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ABSTRACT

In the problem of selecting the best of k populations, a natural rule
is to select the population corresponding to the largest sample value of an
appropriate statistic. As a retrospective analysis, a 1owet_§onf1dence
bound on the probability of a correct selection is derived when the probability
density function has the monotone likelihood ratio property under the location
parameter setting. The result is applied to the normal populations with

both known and unknown common variance. Tables to implement the confidence

-

bound are provided.

KEY WORDS: Selection problem; A retrospective analysis; Probability of a
correct selection; Lower confidence bound; Monotone:]iktehoUd ratio.
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1. INTRODUCTION -

Consider jndependent observations Xij from each of k;Populations with
cdf's G(x-ei), i=1,2,...,k, j=1,2,...,n. The experimenter wishes to select
the "best" population associated with‘the largest parameter o,. For this
purpose, we choose an appropriate statiséié Yi=Y(X11""’Xin) with cdf
Fn(y-ei) and use the natural selection rule which selects the population
corresponding to the largest Yi as the best.

For this selection problem, Bechhofer (1954) introduced the indifference

zone approach in which we determine the sample size n,-prior to the experiment,

to control the probability of a correct selection (PCS)

k-1

PCS = [ 51 Fo(Y+or,3-ep47) d Fply) (1.1)

-0 1

where o177 2 097 Ze.eS Opyqave the ordered parameters. In controlling the
PCS, we need to specify a preference zone where the largest two parameters
e[k] and e[k_]] are far apart. This indifference zone approach is~clearly
formulated from the point of view of designing experiment. )

Recently retrospective analyses regarding the PCS have been studied by

Gibbons, Olkin, and Sobel (1977), Anderson, Bishop, and Dudewicz (1977),



O1kin, Sobel, and Tong (1982), and Faltin and McCulloch (1983) aﬁ;pgvothers.
Most of these studies have dealt with the point estimation of the PCS.

Gibbons, Olkin, and Sobel (1977) and Olkin, Sobel, and Tong (1982)
have presented interval estimates of PCS. However the coveragg"probabilities
of such interval estimates have not be discussed. Thus they'Eén not be
interpreted as confidence interval estimates (see Bechhofer 1980, p. 753).
In the case of normal populations, Anderson, Bishop, and Dudewicz (1977) have
given a 1owe;_confidence bound on PCS. The quantile unbiased estimator in
Faltin (1980) can also be regarded as a lower confidence quha*On'PCS. However,
it is restricted to the special case of k=2 populations. *-

This article presents a lower confidence bound on PCS'When the pdf
fn(y-e) of Fn(y-e) has the monotone 1ikelihood ratio (MLR) in y and 6. From
this result, we obtain a lower confidence bound on PCS in the case of normal
populations with both known and unknown common variance. The obtained lower
confidence bound is sharper than that of Anderson, Bishop, and Dudewicz (1977),
and reduces to that of Faltin (1980) in the special case of k=2 populations.

Tables to implement the lower confidence bound as well as an illustrative

exampie are given. S e

2. A LOWER CONFIDENCE BOUND ON PCS
It can be easily seen from the inquality

——

PCS > [7 F¥TNy + opyg - epi_qq) d F(Y) (2.1)

-00

-~

that a (conservative) lower confidence bound on PCS can be obtained from a

lower confidence bound on rk] - °[k-1]° Thus we begin with constructing a



lower confidence bound on e[k]-e[k_]]. To do this, let Y(])fy(z)g,..gy(k)
denote the ordered statistics of Y1,Y2,...,Yk, and let f(y) denote the pdf
of F. Note that the dependence of F and f on n is suppressed notatibna]]y.

We first state a lemma which is a generalization of a result in Anderson,

—

Bishop, and Dudewicz (1977).

Lemma 1. Assume that log f(y) is concave. Then for any fixed c>0,
PQ[Y(k)'Y(k;1)>CJ is non-increasing in e[]].

Proof. By semmetry we may assume e] 5,..5_ek. Then, fon,ah&Lc>0, we have

-

F(y+ej—ei-c) fy) dy.

= x

k
I
=] -= i

PolY ()~ (ke)>e] = n
AR

R i

~

Therefore,

3—3— PR[Y(k)-Y(k_])x]

k -
I Fy+8,-0,-c) f(y+e]-ej-c) fly) dy -
#

k k -
Z J I Fly+e4-0;-c) fly+o;-0,-c) ny) dy

j=2 e =2 B
]
k ok i
= J_ZZ I R Fy-64-c) [fy-05-c) fly-0;) - f(y-eq-c) f(y-6,)] dy.
i#]



By the equivalence between the assumption and the MLR of f{y-6) in y and o,
the expression in the brackets is non-positive. Hence the result follows.

To define a lower confidence bound, let

H(x) = [~ F(x+y) f(y) dy -
denote the cdf of (Y]-e1) - (Yz-ez) and let Xy/2 denote the upper o/2 quantile
of H(x) for-0<a<l. Note that H(x) is symmetric and xa/2>0. For a given
0<a<1 and for t > X p> We define a non-negative function,Ldit) = L(t) by

-

H(L(t)-t) + H(-L(t)-t) = a. N (2.2) -
The existence of such a function L(t) for t > Xa/2 is proved in the Appendix
under the assumption in Lemma 1. Also it can be easily observed that the
function L(t) is strictly increasing for t > Xy72°
We present an exact 100(1-a)% lower confidence bound on 8rk] 0rk-17 1M

the following theorem.

Theorem 1. Assume that log f(y) is concave. Then

"

—

where L(t) is defined by (2.2) for t > X /2 and 0 for Ostsxa/z-

Proof. For any fixed ork] and Ork-1]° let A = ork1°[k-11" Then it

follows from Lemma 1 that for all 8
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where L'](Qz~1s taken as xa/Z. Note that the equality can be attained

when e[]] = 6[2] =...= e[k_2] = -, Furthermore, for any value of A, we

have -

-1

=1 - fH(a-L71(a)) + H(-a-L7T(a)))

which completes the proof.

A simple but useful corollary to Theorem T is the f0110wing&Aw“

Corollary 1. Under the assumption of Theorem 1, we have
PQ[PCS-z_PL] >1-a for all g
where

b= PN LY ()Y (ge))) @ FOO)-

(2.4)



The lower confidence bounds in (2.3) and (2.4) become trivial when
Y(k)'Y(k-l) S X0 that is, when the data do not show significant evidence
for e[k] > e[k_]]. In fact, it can be easily shown that any lower confidence
bound for e[k]-e[k_]], which is a non-negative and non-decreasing function

—

of Y(k)'Y(k-])’ becomes trivial in such a case.

3. NORMAL POPULATIONS WITH A COMMON VARIANCE
Letxiﬁjbe independent observations from N(ui,oz), i=1,...5Ks J=1,...50,
where the common variance 6250 may be either known or unknown. The best

population is the one associated with k] = max o oui, éhd we select the
: 1<i<k -
population corresponding to the largest sample mean 7} as the best. The
probability of a correct selection is
o k-1
PCS = [

- j=1]

@(x+/ﬁ(p[k]-u[i])/c)d¢(x) (3-])

where M[1] oo -2 k] are the ordered ui's and ¢ is the standard normal cdf.
In the case of known variance, by taking Y, = vﬁ‘?}ﬁsand 05 = Vn “i/o in
Theorem 1 and Corollary 1, we can make the fo]lowing statement with 100 (1-0)%

confidence;

(pp g k=177 27270 WO (X)X 1y)/72 0)

Pes > [7 oK [xtVZh (VA (1)K eq))/7Z 01 d @ (x) (3.2).

-0

-~

where Yk]) 5"'5'Ykk) are the ordered sample means and the non-negative function

h(t) is defined by



a(h(t)-t) + o(-h(t)-t) = a ' ) (3.3)

for t 22, and h(t) =0 for 0 <t 220 Here, z,72 18 the upper «/2
quantile of the standard normal distribution.

When the common variance 02 is unknown, let 52 denote the pooled sample
variance. Note that v52/02 has a X2 distribution with v=k(n-1) degrees of

freedom. Since S2 is independent of X},...,Xk, this case can be treated
similarly by. considering the conditional coverage probability given 52 = 52
and by taking Y; = /ﬁ'Y}/c, 6 = /n u;/o. Therefore we omit..the derivation

for the following confidence statement; With 100 (1-a)% cépfidence, we have

Pes > [7 ofT! [x#Z b (VR(X K (eqy)/Y2 )] d elx) (3.4)

=00

where the non-negative function hv(t) is given by

fo Ta(h (D)-tu) + o(-h (8)-t)] d Q(u) = - (3.5)
for t z_ta/zﬂv) and hv(t) = 0 for Ogﬁgﬁu/z(v). Here, ta/Z(v) is the upper
o/2 quantile of the t-distribution with v degrees of freedom and Qv(u) is
the cdf of x//5. - ’
The values of the function hv(t) are given in Tables 1 and 2 for o = 0.05,
0.10 and for selected values of v and t Z_talz(v). Note that hvSFf = h(t) for
v=w. Details of the computational techniques are given in the Appendix. As

can be seen from Figure 1, our computations have indicated that the function



hv(t) becomes nearly linear for moderately large values of t-ta/Z(v).’AFor
t values larger than those in Tables 1 and 2, the values of hv(ty satisfying
(3.5) can be found numerically or be approximated by linear extrapolation.

Especially in the case of known variance (v==), it can be easily shown that

It follows from the lower bound on h(t) in (3.6) that the lower confidence
bound in (3.2) is sharper than the one in Anderson, Bishop, and Dudewicz (1977).
It can also be easily observed that in-the special case of k=2 it reduces to

the one in Faltin (1980).

4. AN EXAMPLE

For illustration purpose, we consider(aﬁ éxahp]e gngh.by"kTeijnen, Naylor,
and Seaks (1972), in which a firm that produces a single product from a multi-
stage produéfion process is interested in selecting the one most profitable
production plan among k=5 possible plans. They run simulation experiments with
a sample of size n=50 for each plan and assume that the profit using each
plan has a normal distribution with a common unknown variance. The data are

—

as Tfollows:



Plan i Mean profit Standard deviation
1 2976.40 175.83
2 2992.30 202.20
3 2675.20 250.51
4 3265.30 221.81 T
5 3131.90 277.04 .

From the given data, plan 4 yields the largest sample mean and is selected
as the most -profitable plan. A reasonable question is: what kind of confidence
statement can be made regarding the PCS? First, we observe that the pooled
sample standard deviation is s = 228.26 with v = 5(49) =;é45 degrees of
freedom and t = Jﬁ'(iks)-§k4))//? s = 2.92. Choosing a = .10, we find
V2 hv(t) = 2.32 by (3.6). Using Table A.2 in Gibbons, Olkin, and Sobel (1977)

for the integral value in (3.4), we can state with 90% confidence that PCS > .856.

5. CONCLUBING REMARKS
The results in Section 2 are derived for location parameter families.
However, similar results for scale parameter families can be obtained. For the

problem of selecting the population with the largest scale parameter 055 the PCS

in (1.1) is replaced by

k-1
PCS = [y 121 Flop,/epi) 4 F) (5.1)

where F(y/ei) is the cdf of an appropriate statistic ¥;>0. Similar analysis
yields, under the assumption of MLR of the pdf-% f(%& in y and e, that the

100(1-0)% lower confidence bound in (2.4) can be replaced by -

PL= Jo PN LY (/Y epy)) @ F ). (5.2)
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The function L(t) in (5.2) is defined by
HIL(E)/t) + R((tL(E) ™) = o

for t > Xy12 and L(t) =1 for0<tc< Xy/2 where H(x) is the—cdf of Y]/Y2
for 81 = 8, and Xo/2 is the upper o/2 quantile of H(x). Also, obvious
modifications can be made for the problem of selecting the population with
the smallest scale parameter. Such modifications can be useful, for example,
for the normal Variances problem. _
As a final remark, we point out that the lower confﬁégnce bound in (2.4)
is conservative due to the use of the inequality (2.1). To obtain an exact

Tower confidence bound on PCS, one needs ~ simultaneous lower confidence

bounds on e[k]-e[i], i=1,2,...,k=-1 which the author was unable to obtain.

APPENDIX
To show the existence of a non-negative function L(t) satisfying (2.2),
we assume that log f(y) is concave and let wt(a) = H(a-t) + H(-a-t) for fixed

t 2 X, 2 Then

(=N
]
—
o))
~—
]

H'(a-t) - H'(a+t)

_ = [T [f(y-t)-f(y+t)] fly-a)dy - (A.1)
where H'(x) is the pdf of H(x). -
Note that the expression in the brackets in (A.1) changes sfbn once from
- to + as y varies from -o to +=. Therefore, by the sign diminishing property

of MLR (see, for example, Lehmann 1954, p. 74), é%-wt(a) changes sign at most
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once from - to + as a varies from - to +=. Furthermore, by the symm;try of
q -

> da 't

Also it can be observed that for fixed t 2 Xy /20 wt(o) = 2H(-t) < o and

H'(t) (a) = 0 for a = 0. Thus wt(a) is strictly increasing in a > 0.

wt(a) + 1 as a » «». Hence L(t) can be defined by (2.2).

For constructing Tables 1 and 2, numerical evaluation of;%he integral
in (3.5) was done via IMSL's subroutine MDTN. In the case of a knoWﬁ variance
(v=w), MDNOR was used. The value of hv(t) was found numerically by finding a

root of (3.3) or (3.5) via the modified regula falsi method with the accuracy

up to 10'5. Then, the values of hv(t) were rounded. e
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Table 1. Values of hv(t) for a=.05.

t-t v

w2 )
v 06 .10 .15 .20 .25 .30 .35 .40 .45 .50
51 .198 .282 .348 .405 .456 .502 .546 .588 .628 .666
61 -203 .290 .358 .416 .469 .517 .563 .606 .648 ..688
7| .207 .295 .364 .424 .478 .528 .575 .619 .663 704
81 .210 .299 .369 .430 .485 .536 .584 .630 .674 717
91 .212 .302 .373 .435 .490 .542 .591 .638 .883 .726
10| -214 .305 .376 .439 .495 .547 .597 .644 .690 .734
11 215 .307 .379 .442 .498 .551 .601 .649 .696 741
_12] .216 .308 .381 .444 .501 .555 .605 .654 .700 746
T 131 .217 .310 .383 .446 .504 .558 .609 .657 .705 .751
14 1 .218 .311 .384 .448 .506 .560 .611 .661_ .708 .755
151 .219 .312 .386 .450 .508 .562 .614 .664 .711 .758
16| -219 .313 .387 .451 .510 .564 .616 #6566 .714 . 761
171 .220 .314 .388 .453 .511 .566 .618 .868 .717 764
18 1 .220 .314 .389 .454 .513 .568 .620 .670. .719 .767
191 .221 .315 .390 .455 .514 .569 .621 .672 .721 .769
20  .221 .316 .390 .456 .515 .570 .623 .674 .723 .771
30 | .223 .319 .395 .461 .522 .578 .632 .684 .734 .783
80 | .226 .323 .400 .467 528 .586 .641 .694 .746 798
120 | .227 .325 .402 .470 .532 .590 .645 .699 .752 .803
o | .228 .326 .404 .473 .535 .594 .650 .704 .758 .810

t-t v

a/2 (v)
v .60 .70 .80 .90 1.0 1.1 1.2 1.3 1.4 1.5
51 .740 .810 .878 .944 1.009 1.072 1.134 1.196 1.256 1.317
61 .766 .840 .912 .982 1.051 1.118 1.185 1.251 1.317 1.381
71 -785 .862 .937 1.010 1.082 1.153 1.22471.293 1.362 1.431
81 .799 .879 .956 1.032 1.107 1.181 1.254 1.327 1.399 1.470
91 .811 .892 .972 1.050 1.127 1.203 1.279 1.354 1.428 1.502
10 .820 .903 .985 1.065 1.144 1.222 1.299 1.376 1.453 1.529
11 -828  .912 .995 1.077 1.157 1.237 1.316 1.395 1.473 1.551
12 1 .834 .920 1.004 1.087 1.169 1.250 1.331 1.411 1.491 1.570
131 .840 .927 1.012 1.096 1.179 1.262 1.343 1.425 1.506 1.587
14 1 .845 .933 1.019 1.104 1.188 1.271 1.354 1.437 1.519 1.601
15} .849 .938 1.025 1.111 1.196 1.280 1.364 1.448 1.531 1.614
16 | .853 .942 1.030 1.117 1.202 1.288 1.373 1.457 1.541 1.625
17 | .856 .946 1.035 1.122 1.209 1.295 1.380 1.466 1.551 1.635
18| .859 .950 1.039 1.127 1.214 1.301_1.387 1.473 1.559°1.644
19} .862 .953 1.042 1.131 1.219 1.306 1.393 1.480 1.566 1.652
20 | .864 .956 1.046 1.135 1.223 1.311 1.399 1.486 1.573 1.660
30 | .880 .974 1.068 1.160 1.252 1.344 1.436 1.527 1.618 1.708
60 | .896 .994 1.091 1.187 1.283 1.379 1.474 1.570 1.665 1,760
120 1 .904 1.004 1.102 1.201 1.299 1.397 1.494 1.592 1.690 1787
® 1 -913 1.014 1.115 1.215 1.315 1.415 1.515 1.615 1.715-1.815
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Table 2. Values of hv(t) for a=.10.

- v
t ta/2 (v)

vl .05 .10 .18 .20 .25 .30 .35 .40 45 .50
5| .224 .318 .392 .455 .512 .564 .613 .660 .704 .747
6 | .228 .324 .400 .464 .522 .576 .626 .674 .720 .765
7 | 1231 .329 .405 .471 .530 .584 .636 .685 .732 .777
8 | .233 .332 .409 .475 .535 .591 .643 .693 .740 .787
9 | .235 .334 .412 .479 .540 .596 .648 .699 .747 .794
"To | .236 .336 .415 .482 .543 .599 .653 .704 .753 .800
11 | .237 .338 .417 .485 .546 .603 .656 .708 .757 .805
12 | 1238 .339 .418 .487 .548 .605 .659 .711 .761 .809
13 | .239 .340 .420 .488 .550 .608 .662 .714 <764 .813
14 | .240 .341 .421 .4%0 .552 .610 .664 .716 .767 .816
15 | .240 .342 .422 .491 .553 .611 .666 .778 .769 .818
16 | .241 .343 .423 .492 .555 .613 .668 .720 .771 .820
17 | 241 .343 .424 .493 .556 .614 .669 .722 “.773 .823
18 | .242 .344 .424 .494 .557 .615 .670 .723 .774 .824
19 | .242 .345 .425 .495 .558 .616 .671 .725 .776 .826
20 | .242 .345 .426 .495° 558 . .617 .673 .726 .777 .827
30 | .244 .348 .429 .500 .563 .623 .679 .733 .786 .837
80 | .246 .351 .433 .504 .569 .629 .686 .741 .794 .846
120 | .247 .352 .435 .506 .571 .632 .689 .744 .798 .851
w | .248 .354 .436 .508 .S574 .635 .693 .748 .802 .B856
v] .e0 .70 .80 .90 1.0 R .2 1.3 1.4 1.5
S| .830 .908 .984 1.058 1.131 1.202 1.272 1.342 1.410 1.479
6 | .850 .932 1.011 1.089 1.165 1.240 1.314 1.387 1.460 1.532
7| ‘865 .949 1.031 1.111 1.190 1.268 1.345 1.421 1.497 1.572
8| .876 .962 1.046 1.128 1.209 1.289 1.369 1.448 1.526 1.604
9 | 885 .972 1.058 1.142 1.225.1.307 1.388 1.469-1.549 1.629
10 | .892 .981 1.068 1.153 1.237 1.321 1.404 1.486 1.568 1.650
11 | .898 .988 1.076 1.162 1.248 1.333 1.417 1.501 1.584 1.667
12 | .903 .994 1.083 1.170 1.257 1.343 1.428 1.513 1.598 1.682
13 | .907 .999 1.088 1.177 1.264 1.351 1.438 1.524 1.609 1.694
fa | .911 1.003 1.093 1.183 1.271 1.359 1.446 1.533 1.619 1.705
15 | .914 1.007 1.098 1.188 1.277 1.365 1.453 1.541 1.628 1.715
16 | .917 1.010 1.102 1.192 1.282 1.371 1.460 1.548 1.636 +.724
17 | 1919 1.013 1.105 1.196 1.286 1.376 1.465 1.554 1.643 1.731
18 | .921 1.015 1.108 1.200 1.290 1.381 1.470 1.560 1.649 1.738
19 | .923 1.018 1.111 1.203 1.294 1.385 1.475 1.565 1.655 1.744
20 | .925 1.020 1.113 1.206 1.297 1.388 1.479 1.570 1.660 1.750
30 | .936 1.033 1.129 1.224 1.319 1.413 1.506 1.600 1.693 1.786
60 | .948 1.047 1.146 1.243 1.340 1.437 1.534 1.631 1.727 1.824
120 | .954 1.054 1.154 1.253 1.352 1.450 1.549 1.647 1.745 1.843
w | ‘959 1.061 1.162 1.263 1.363 1.463 1.563 1.663 1.763 1.863

14
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