
R, =| A Zyy zyz
A6 Zzy zzz

where A, =3 2—1 ) 2_1 )

Xy.z “yy.z “yy “yy.z “yx.z

N WD S S

XzZ.y “zz.y “zz

-1 -1
* 22xy.z ny.z zyz 2

X

ZZ.y “zx.y

)X

2z.y “zx.y

(3.1.8)
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-1 -1
s = XYY zyY.z Zyx.z * Zyz Zzz.y sz.y

and

-1
zz zzz.y zzx.y

-1
A6 N Zzy zyy.z Zyx.z + 2

Note that the distributions given by (3.1.7) and (3.1.8) are singular
because the predicted values ii and gj+n are linear functions of the
1

other components of the random vectors 31 = (Xi’ii’zi) and

-

gj = (Kj+n1’~j+n1’gj+n1) respectively, where i = 1,2, ..., n1 and

J=1,2, ..., nz. In order to describe Kadane's procedures to match

-~ Py

the completed File 1, namely, 31' ooy In with the completed File 2,
1
namely, 91' ooy gn » let us first assume, for simplicity, that
1l

n1=n2=n. Starting with n records in each file, we will compute the

differences
X - gj+n
I, - Qj =1y - Yin | » 1<%, 3<n (3.1.9)
gi - Zj+n

in order to define a measure of dissimilarity between any pair of
records, one each from the two completed files. Suppose first that,

there exists a vector of constants L= (2 .oy !n)', say, and i and

1’ -
J such that

P(L'(I, - U,) = 0) = 1. (3.1.10)

In view of the independence of the random vectors ii and gj' it is clear



that (3.1.10) cannot hold. Consequently, any of the vectors i - U

is free of any linear relationship among its components. It follows

from this fact and (3.1.7) to (3.1.9) that the differences ii - gj’

1 <1, jJ < n are identically distributed, each with a nonsingluar
multivariate normal distribution with mean 0 and variance-covariance
matrix 91 + 92. For any positive definite matrix A, a dissimi-
larity measure between ii and gj can be defined by the quadratic

form

d;5(A) = (I, - U)'ACT, - 0.). (3.1.11)

J J

Also, dij(A) will be referred to as the distance between the ith record

of File 1 and the jth record of File 2. Various choices of A in
(3.1.11) provide different distance measures.
It may be recallied from Section 1.5 that a constrained matching

of the two files is obtained by minimizing

n n
C = z z d, .a. (3.1.12)
1=1 31 31
subject to the conditions
n
Y a, ;= 1, vi=1,2, ..., n (3.1.13)
=1 M
n
Y a.=1,V3=1,2, , N (3.1.14)
13
i=1
and
a =0Qorl, Viandj (3.1.15)
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If the dij's in (3.1.12) are given by diJ(A)'s in (3.1.11) for some
choice of A, then we obtain ah optimal distance-based constrained
match. Note that this type of matching of the two files amounts to
solving a linear assignment problem. Sometimes, an optimal matching
may be obtained by minimizing (3.1.12) without requiring that the
conditions (3.1.13) and (3.1.14) hold. However, as reported in
Rodgers (1984), unconstrained optimal matches do not provide good
estimates of the distribution W= (~,g,§). We shall not discuss
such "unconstrained matchings."

It is important to note that the aforementioned optimization
problem needs to be solved for each realization of the random
variables involved. Suppose then that ii and gj have been matched

in a given problem. Then it might be natural to take (X Z.) and

1225024
(gi.zj.gj) as simulations of the underlying distribution. Now, the

parameter y in (3.1.4) can be estimated using one of the following

synthetic samples:

Synthetic File 1: (X,,¥*.Z,), 1 = (3.1.16)

I

[
n
=

(3.1.17)

[
=3
+
[}
N
=

Synthetic File 2: (gg,gj,gj). J =

where X; and 53 are values given by the matching procedure.
Kadane has suggested that matchings based on a fixed A in

(3.1.11) and the consequent inferences based on synthetic files such

as (3.1.16) or (3.1.17) must be repeated many times and the results

must be averaged in some sensible way in order to explore the sensi-

tivity of our findings to the value of ny we started with. We shall
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not pursue such issues as the actual choice of a prior on ¥ and the
aforementioned sensitivity studies of inferences based on synthetic
data. However, we shall now discuss Kadane's choices of the matrix
A, which will be used in our Monte-Carlo Study of Section 3.3.

Kadane has advocated two choices for the matrix A in the defini-

tion of distance measure dij’ which is given by (3.1.11):

-1
(1) A= (Ql + 92) ’ (3.1.18)

where Q) and Qp are the matrices in (3.1.7) and (3.1.8); this A leads

to the so-called Mahalanobis distance between the records of the two

files, and

0 0 0

(i1) A =] o 0 0 , (3.1.19)
-1
0 0 Zzz

In general, the relative benefits of these two distance measures
is an open question, although the empirical studies of Barr et al.
(1982) and other investigators reported in Rodgers (1984) indicate
that the Mahalanobis distance is worse than the distance provided by
(3.1.19) in the sense of distorting the bivariate and multivariate
relationships among the variables X, Yand Z. In view of this, we
shall follow Kadane (1978) in calling the measure induced by (3.1.19)
the "bias-advoiding distance function." The special case of (3.1.19)
when Z has only one component will be discussed in the next

subsection.
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3.1.1 1Isotonic Matching Strategy

We shall evaluate, in Section 3.3, Kadane's matching strategies
in the simple case when the triple W= (X,Y,Z) has a trivariate
normal distribution. 1In order to facilitate such evaluations, we
now show that, in the special case of a scalar Z, the matching
strategy based on (3.1.19) can be implemented without using any
algorithm to minimize distances.

Assuming that Z is scalar and using (3.1.19) in the objective

function given by (3.1.12), C is equivalent to

n

3 (z.. -2..)%a (3.1.20)

C =
1 j=1 1i 2] ij

i

[ e =1

In a constrained match, ajj's are subject to the conditions (3.1.13)

to (3.1.15). Thus, (3.1.20) further simplifies to

n n n n
C=ZZ+ZZ.—ZZZZ

1i 23 1=1 j=1

J2,.a, .
121 3 1172571j

Hence, the minimization of distances reduces to maximizing

n n
c' = 3 Y a .z .Z. (3.1.21)
i=1 j=1 1ij 11723

subject to the conditions (3.1.13) to (3.1.15) on the ajj's.

DeGroot and Goel (1976) show that, given the numbers zli's and

zzi's, the constrained maximization of C' is equivalent to maximizing
n N

121 zlizzw(i) over all permutations ¢ of the integers

1,2, ..., n. However, this latter extremal problem was encountered
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in Section 2.4 when we derived the M.L.P ¢* for certain bivariate
matching problems. It follows that, with regard to Kadane's distance
measure given by (3.1.19), where Z is scalar, the optimal matching
strategy is to order the Z-values in the two files separately and
then match the '1th largest Z in File 1 with the ith largest 2 in
Flle 2. This explicit solution means that, if Kadane's matrix in
equation (3.1.19) is used to minimize distances between records of
the two files, then the synthetic File 1 is obtained by matching the
the X-concomitant of the ith order-statistic among 2's in File 1 with
the Y-concomitant of the ith order statistic amont Z's in File 2.

We shall refer to this strategy as isotonic matching of the two files
because the matching procedure is determined by the order-statistics

of the Z's in File 1 and the order-statistics of the Z's in File 2.

3.1.2 Sims* Matching Strategy

In the preceding subsection, it was shown that one of Kadane's
matching strategies can be simplified to the point of not using any
optimization algorithm in the matching procedure. Such simplifica-
tion is clearly not possible when the triple (g.g.g) has a multi-
dimensional Z . The whole idea of generating very large synthetic
data sets by actually minimizing a sum of distances over all
potential matches seems computationally profligate. One possible
alternative to distance-based strategies, which was suggested by

Sims (1978), will now be outlined.
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Sims has stressed the importance of exploiting the local sparse-
ness or denseness of the sample data on the matching variables Z. A
dense region of the Z-space is one within which we expect that the
distributions of X and Y given Z change little. It is, at the same
time, a region within which we have many observations. Sims has sug-
gested that, within a dense region, any arbitrary matching procedure
will produce results that do not distort the Jjoint distribution of
X, Y and Z. Regions which are not dense have few observations and,
within them, statistical matching becomes difficult. Sims felt that
in a sparse region, statistical matchings will almost certainly
distort the joint distribution of X, Y and Z. He suggested that, in
such a region, we should either not match at all or go beyond
matching to more elaborate methods of generating synthetic data.
However, Sims did not spell out any specific alternative to matching
within sparse Z-regions.

In our Monte-Carlo Study for comparing Kadane's strategies with
Sim's, which will be presented in Section 3.3, we created ten bins
in the Z-space, namely (-=,-1.00], (-1.00,-0.75], (-0.75,-0.501,
(-0.50,-0.25], (-0.25,0.00], (0.00,0.25), (0.25,0.50], (0.50,0.75],
(0.75,1.00], (1.00,+»). The conditional mean of X or Y, given Z did

not change much inside the eight bins which were between -1.00
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and 1.00. Hence, these latter bins were considered dense bins and
the two bins in the left and right tail of the distribution of Z were
considered sparse bins. Within each dense bin, we randomly matched
records of the two files, whereas the isotonic matching strategy of

Subsection 3.1.1 was used in the sparse bins.

3.2 Alternatives to Statistical Matching

Under Conditional Independence

Several criticisms of the matching methodology were mentioned in
Section 1.6. It was observed that the formation of packets on the
basis of matching variables Z and the merging of records within each
packet imply that the non-matching variables X and Y are condition-
ally independent given the values of Z. Following A. P. Dawid (1979)
we shall use the notation X [l Y | Z to denote the conditional indepen-
dence among the variables X, Y and Z.

Consider the situation in which we match the fragmentary data
provided by the files in (3.1.1). It may be recalled from Section
1.2 that any statistical model for this type of matching should imply
that the data in File 1 is stochastically independent of the data in
File 2. Clearly, such files of data cannot be used to statistically
test the validity of the implicit assumption that X1 Y| Z. Further-
more, Sims (1978) has observed that matching itself for the purpose
of, among others, estimating Y in (3.1.4) is unnecessary. He pointed

out that, when X || Y | Z holds, one can write
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Xz Xz z
aF(w) = aF  (w) dF  (w)/dF (W), (3.2.1)

where F™™(.) is the marginal (with regard to W) CDF of X and Z and

the other terms on the right-hand side of (3.2.1) are analogously

defined marginal distribution functions. The two separate samples in

(3.1.1) are adequate to estimate all the terms on the right-hand side

of (3~2.1) by any of a number of statistical methods. In this sec-

tion, we will discuss some alternatives to matching. With emphasis

on estimating the covariances or correlations between X and Y, we

°shall first review a histogram-type alternative which was suggested

by Sims (1978).

Suppose that we form a grid in the W space and estimate the

Joint density of W by first counting the number of sample points in

each cell of the

Y-categories and

sample points in

define counts of

Thus, we have

and

i.k

.3k

the

and

the

and

the

Z grid. Let 1 index X-categories, j index
k index Z-categories. Let nijk be the number of
the (i,3j,k)tP cell and use the dot notation to

sample points with regard to marginal distributions.

number of sample points with X in the ith category

Z in the kth category,

number of sample points with Y in the jth category

Z in the kth category,

number of sample points with Z in the kth category.
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Clearly,

and the data in the two files given by (3.1.1) can be used to compute

ni.k’ n.jk and n”k for all possible values of i, j and k. Thus,
ni K is obtained from File 1, n ik from File 2 and n K from the two
files together. Finally, for a known function, g(.), say, let g(w )

~ijk

denote the value of g computed at the center, w of the (i,j,k}h

~1ijk
cell of the grid that we started with. Sims has suggested that we

could estimate y in (3.1.4) by the statistic

- n n
Y= 1 g(W, ) —j—ir'lk JK (3.2.2)
1,3,k J ..k

With regard to ? in (3.2.2), theoretical properties such as the
asymptotic distribution of ; (as the sample size tends to «) are
unknown at the present time. Also, practical problems such as the
choice of W-grid and the cells thereof, which would keep the number
of terms in the sum (3.2.2) computationally reasonable, have not been
studied yet.

Sims (1978) stated that a procedure like the one leading to §
in (3.2.2), which takes into account the implicit assumption of con-
ditional independence of the matching methodology, had the following

advantages over matching to create a synthetic file such as (3.1.16):

(a) the procedure lends itself to computation of standard errors

indicating the reliability of computations based on it
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(b) the procedure can be connected to the large statistical litera-
ture on estimating density functions and multi-dimensional
contingency tables, and

(e) it is likely to provide more accurate results than matching.

Given the lack of work on the statistical properties of the alterna-
tives to matching, we can agree with the advantages (a) and (b), but
regard (c) as an undemonstrated speculation. We shall not discuss

; in (3.2.2) any further. Nor shall we elaborate the merits and
demerits of alternatives to matching and synthetic-data-based pro-
cedures. Nevertheless, in the next subsection, we shall derive the
estimators of parameters for conditionally independent normal models

without matching the files in (3.1.1).

3.2.1 Maximum Likelihood Estimation in Multivariate Normal Models

Using Two Files of Data

Consider the random vectors X, Y and Z, with respective dimen-
sions pl, p2 and Py- Suppose that W = (X,Y¥,Z) has a nonsingular
multivariate normal distribution with unknown mean vector
(Ex,gy.gz) and unknown variance-covariance matrix ¥, which is
partitioned as in (3.1.3). Suppose that the sample data in (3.1.1)
is available and that n12p1+p3, n22p2+p3. Note that, in view of the

nonsingularity of distribution of W and the fact that

., ..., 2 are stochastically independent, the ranks of the
~1 ~n1+n2 '
matrices (gl, ey gnl) and (Zn1+1’ - Zn2+n2) are equal to P3 for

almost every realization of the Z's.
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In this section, we shall find the maximum likelihood estimator
of, among others, the covariances among the variables in the vectors
X and Y, without matching the files (3.1.1) but assuming that
XlIi¥IZ. The maximum likelihood estimation of parameters in
multivariate normal mddels based on various patterns of missing data
has been discussed in the literature. See, for example, Eaton and
Kariya (1983) Kariya et al. (1983), Anderson (1984) and Srivastava
and Khatri (1979). However, the pattern of data given by the set-up
(3.1.1) does not seem to have been examined. Note first that, under

conditional independence, the density of W can be written as

(¥:0) = £,(2i0)F,(x12,0)F,(y]z,0) (3.2.3)

where 2 = (Exvﬁyvﬂz’zxxozxy’zxz9zyyozzz) (3.2.4)

and fw(g) 1s the joint density of W given by

—-(p1+Po+P3)/2 _ %
£ W) = (2m) 23Sy

x etrl- 2 I (w - wiw - @'l , (3.2.5)

etr being the exponential of the trace of a matrix. Also, fl(.) is
the marginal density functon of Z, fz(.) and f3(.) are respectively
the conditional densities of X and Y, given Z =2z. It is well-known
(Anderson, 1984, p. 33 and 37) that fl, f2 and f3 also correspond to
certain multivariate normal densities like (3.2.5). Using the joint

normality of X, Y and Z, 1t is easy to verify that (3.2.3) holds iff
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5. =3_31ts (3.2.6)

Xy Xz “zz “zy

It follows from (3.2.3) that the likelihood of the observed

data in the two files given by (3.1.1) is

L(9) = Ll(g)Lz(Q)La(g) ’ (3.2.7)
n1+n2
where L,(® = @ £,(2,,9) (3.2.8)
i=1
n
L(@) = m f£,(x,1z,,9) (3.2.9)
i=1
and
ny+ng
Ly(@ = I f.(y,lz,.0 (3.2.10)
i=nj+1

Taking natural logarithms of both sides of the equation (3.2.7), we

obtain
L(9) = I L (e) , (3.2.11)

where aa(e) = loge(La(e)), Ve =1,2,3

Let Z and s, denote respectively the mean and the matrix of

corrected sums of squares and products of the data z,, ..., 2 .
~1 ~n1+n2
That is,
nj+n
— 1 1772
Z=hm, L %
172 i=l

(3.2.12)
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n1+n2
s, = Y (z, -2z, -2)°
z 121 i i

Similarly, let z, (Z,) and s,(s,) be the mean and the matrix of

corrected sums of squares and products of the data 51’ ooy En
1l

(z ). Let, for any lower-case a, b and ¢, and any

~n1+1 1'%

vector Z.
-1
¥y p(B) = gy + Iy Lpp (2 - )

-1
ac zcc zcb

Fap.c = Sap - 1

ab.c (3.2.13)

Then using the notations in (3.2.12) and (3.2.13), the equations
(3.2.5), (3.2.7) to (3.2.10) and Theorem 2.5.1 of Anderson (1984)

(for the expressions defining f2 and f3) we obtain

n1+n2
!1(2) =- "3 1°g|2zz|
vtr(- 3 50 Is, « (unpd(F - p)(E - p' 1) (3.2.28)
!
2,(8) = - 5= logl|i I
ny
1 -1
+ tr{- 2 2xx.z! ) (zi - l"x-z(-?-i))(?s-i B Ex.z(gi))]]

(3.2.15)

and

3 22
3(@) = - 37 logli, o .|
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nj+na
1¢-1 _ _ .
+trl- 5 yy.z[3=§1+1 (¥, ny.z(gj))(xj Ky z(25))°1)

(3.2.16)
Note that in (3.2.14) to (3.2.16), certain constant terms have been
omitted.
It is clear from (3.2.7) and (3.2.11) that the M.L.E of 9 is
obtained by maximizing Qa(g) over @ for each a« = 1,2,3 Separately.
Moreover, this maximization is easier if we reparametrize the distri-

bution of W by means of

n= (1 ) ) )y (3.2.17)

'V 'V ,B ,B
22'~xy'~yz’ “xx.2’%yy.2' "xy’yz

where, apart from the notations that we have already introduced, we

have, for any letters a and b

-1
Bap = 2ab zbb

and (3.2.18)
2ab = ¥a ~ Bap By

It can be easily shown that there is a one-to-one correspondence
between € and n. Consequently, if we rewrite la(g)'s in terms of n,
then maximizing L(0) over 9 is equivalent to maximizing 1c(g) over py,
for each a = 1,2,3. The advantage of the transformation to the
n-space is that Qa(n)'s are functions of disjoint portions of n.

In fact, ll(n) is the same as 11(9), whereas it follows from (3.2.15)

to (3.2.1%; that
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m
L(n) = - 57 logll,, ,l
1e-1 W
+ tr{- 2 zxx.z[i_z_1 (%3 = Byy - Byz 23)(%4 — 3y, - Bz %) 1}
(3.2.19)
and
na
() = - 5 loglZ, | R
Lyl (5 B._ z.)( B._ z,)'1]}
+ tr{- = s — 2., - ZI\Ys - v, — Z)'
2V e 9 Y2 ¥E R Yz vz %)
(3.2.20)
In view of Theorem 8.2.1 of Anderson (1984), it can be easily
shown using (3.2.14), (3.2.19) and (3.2.20) that M.L.E of n is
given by
B, = Z
« Sy
zzz “n
1402
nj 1
Bxy =[} (Xi - Z)(Zi - Zl) ]Sl
i=1
Yy = X - Byp %
ni+ns 1
= - - 18~ .2.2
Byz ) (Xj Y)(Zj Zé) 182 (3.2.21)

J=n1+1



Zyy.z

Using

obtain the

and

~
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Y-B_7Z

[}

yz ~2
1 n
= n. _Z X5 - 2yz ~ By Z'1)(?51 = 2z " By, Z;)
1l i=1
1 n1+n2
= I Xy -v,-B 2O -5 -B_z)
N2 j=ny+l J vz ¥z 23 ~3 vz vz ~j

these estimators and the relationships between © and 5 we
M.L.E of © by means of the following equations.

-~ -~ -~

Ex = 2xz * Byg 2y

By = 2y, * Byz ¥y

g, -z

ixx = l§xz f:zz éiz * ixx.z (3.2.22)
S:xz = l§xz izz

iyy - éyz izz éyz * f:yy.z

iyz = .yz -zz

ixy = ixz i;; izy
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It follows from the above discussion that if we can Justify the
assumption that X || ¥ | Z, then we can avoid matching the files in

{(3.1.1) and estimate, among other parameters, ny, by means of the
equations in (3.2.22). Unfortunately, the two data files contain no
information regarding the appropriateness of this assumption, and
prior information from other sources must be considered. The point
here is that, if the matching methodology is based on assumptions
like X || Y| Z, then we must look for alternatives to matching whose
statistical properties are known. Such alternatives are useful
especially because very little is known about the reliatility of
synthetic data-files.

It is important to note that (3.2.6) is a necessary condition
even if W is not normal, provided only that X || Y | Z holds and that
the appropriate moments of the distribution of W exist. Hence, we
can use the estimator ixy in (3.2.22) even for non-normal popula-
tions. We now show that ixy is consistent for ixy without assuming

that W has a multi-variate normal distribution.

Theorem 3.2.1 Suppose the joint distribution of W is such that its

second-order moments exist and that the dispersion matrix, ¥, of Wis
partitioned as in (3.1.3). If XIy| Z then ixy' given by

(3.2.22), is strongly consistent for ny.

Proof: We first note that ixz and izy are stochastically independent
because they are functions of the independent data in File 1 and

File 2 respectively. However, Zzz involves Zi's in both files so

that the elements of the vector
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(sz.izz.izy) (3.2.23)

are dependent. The almost sure convergence of the vector in (3.2.23)

will follow from the almost sure convergence of ixz'izz’izy

individually (cf. Serfling, 1980, p. 52). In view of the similar-
ities of the proofs of the convergence of these matrices, we shall

only show that, as na > ®, a=1,2,

a.s

izz > %, (3.2.24)

We obtain from (3.2.21),

n1+n2

- 1 , ,
2 = nem 1 2, %2.-22Z2 (3.2.25)
1l 2 i=1

Recalling our assumption that the files in (3.1.1) are independent
random samples and that the vector Z has a finite dispersion matrix,
it readily follows that the Strong Law of large numbers (cf.
Serfling, p. 27) applies to independent sequences {Zi} and {Zizi}'

Hence, we obtain, as na > ®

n1+n2 a.s
nen, L BE 2 OEZZY (3.2.26)
and
z E(2) | (3.2.27)

It follows from (3.2.25) to (3.2.27) that
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We conclude from our remarks earlier in this proof that, na 2> ®

- - a a.s
Qygrlpgrlyy) 2 Qygrlpgrlyy) (3.2.28)

Let us now observe that

-

- a-1 =
ny = Lyg Zzz zzy

is a continuous function of the random variables in the vector
(3.2.23). Hence, the strong consistency of ixy follows from

(3.2.28). n]

3.3 An Empirical Evaluation of

Certain Matching Strategies

Several distance-based matching strategies for creating

synthetic data have been discussed in Section 3.1. Specifically, two
strategies due to Kadane (1978) and a strategy which was proposed by
Sims (1978) were mentioned. In this section, we shall evaluate these
three strategies, individually as well as in relative terms, in the
special case where W= (X,¥,Z), the unobservable vector, has a tri-
variate normal distribution. Before we discuss the Monte-Carlo Study
of the aforementioned strategies, we shall review some of the earlier
simulation studies of statistical matching procedures, which have

certain bearing on our study. A more comprehensive review of evalua-
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tions of statistical matching procedures can be found in Rodgers (1984).

Barr et al. (1982) used, among others, a statistical model in
which a vector W= (X,Y,Zl,zz) had a four-dimensional normal distri-
bution with zero means, unit variances and various levels of
covariances among the four variables. Altogether, these investi-
gators generated 100 pairs of independent files, namely File 1
comprising 200 observations on (X.Zl,zz) and File 2 consisting of 200
observations on Y, Z1 and Zz, for each of 12 populations, where the
populations differed with respect to the covariances of the
variables. Then, for each such pair of files, six statistical
matches were performed, namely three constrained matches and three
unconstrained matches. 1In each of these six matches, they used three
distance functions for each type of match. The first was a weighted
sum of the absolute differences of the two 2 variables between
records of the two files and the last two were the Mahalanobis-
distance and the "bias-—avoiding” distance, which were discussed in
Section 3.1. A summary of the findings of Barr et al. is as follows.

All three distance measures provided accurate estimates of the
variance of the Y variable when the constrained matching procedure
was used. They also found that all three unconstrained matching
procedures produced Y distributions that had means which were
significantly different from the corresponding population values.
The estimated covariances of Y with Zl,Zz, which were computed only
for constrained matches, tended to be underestimated. With respect

to the most important question in the context of merging files,



131
namely the estimation of relationships between X and Y variables, it
was reported that, if the conditional independence assumption was
invalid, all statistical matching procedures provided estimates of
the X-Y covariance that were extremely poor. On the other'hand, for
the cases in which the conditional independence assumption was valid,
all six procedures provided estimates of the X-Y covarilance that were
generally quite accurate. Their simulations also indicated that the
Mahalanobis distance measure produced less accurate matching than
subjectively weighted distance measures.

As we mentioned earlier, our own Monte-Carlo study was confined
to a trivariate normal model. However, our findings were suffi-
clently interesting to Justify their inclusion in this thesis. 1In
fact, some new facts about Kadane's bias-avoiding matching strategy
have already been mentioned in Section 3.1. Suppose, then, that
¥ = (X,Y,2) is tri-variate normal with zero means and variance-

covariance matrix

1 Pxy Pxz
= 3.3.1
) Pxy 1 Pyz | ( )
Pyz Pyz 1

Assume further that the following data is available for the purpose

of estimating the three unknown correlations in (3.3.1):
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1,2, ..., n (3.3.2)

File 1: (xi,zi). i

File 2: (Yj’zj)’ 3 n+l, ..., 2n (3.3.3)

In view of the discussions in Section 3.2, if the conditional

independence assumption X LY| 2 or, equivalently,

ny = Py Pyz (3.3.4)

were true, then we can avoid merging the files in (3.3.2) and (3.3.3)

because File 1 and File 2 can be used to get the sample correlations

-

Pyg and ;yz’ which in turn provide the maximum likelihood estimator

of pxy, namely

-

Pxy = Pxz Pyz

-

(3.3.5)

We shall say X and Y are conditionally dependent, given Z, iff

(3.3.4) does not hold; that is

Pxy * Pyg Pyz

For the sake of simplicity, we shall consider hereinafter only the

conditional positive dependence case of the model in (3.3.1), namely

3.3.6
Pxy > Pyg Pyz ( )

The complementary case of conditional negative dependence, namely

Pxy < Pxg Pyz

can, however, be handled by methods similar to ours. We shall also

include the case when X ]| Y | Z holds mainly for comparing and
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contrasting our results for the positive dependence case. Finally,
we shall evaluate matching strategies only from the point of view of
estimating pxy, the correlation between variables which are not in
the same file, because File 1 and File 2 can respectively be used to
estimate the remaining parameters Pys and pyz.

It is clear that, if the condition X Il Y| Z does not hold, then
we should not estimate ny by means of (3.3.5). 1In such a case,
matching the files (3.3.2) and (3.3.3) for estimation purposes is an

alternative that we shall study in this section. Thus, if after

merging, File 1 becomes the synthetic File 1 namely

(Xi,Y;,Zi). i=12, ..., n (3.3.7)

where Y; is the value of Y assigned to the ith record in the process
of merging, then we shall use the synthetic data (xi,Y;),
1 =1,2, ..., n to estimate pxy.

It was mentioned in Section 1.7 that performance characteris-
tics, which can help us assess the reliability of synthetic data
generated by independent files in (3.3.2), are not known. Given this
paucity, our program for an empirical evaluation of matching strate-

gies is as follows

(1) Starting with a known correlation matrix given by (3.3.1),
generate data from the normal population of W = (X,Y,Z) and
create independent files (3.3.2) and (3.3.3). Note that data
on (X,Y), which is typically ﬁissing in actual matching

situations, is available in simulation studies.
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(ii) Using any given matching strategy, merge the two files created
in Step (1) and compute the "synthetic correlation", denoted
by ;s’ which is defined to be the sample correlation coeffi-
cient based on the (X,Y") data given by the synthetic file

(3.3.7)

(1ii) Compare ;s of Step (ii) with the following sample
correlations:

(a) ;mll' the sample correlation coefficient based on the
unbroken data (xi’Yi)’ i=1,2, ..., n which was genera-
ted in Step (i). Observe that, if there is no apriori
restriction on the model parameters in (3.3.1), then ;mnl
is the maximum likelihood estimator of ny'

(b) ;mﬁz' the estimator of pxy glven by (3.3.5), which is
also the maximum likelihood estimator of pxy when condi-
tional independence holds.

Because ;mll and ;mlz are respectively based on one
sample on (X,Y) and two independent samples on (X,Z) and

(Y,Z), we shall also refer to these as one-sample and two-

sample estimates of pxy'

Using the aforementioned program, we shall evaluate Kadane's
distance-based matching strategies discussed in Section 3.1, namely
the isotonic matching strategy and the procedure induced by the
Mahalanobis distance, and the method of matching in bins, which, as

explained in Subsection 3.1.2, is an adaptation of a strategy due to
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Sims (1978). The synthetic correlations resulting from the use of

these three strategies will be denoted by ; and ;s

s1' Ps2 3

respectively.

Our study has been conducted for three values of n, namely 10,
25 and 50. The values of the population correlation pxy which
are used, among others, to generate random deviates from the normal

population of ¥ = (X,Y,Z), were chosen from the following categories:

Low Pxy: 0.00, 0.25 _

Medium pxy: 0.50, 0.60, 0.65, 0.70 (3.3.8)

High pxy: 0.75 (0.05) 0.95, 0.99
Combined with low as well as high values of Py and pyz, there were
15 choices of pxy from (3.3.8) such that the conditional
independence restriction (3.3.5) was satisfied. As remarked earlier,
these correlations were chosen malnly to provide a basis such that
the estimates of ny resulting from the case of conditional
positive dependence can be compared with those resulting from
conditional independence. The fifteen values of ny in the
conditional independence case were increased in such a way that the
positive dependence was achieved. Altogether, nineteen such I's
were selected.

For n=10, W was generated 1000 times by using the IMSL
subroutines. The calculation of ;81 was based on sorting Z's in
the two files, as discussed in Section 3.1.1. Furthermore, ;sz was

computed for each realization by solving a linear assignment problem.
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The Ford-Fulkerson algorithm (Zionts, 1974) was used for this
purpose. The computational cost for solving assignment problems grew
quite rapidly with n. Therefore, only 700 independent samples of
size n=25 were generated. A comprehensive examination of the results
for n=10,25, revealed ;sl and ;sz’ the correlations corresponding
to Kadane's two distance measures, were, for all practical purposes,
identical (see Figures 3.1 and 3.2). 1In view of this and the high
computational costs, we compared only two strategies, the isotonic
and the method of matching in bins for n=50 (2500 independent
samples).

Four summary statistics, namely the mean, the standard
deviation, the minimum and the maximum for the simulated data on
;mll’;mkz’;sl’;sz’;s3 were calculated for 34 J's selected
for the study. However, we provide these statistics only for a

representative collection of 15 J's in tables 3.1 to 3.7. For

each } and for any ;, the first entry in the tables is the mean,
the second entry (in parentheses) is the standard deviation and the
third and the fourth entries are respectively the minimum and the
maximum. Also, the General Plotting Package at The Ohio State

University was used to plot the following pairs of estimates of pxy

-

(1) Pgy VS- Pgo

-

VS. pgq

(11) le

-

(iii) Pgy VS- Pl
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(iv) ;sl vs. ;mlz
(v) ;sz vs. ;mll
(vi) ;sz Vs, ;mmz
(vii) ;53 vs. ;mll

(viii) ;ss vs. Put.2

Figures 3.1 to 3.20 provide an illustration of these comparisons.

3.3.1 Conclusions of the Monte Carlo Study

Tabies 3.1 to 3.4 clearly show that the two estimates ;sl and
;Sz. provided by the isotonic matching strategy and the Mahalanobis-—
distance based strategy, respectively have nearly identical summary
statistics. 1In fact, an examination of all the results showed that,
for all values of n and § in our study, the estimates ;sl and ;sz
were the same for most of the realizations of W. Figures 3.1 and 3.2
provide the empirical evidence of this fact.

Now we shall discuss our results in the case of conditional
independence. As noted in Section 3.2, ;mlz is the maximum likelihood
estimator of pxy under this model, whereas ;mll' the method of
moments estimator based on paired-data, is computed for comparison
purposes. As expected, ;mll and ;mlz behave equally well on the

average even though the estimated standard error of ;mll is consis-

tently higher than that of ;m12' Furthermore the ranges of Pms1
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are consistently larger than those of ;mlz (see Tables 3.1, 3.3 and
3.5).

For low correlation and each n, ;sl’ ;sz and ;53 compare well
with the estimates ;mﬁl’ or ;mlz as far as the averages are concerned
(see Tables 3.1, 3.3 and 3.5). However, the synthetic data éstimators
have larger variation than ;mlz’ as shown in Fig. 3.3 - Fig.'3.5.
Furthermore, all the synthetic data estimators have variation
comparable to that of Pmyy 25 shown in Fig. 3.6 - Fig. 3.8.

For medium and high values of pxy’ all three synthetic estima-
tors exhibit some amount of negative bias with regard to both ;mkl
and ;mlz' Also, Pg3s the estimator given by the method of matching
in bins, is more negatively biased than ;sl and ;52' Tables 3.1, 3.3
and 3.5, Fig. 3.9 - Fig. 3.14 illustrate these points. Again, ;sa is
worse than ;sl and ;32 - These patterns among the five estimates
exist for any sample size even though the difference between
synthetic data estimators and ;mnz tends to decrease as n increases.

Turning to the conditional positive dependence case, we first
note that ;mnl is a reasonable estimator of pxy' even though it would
not be available to the practitioner. On comparing ;mll with the
synthetic data estimators ;sl' ;sz’ and ;33 and p;lz, we find
that these estimators perform very badly, in that all of them are
consistently underestimates and therefore heavily negatively biased
(See Tables 3.2, 3.4, 3.6 and 3.7 and Fig. 3.15).

For each n, and low or medium choices of pxy' the synthetic data

estimators are comparable to ;mlz' whereas for high values of pxy,
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the three synthetic data estimators have a definite negative bias
compared with ;’mnz‘ Tables 3.2, 3.4, 3.6 and 3.7 and Fig. 3.16 -

Fig. 3.19 support this conclusion. Furthermore it is observed that

Pg3 based on binning is worse than ;sl (;52) as illustrated by
Fig. 3.20. However, the difference between the average ;mnz and
;si' i=1,2,3 tends to decrease as n increases.

Finally it must be pointed out that as the positive dependence
increases; ie,pxy—p¥;pyz increases, the bias in the three
synthetic data estimators and Pme.2 increases. Tables 3.4 and 3.7
illustrate this fact.

Based on t;ese Observations, we must conclude that when
conditional independence model holds, the synthetic data estimators
do not provide any advantage over ;mkz’ the no-matching estimator.
In fact, they are slightly worse than the ;mQZ’ On the other hand,
in the case of conditional positive dependence, ;mlz and all the
synthetic data estimators perform badly, the performance of
synthetic data estimators being slightly worse than that of ;m12'
Thus estimators based on matching strategies do not seem to provide
any advantage over the estimators based on the assumption of
conditional independence and no matching. Thus for estimating pxy
in Case III models, the extra work involved in matching data files
is almost worthless. Further studies are in order for much larger

sample sizes to examine if this plcture changes at all. We should

point out that it is possible that matching may be useful for
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extracting some other features of the Joint distribution and further

Monte Carlo studies are warrented to explore this.



Table 3.1 Summary Statistics of Sample
Correlations - Files with n=10 Records
Conditional Independence Case
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-3}

h -3

pxz Pyz ny pmll Pm22 sl s2 Ps3
0.0149 -0.0032 -0.0101 -0.0100 -0.0114
(0.3384) (0.1127) (0.3296) (0.3297) (0.3212)
0.00 0.10 0.00 -0.8170 -0.5844 -0.7575 -0.7575 -0.8506
0.8472 0.4675 0.8590 0.8590 0.7708
0.5879 0.5794 0.5457 0.5457 0.510%
(0.2212) (0.2006) (0.2337) (0.2337) (0.2396)
0.92 0.6% 0.60 -0.6523 -0.4040 -0.6058 ~0.6058 -0.6058
0.9753 0.9431 0.9626 0.9626 0.9681
0.6830 0.6638 0.6150 0.6151 0.5748
(0.1986) (0.1728) (0.2087) (0.2086) (0.2230)
0.93 0.75 0.70 -0.3369 -0.1437 -0.3115 -0.3115 -0.3396
0.9936 0.9609 0.9576 0.9576 0.9696
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-~

o

D

b ¢4 vz Xy Pme1 P2 Ps1 s2 s3
0.7863 0.7775 0.7302 0.7302 0.6874
(0.1445) (0.1182) (0.1522) (0.1522) (0.1731)
0.94 0.85 0.80 -0.3432 0.2058 -0.2367 -0.2367 -0.2367
0.9879 0.9566 0.9799 0.9799 0.9723
0.8937 0.8901 0.8252 0.8251 0.7789
(0.0764) (0.0625) (0.0994) (0.0995) (0.1236)
0.95 0.95 0.90 0.3247 0.3508 0.3821 0.3821 0.1796
0.9949 0.9814 0.9850 0.9850 0.9725
0.9448 0.9421 0.8758 0.8760 0.8238
(0.0419) (0.0317) (0.0741) (0.0741) (0.1063)
0.97 0.97 0.95 0.5329 0.7364 0.5027 0.5027 0.2123
0.9973 0.9910 0.9898 0.9898 0.9868




Table 3.2 Summary Statistics of Sample

Correlations - Files with n=10 Records

Conditional Positive Dependence Case
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k- 3R

h 3R

Xz vz Xy mel Pmy2 Ps1 s2 s3
0.9413 -0.0046 -0.0289 -0.0395 -0.0153
(0.0474) (0.1142) (0.3310) (0.3327) (0.3269)
0.00 0.10 0.95 0.5942 -0.5723 -0.8425 -0.8525 -0.8962
0.9959  0.5302 0.8897 0.8897 0.8181
0.8676 0.5729 0.5276 0.5108 0.4919
(0.0885) (0.2021) (0.2403) (0.2443) (0.2483)
0.92 0.65 0.88 0.2744 -0.5510 -0.6166 -0.6248 -0.6119
0.9914  0.9407 0.9621 0.9621 0.9621
0.9103 0.6771 0.6310 0.6262 0.5834
(0.0666) (0.1617) (0.2018) (0.2050) (0.2085)
0.93 0.75 0.92 0.4811 -0.2063 -0.3529 -0.3529 -0.2667
0.9918  0.9448 0.9722 0.9722 0.9892




Table 3.2 (Cont‘'d.)

144

h -3}

-~

Pxz Pyz Pxy Pme1 P2 sl Ps2 Ps3
0.9558 0.7741 0.7188 0.7165 0.6687
(0.0353) (0.1153) (0.1573) (0.1578) (0.1781)
0.94 0.85 0.96 0.6288 0.2202 -0.2325 -0.2325 ~-0.1806
0.9960 0.9798 0.9707 0.9707 0.9535
0.9775 0.8871 0.8225 0.8211 0.7770
(0.0177) (0.0640) (0.1036) (0.1040) (0.1231)
0.95 0.95 0.98 0.8491 0.4165 0.2546 0.2546 0.0215
0.9986 0.9783 0.9922 0.9922 0.9727
0.90888 0.9439 0.8770 0.8774 0.8258
(0.0088) (0.0329) (0.0760) (0.0755) (0.1039)
0.97 0.97 0.99 0.918% 0.6081 0.4432 0.4432 0.3541
0.9992 0.9919 0.9894 0.9894 0.9857




Table 3.3 Summary Statistics of Sample

Correlations - Files with n=25% Records

Conditional Independence Case
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- B

h -]

A3

Xz vz Xy mil Pme2 sl s2 s3

-0.0068 0.0001 -0.0025 -0.0026 -0.0040

(0.2059) (0.0479) (0.2013) (0.2014) (0.2008)

0.00 0.10 0.00 -0.6576 -0.2851 -0.5749 -0.5749 -0.6980
0.5450 0.2501 0.6196 0.6196 0.5087

0.5915 0.5788 0.5568 0.5564 0.5171

(0.1336) (0.1231) (0.1365) (0.1365) (0.1476)

0.92 0.65 0.60 -0.0576 -0.0890 0.0259 0.0259 -0.0468
0.8704 0.8189 0.8663 0.8663 0.8096

0.6859 0.6859 0.6620 0.6627 0.6111

(0.1087) (0.0935) (0.1096) (0.1097) (0.1216)

0.93 0.75 0.70 0.2953 0.2697 0.1828 0.1828 0.1642
0.9022 0.8959 0.8955 0.8955 0.8973
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Table 3.3 (Cont'd.)

- -~

Xz vz Xy Pme1 Pma2

-~ -~

s1  Ps2 Ps3

h- 3R]

0.7993 0.7934  0.7644 0.7643 0.7129
(0.0754) (0.0617) (0.0789) (0.0790) (0.0964)
0.94 0.85 0.80 0.4274  0.4778 0.4617 0.4617 0.2724
0.9380 0.9087 0.9139 0.9139 0.9241

0.8967 0.8961 0.8648 0.8643 0.8049
(0.0416) (0.0313) (0.0473) (0.476) (0.0676)
0.95 0.95 0.90 0.7057 0.7592 0.6580 0.6580 0.4614
0.9753 0.9636 0.9632 0.9632 0.9297

0.9479 0.9473 0.9117 0.9123 0.8485
(0.0211) (0.0154) (0.0327) (0.0326) (0.0605)
0.97 0.97 0.95 0.8446 0.8638 0.7636 0.7636 0.5102
0.9874 0.9755 0.9735 0.9735 0.9519




Table 3.4 Summar
Correlations - F
Conditional Pos

itive Dependence Case

y Statistics of Sample
iles with n=25 Records
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sz Pyz pxy pm&l Pmlz psl Ps2 Pss
0.9475 -0.0019 0.0058 -0.0372 -0.0004
(0.0222) (0.0439) (0.2061) (0.2038) (0.1989)
0.00 0.10 0.95 0.8249 -0.2817 -0.5665 -0.5480 ~0.7596
0.9857 0.1963 0.6964 0.6964 0.5557
0.8758 0.5857 0.5643 0.5149 0.5277
(0.0503) (0.1207) (0.1331) (0.1436) (0.1425)
0.92 0.65 0.88 0.6051 0.1442 0.1621 0.0617 0.0404
0.9738 0.8344 0.8896 0.8896 0.8512
0.9143 0.6907 0.6627 0.6489 0.6190
(0.0361) (0.0851) (0.1058) (0.1093) (0.1125)
0.93 0.75 0.92 0.6844 0.2967 0.2949 0.2641 0.1829
0.9774 0.8876 0.8661 0.8642 0.9020
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Table 3.4 (Cont'd.)

-}
a3
h -3

b ¢4 vz Xy Pmﬁl Pme2 sl s2 s3

0.9578 0.7931 0.7641 0.7539 o0.7127
(0.0174) (0.0624) (0.0832) (0.0853) (0.0948)
0.94 0.85 0.96 0.8756 0.5449 0.3612 0.3647 0.3425
0.9893 0.9226 0.9181 0.9174 0.9128

0.9792 0.8956 0.8614 0.8543 0.7998
(0.0096) (0.0308) (0.0496) (0.0516) (0.0691)
0.95 0.95 0.98 0.9131 0.7693 0.6315 0.6226 0.5157
0.9959 0.9661 0.9647 0.9647 0.9413

0.9895 0.9475 0.9123 0.9139 0.8499
(0.0042) (0.0158) (0.0339) (0.0336) (0.0584)
0.97 0.97 0.99 0.9685 0.8769 0.7182 0.7352 0.5685
0.9972 0.9833 0.9769 0.9849 0.9773




Table 3.5 Summary Statistics of Sample
Correlations - Files with n=50 Records
Conditional Independence Case
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Pxz Pyz Pxy Pmul Pmy 2 Psl Ps3

-0.0004 -0.0003 -0.0019 -0.0044

(0.1436) (0.0242) (0.1474) (0.1445)

0.00 0.10 0.00 ~-0.4381 -0.1663 -0.4872 -0.5205
0.4746 0.1244 0.4398 0.4574

0.5936 0.5952 0.5823 0.5391

(0.0916) (0.0794) (0.0909) (0.0959)

0.92 0.65 0.60 0.2530 0.2219 0.2242 0.1098
0.8377 0.8103 0.7998 0.7873

0.6950 0.6953 0.6807 0.6279

(0.0756) (0.0612) (0.0709) (0.0815)

0.93 0.75 0.70 0.2796 0.3696 0.3760 0.2526
0.8768 0.8426 0.8718 0.8543
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Table 3.5 (Cont'd.)

Pxz Pyz Pxy Pmel Pm 2 Psl Ps3

0.7959 0.7974 0.7797 0.7198
(0.0528) (0.0408) (0.0527) (0.0645)
0.94 0.85 0.80 0.5689 0.5664 0.4919 0.4531
0.9204 0.9082 0.9222 0.8821

0.8982 0.8978 0.8778 0.8110
(0.0289) (0.0200) (0.0306) (0.0493)
0.95 0.95 0.90 0.7152 0.7845 0.7331 0.6079
0.9634 0.9467 0.9595 0.9149

0.9486 0.9490 0.9276 0.8559
(0.0151) (0.0103) (0.0199) (0.0419)
0.97 0.97 0.95 0.8549 0.9100 0.8039 0.6529
0.9808 0.9743 0.9761 0.9576




Table 3.6 Summary Statistics of Sample
Correlations -~ Files wWwith n=50 Records
Conditional Positive Dependence Case
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Psl

Ps3

Pxz Pyz Pxy Pml1 Pme2
0.949] 0.0001 0.0015 0.0025
(0.0148) (0.0245) (0.1475) (0.1427)
0.00 0.10 0.95 0.8700 -0.1447 ~-0.5256 -0.5157
0.9828 0.1506 0.4727 0.5145
0.8776 0.5934 0.5809 0.5358
(0.0336) (0.0817) (0.0928) (0.0981)
0.92 0.65 0.88 0.6908 0.2791 0.1519 0.1593
0.9576 0.8031 0.8181 0.8338
0.9183 0.6944 0.6771 0.6257
(0.0225) (0.0638) (0.0752) (0.0834)
0.93 0.75 0.92‘ 0.8119 0.4028 0.3506 0.2950
0.9698 0.8628 0.8599 0.8595
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Table 3.6 (Cont'd.)

Pxz Pyz Pxy Pmil Pmi 2 Psl Ps3

0.9595 0.7967 0.7803 0.7198
(0.0116) (0.0415) (0.0512) (0.0627)
0.94 0.85 0.96 0.8793 0.6023 0.5699 0.3595
0.9853 0.8960 0.9158 0.8824

0.9794 0.8973 0.8776 0.8106
(0.0061) (0.0200) (0.0294) (0.0468)
0.95 0.95 0.98 0.9390 0.8096 0.7596 0.6273
0.9932 0.9506 0.9570 0.9279

0.9898 0.9492 0.9281 0.8555
(0.0029) (0.0107) (0.0200) (0.0426)
0.97 0.97 0.99 0.9736 0.8927 0.8181 0.6501
0.9964 0.9757 0.9713 0.9555




Table 3.7 Summary Statisties of Sample
Correlations - Files with n=25 Records
Conditional Positive Dependence Case
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h -3

h -]

Pz pyz ny Pmﬁl Pm22 sl s2 Ps3
0.4933 0.0008 -0.0027 -0.0063 0.0012
(0.1574) (0.0451) (0.2117) (0.2105) (0.2044)
0.00 0.10 0.50 -0.0632 -0.1632 -0.6421 -0.6421 -0.0035
0.8777 0.1976 0.6186 -0.6186 0.5807
0.7425 0.5876 0.5655 0.5622 0.5236
(0.0940) (0.1108) (0.1292) (0.1301) (0.1430)
0.92 0.65 0.7% 0.2986 0.1141 -0.0065 -0.0065% 0.0205
0.9390 0.8326 0.8621 -0.8621 0.8285
0.7943 0.6919 0.6683 0.6691 0.6249
(0.0762) (0.0889) (0.1109) (0.1102) (0.1180)
0.93 0.75% 0.80 0.3982 0.3129 0.1844 0.1844 0.2023
0.9373 0.8978 0.9047 0.9047 0.8853
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Figure 3.1 Isotonic vs. Mahalanobis.
Pxz = 0.00, pyz = 0.10, Pxy = 0.00, n = 10.
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