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Abstract . -

Several nonadaptive repeated-MLE procedures for stochastic approximation
in quantal response problems are compared. Examination of how the shapes of
the efficient score functions of individual observations affﬁéf the behavior
of these rules shows that the nonadaptive logit-MLE rule is much less suscep-
tible to misleading initial observations than are the nonadaptive probit-MLE
rule or a nenadaptive Robbins-Monro rule. A consistency theorem for repeated-

MLE procedures in quantal response problems is stated.



1. INTRODUCTION AND SUMMARY . -
Let F: R~ [0,1] be a quantal response curve. Thus, if we choose a stimulus
“level X s We observe a Bernoulli random variable Yy indicating response or

nonresponse to the stimulus, where

(1.7) Pr{yn =13y =1- Pr{yn =0} = F(xn). - -

Examples include bioassay, where Yy = 1 indicates the death of a test animal
which has been given a doseof level X of a toxic substance,-and reliability
testing of components or materials, where Yo = 1 1ndicaté§ the failure of a test
item which has been subjected to a stress or shock of magnifude Xy The

problem of interest here is the estimation of the 100pth percentile Lp of F,
where p€(0,1) is given. The goal will be to find a scheme for sequentially
choosing the stimulus levels XqsXgs . SO that X, converges to Lp as quickly

as possible. In applications like those mentioned above, the quantal response

function F will typically be continuous and increasing with 1im F(x) = 0 and
X>=co

Tim F(x) = 1, or at least with 1im F{(x) < p and 1im F(x) > p. Thus, a
X>Foo ' Xo>=00 _ X>teo e

unique root Lp of

which also satisfies F(x) < p for x < LD and F(x) > p for x > Lp will typically
exist and be unique. For reasons of tradition and generality, this paper will
not assume that F is continuous or increasing, but rather only tﬁét there
exists a reasonably well defined and unique 100pth percentile. To wit, we

assume the existence of a stimulus level LD satisfying



(1.3a) \ F(Ly) =p ' )

(1.3b) For every 0 < s < 1, sup _4 F(L. - h) < p.

s<h<s P

(1.3c) For every 0 < § < 1, inf -1 F(L_ + h) > p.
§<h<s P

—

The stochastic approximation problem described above is obviouéiy one to
which Robbins-Monro procedures can be applied. In the present setting, the
standard, nonadaptive Robbins-Monro rules for recursively choosing the xn's
take the form o

(1.4) X ¢ =x - (y -p)/(nb) ,

n

where b is a positive constant. The Robbins-Monro rule (1.4) will be denoted by
RM(b).

The RM(b) rule can be obtained by doing repeated maximum 1ikelihood estima-
tion under a simple linear model. (See Lemma 1 of Lai and Robbins (1979).)
To be specific, suppose that our model for the distribﬁtion of Yy given

stimulus Xh, is o .

(1.5) - Y, T b(xn - Lp) TPt
where b > 0 is known and e;,eps-.. are i.i.d. N(0,0°) random variables. Then
the X 4] produced by the RM(b) rule is precisely the maximum likelihood estimate

-~

for Lp under the model (1.5). -

Suppose that g = %;-F(x)]x=0 exists and is positive. It is well known that

the asymptotically best choice of b in (1.4) is b = 8. (See, for example, Sacks



(1959), and Lai and Robbins (1979).) Although Lai and Robbins (]979) consider

only stochast1c approximation with i.j.d. "errors", it seems c]ear that their
results and methods also apply in our setting. Thus, one can atta1n the asymp-
totically optimal convergence rate of X, to Lp by replacing b in (1.4) with n
certain strongly consistent estimators é of 8. Such adaptive RM procedures may

to some extent be regarded as repeated MLE procedures based”bn the mode]

(1.6) i = 8(x,

;9

_Lp)+p+81

where now both the location parameter Lp and the scale parameter g are unknown,-
and the errors €5 remain i.i.d. N(0,¢ ) The re]at1onshrp between adapt1ve RM
Procedures on the one hand and repeated MLE (or "iterated least squares") procedures
on the other is discussed in Lai ang Robhins (1982). See also Wy (1985, 1986).

Wu (1985, 1986) has suggested that the X, 's be chosen to equal the maximum
TikeTihood estimate of L under a parametric model which is more appropr1ate for
quantal response than the models (1. 5) and (1.6), which at first glance might

seem almost grotesquely 1nappropr1ate He has focused most of his attention on

the location-scale logit model for F given by
(1.7) PO = 6lxfann) = (1w ey G en,

Wu (1985) has done Monte Carlo simulations to compare the performance of RM(b)
~and adaptive RM pProcedures w1tﬂ.th1s "adaptive" (s1nce the scale parameter 2 is
being estimated) logit-MLE design for moderate sample sizes (n =10-to 35). Five
different functions (including a Togit curve and a probit curve) were used as

the true quantal response functions in these simulations, and Wu claims that a

mod1f1cat1on of his adaptive Togit-MLE method with truncated step sizes generally

outperforms RM(b) and adaptive RM procedures. He also claims that his method is



asymptotically equivalent to adaptive RM if it is consistent. ,(A1thqugh the
model (1.6) may seem "grotesquely inappropriate" for quantal responses, the
asymptotic behavior of adaptive RM rules does not seem to be subject to general
improvement even here. See Sellke (1986), Section 1, for an example.) However,
Wu has not given any rigorous proof of consistency, 7‘

Adaptive designs are probably of greater interest and importance than "non-
adaptive" (= fixed scale parameter) designs, since only adaptive designs have
some hope of matching the asymptotically optimal behavior of adaptive RM when the
true value 6; 8 1s unknown. However, nonadaptive procedureskare much easier to
study than adaptive procedures, and insights gained fronkihe ;kamination of
nonadaptive procedures may to some extent carry over to tﬁéfmuch more complicated
adaptive designs. Also, the simulations of Wu (1985) show that a well-chosen

nonadaptive procedure will often outpérfGrm adaptive procedures for moderate
sample sizes.

Section 2 will study several nonadaptive repeated MLE procedures by looking
at their (norma]ized) efficient score functions. Compariéon of the shapes of
the efficient score functions of individual observations shows that the nonadap-
tive logit-MLE rule performs far better than the nonadaptiyguprobitvMLE rule
or the nonadaptive RM ryle when the initial bbgervafions aée ta&én“fd;‘from Lp.

Section 3 states a consistency theorem for repeated MLE procedures.

2. GEOMETRY OF NONADAPTIVE REPEATED MLE DESIGNS.
Let G be a c.d.f. with an éVerywhere positive density g, and for which

G(0) = p. Consider the Tocation model for F given by R
(2.1) F(x) = 6(x - a) , 0€R.

Since G(0) = p, we have Lp = a under the model. The Tog Tlikelihood function

for o based on data {(xi,yi)}?=] is



n -
(2.2) £y g§[1og 6(x;-a) 1 y;=13 +[10g01 - G(x;-e) Iy, = °}§°

The efficient score function is

“(n) _ n -g(x.-a) _ g(Xi-oc) i B
(2.3) £ (a) = 12] ‘@(X—r I{y;=1} + m‘ I{yi-O}g

If we let 21(a) be the efficient score function for the ith observation, then

we can rewrife (2.3) as

(2.4) ::z"(“)(a) = 'z]

It is desirable that :g(n) be monotone, so that (2.5) has at most one root. A
necessary and sufficient condition for zi(a) to be monotone when y; = 1 (respec-
tively, Y; = 0) is that log G (respectively, log (1 - G) ) be concé&g,:(c.f.
Silvapulle (1981).) If these conditions hold, then it is easi]yvverified that
the MLE &n will exist and be unique precisely when

n fi
(2.6) % Yi > 0 and j (1-yi) > 0.
i

-

One can start using repeated maximum Tikelihood estimation to choose Xp+] only
after (2.6) holds. One can either use some other choice rule until some time

after (2.6) is satisfied, or one may start with some "fake" initial data for



which (2.6) holds and which one may feel reflects prior opinion, so that all
"real" observations can be determined according to the MLE ru]e:

Let us now define a normalized score function. Write

en -l |
e e R |
(2.9) - s = ig]gr(a-xi)I{yi=1} + q(a-xi)T{yi=0i%-.

Then : ;' i

(2.10) sW(a) = - RSB -2 ey

The MLE &n is of course also a root of

(2.11) sty =0 .

The normalization factor p(1-p)/g(0) was chosen so that FTU) ;le;ip and q(0) = -p.
Let us examine what the r,q and S(n) functions look 1ike when p = 1/2 and

G is a logit or a probit c.d.f. The formulas are as follows.
-1 -

Logit: G (t) = (1 + ™) ]
-1 - -1
()= (T+e™) gty =(+e™) -1
Probit: Gp(t) = o(t) -
_n? 2m® g
R R Al



The asymptotic distribution of W%(xn-Lp) under the logit and probit MLE rules
is determined by the derivative r'(0) = q'(0). (See Sellke (1285), Sé&tion 5.)
If the above r and q functions are rescaled (by a rescaling of the t-axis) so
that r'(0) = q'(0) = 1, then their graphs are as shown in Figures 1 and 2. Note
that r and g are monotone in both cases. (The concavity of Tog G and log (1-G) ~
is easy to verify analytically.) Figure 5 shows how the score funqtjon and the
MLE are changed by a single observation under the logit model. The geometric
aspects of how the score function and the MLE are updated under the probit
model are similar.

If one computes the efficient score function correspondifig to the model
(1.5),0ne finds that a repeated MLE rule under this mode?‘ig equivalent to

(n)

choosing Xp4q EO satisfy Sp (Xn+1) = 0, where

+

- .

(2.12) rR(t)

1-p+bt,

(2.13) ag(t) = -p + bt

and where Sén) is defined by (2.9). The graphs of rp and qp with b = 1 are
shown in Figure 3. Since Sén) is a line of slope (nb) fé?”WhiChfSEn)

it is easy to verify that the updating rule (1.4) holds.

(x,) =¥, - P>

The graphs in Figure 1, 2, and 3 can be used to examine how individual obser-
vations affect the value of the MLE. The effects of "outliers" ére of particular
interest. Suppose that {(Xi’yi)}?=] have been observed. Let us consider the
effect that a particular observation, say (x]gyi),has on the va{yé‘of aﬁ'in these

three models. In the logit and probit models, r > 0 and q < 0. Thus, for



Pf"ol)ii‘

Fi 3ure 2,

Ficiu.r-e 3, RM( 1) _
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-F—1<3t_1_ge. ‘. Cau.c)'u{

r{(t) = T_-

{} “+ l'n' i')l} {2_ ';’.(LI'/TI_) cu-cfan(‘n"-l')} .
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. I {5) _
- Xl. sati :>1tLe5 5 ()(‘.) = 0.

(5)
S (o():S (X)) + F(d’xt)) Since )/,,'—'-‘1,
X1 satisfies S“')ZX?) = 0.
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logit and probit, (x],y]) will "push Teft" on &n if yi = 1, in the sense that

the MLE would be Targer if (x1,y]) were deleted from the data. ;1kewi§e,

(X],y]) will "push right" if yi = 0, regardiess of the value of-x1. The size

of the "push" will obviously depend on the value of X - If ¥y = 1 and Xy >> &n,
then (x],y]) will generally have only a tiny effect on &n, since r(&n - x1)

will be very small. If y1 = 0 and Xy <<<&n, the situation 1s_§imi]ar. If ¥y = ]
and Xp << &n, then r(&n - Xi) ~ 1 under the logit model, and’;(&n -_x])
LR’;(nfé)(&n - X;) under the probit model. Thus, the logit model is "robust"
against out]jgrs in the sense that the presence or absence of a single observa-
tion, no matier how extreme, will generally have only a small effect on the value
of &n(at least if Zy; and (1 - yi) are both not small.) :Thé;ﬁrobit model 1is
not robust in this sense: 1if X1 is allowed to increase tbif«wb with y1 = 0

and {(Xi’yi)}?=2 held fixed, then &n will also increase to + .

The RM(b) rule can produce rather.bé}Verse effects in the quantal response

setting. If Xp >, * (Zb)'], then the (x],y]) ovservation "pushes right" re-
gardless of the value of yy- If Xy < &n - (2b)"], then (X13y1) “pushes left."
The RM(b) rule is also not robust in the sense used above.

The fobustness comparisons of the previous paragraphs are obviously very
similar to the standard approach to robustness .for M-estimators involving
consideration of the influence function. See, for example, Hﬁber’(i981).

It may be of interest to6 consider the degree to which a single outlier
observation retards the movement of X to Lp. Suppose, therefore: that we start
with (x],y]) = (0,1) and (xz,ié) = (0,0), and that the scofe function rules of
Figure 1, 2, and 3 are used thereafter. Suppose further that yi = 0 for all
subsequent observations. Under each of the three rules, Xg = O qna Xnt1 ~ Xp
forn > 3. If K> 0, how Tong will it take X,, to reach K? Under

the logit-MLE rule of Figure 1, the size of the steps (x - Xn) rapidly con-

n+1
verges down to .560. The first three step sizes are .693, .600, and .571. Thus,

-1

it takes about (.560) 'K = (1.78)K steps for X to exceed K. Under the probit-

MLE rule of Figure 2, it takes
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K2
76 1 ]_—ng {1 o+ 0(])} ‘ -

steps to exceed Kk, where nKz/(16 log2) is probably an underestjﬁate. For the

RM(1) rule, for n > 2,

"+l =(112)-E3 (1)71 =(172)1-3/2 +10g(n) + € - (2n)") + 0(n™%)3.
.'= -

—

where C = .5772 is Euler's constant. (See Apostol (1969), p. 618, Exercise 2).

Thus, it takes about

exp{2K + 3/2 - C + (1/2) exp (2K - 3/2 + C)} =1

-

additional obsérvations after the first 2 to ekceed K; For'K = 10; the above
estimates for the numbers of additioqa]_pbservations needed for X, to reach K
are 18, 28, and 1,220,814,797 for logit-MLE, probit-MLE, and RM(1), respectively.
(The 18 is correct, the 1,220,814,797 is closétd being correct, andokhe:28

is probably much too small.)

What happens if one uses a Cauchy c.d.f. in (2.6)? The resulting r and q
functions are shown in Figure 4. Repeated maximum likelihood estimation under
this model would have the perhaps desirable property that?ﬂthe;mgre extreme an
outlier, the smaller its influence on &n. However, the score funct%on would not
necessarily have a unique root, and Proposition 1 of Section 3 does not apply to
prove consistency. The author conjectures that this repeated maximum Tikelihood
rule would still be consistent under conditions (1.3a,b,c).

Another way of comparing the robustness properties of the score function rules

-~

of Figures 1 through 4 is to consider how fast X, grows under these rules if the
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Y, 's are all i.i.d. Bernoulli (po), with 0 <p  <p=1/2. It can be shown
that X, grows roughly T1ike a multiple of log n in all cases, bqf~the ébefficient
of log n would decrease in the order Cauchy, logit, probit, RM(1).

If p # 1/2, then the graphs of r and q are obtained from the p = 1/2
graphs by a horizontal Tocation shift and a vertical rescaling. (Achieving
r'(0) = q*'(0) = 1 would require another horizontal resca]ingfs The conclusions
reached above concerning robustness and the effects of outliers aré_éenera11y
valid when p # 1/2. [ |

To summarize, the somewhat qualitative comparisons above lead the author
“to favor fhe nonadaptive Togit-MLE rule over the competitoréiJ"The "bounded
influence" property of the logit model would cause Xn to’ﬁoye_more quickly to
thre neighborhood of Lp if one has started far away from Lédthan would the probit “
or RM(b) rules. The RM(b) rules are clearly the easiest from a computational
point of view, but the logit-MLE rule would also be easy to implement. The

probit-MLE rule would be slightly more cumbersome, since it involves the normal

c.d.f. Even if the Cauchy-MLE rule turns out to be consistent, implementation
of this rule would have to contend with the possibility of multiple roots of

the score function.

3. CONSISTENCY

It is well known that the RM(b) rules are consistent under conditions
(1.3a,b,c). (See, for example, Robbins and Siegmund k]971) for a very elegant
proof.) Are other repeated MLE rules also cons{stent under such weak conditions?
One strategy of proof which is suggested by the geometry of scorleunctions is

to attempt to show that the relationship of gn+] to X for repeated MLE rules is

very similar to formula (1.4). If, for large n, S(n) is "approximately Tinear"

. _. d <(n)
near x, with slope a =: - S(a)[,= , then
n
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X - (an)'] (y,-P)-

(3.1) Xpt1 n

Except for the approximation (3.1) has the form of a general Robbins-Monro rule.

Furthermore, one would expect a, to be on the order of n, so that Z(an)'] = o

and Z(an)_2 < o, QOne can in fact apply the non-negative almost supermartingale

convergence theorem of Robbins and Siegmund (1971), mimickin@rtheir proof of
consistency of RM(b) rules, to the approximation (1.3) to estab]isﬁ ;onsistency
of the nonadaptive logit-MLE rule. (The proof is not particularly elegant
because of-§;rious technical distractions.) The argument qlso works for the

nonadaptive probit-MLE once the boundedness of the x sequerice’ has been

n

-

demonstrated. . -

A different and more general proof of éonsistency is Q;ven in Sellke (1986)."
Wu (1985a,b) has shown that X cannot converge to an incorrect value. In terms
of the score function S(n), his argument is as follows. If X, X* > Lp, then
by (1.3c) and the continuity of r and q at zero, it follows that S(n) diverges
0+ w uniformiy in a small interval (x* - §, x* + §) about x*. But this and
S(n)(x

tradicting Xy > x*. Sellke (1986} completes the proof of consistency by showing

n+1) = 0 imply that xmﬂi(x* - 8, x* + §) for sufficiently large n, con-
that X0 must converge. The argument is based on an upcrcSSing:inéﬁga]ity.
Let Lp < @ < b be given, and suppose that xm < a. The upcrossing inequality- gives

a bound on the probability that sup Xy > b in terms of the difference
n>m -

sMpy - sMay, N
It follows that X cannot cross the interval [a,b] infinitely many times.

The following proposition is a special case of Theorem 1 of Sellke (1986).

—
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Proposition 1 Suppose that F satisfies (1.3a,b,c). Suppose that G is a c.d.f.

for which log G and 169 (1-G) are concave, and for which the second derivatives

at zero
2 2
d
4y tog 6(x) |,og > and &5 109 (1 - 6001,
dx dx

exist and are strictly negative. Suppose also that G(0) = p._‘If X is chosen,
for all sufficiently large n, to equal the MLE of Lp under the location model (2.1),

then X, converges to Lp'almost surely.
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