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ABSTRACT

Several procedures appropriate for selecting the best from k(>2)
1ife length distributions are discussed. The selection problem is considered
(Section 2) under the classical formulation using both the _indifference
zone and subset selection approaches, but mostly the latter. Under parametric
models (Section 3), procedures are described for selection from gamma, Weibull,
and exponential (one- and two-parameter) distributions. Nonparametric
procedures and distribution-free procedures are discussed (Section 4) for
selection in terms of a specified quantile and re]iabi]i;y at an arbitrarily
chosen point fn time, respectively. Procedures for selection from restricted
families are discussed (Section 6) with special reference to IFR and IFRA
families. The procedures described in vafious cases mentioned above illustrate

several modifications and generalizations of the basic goal.

Key words and phrases: Indifference zone, subset selection, restricted subset,
gamma, exponential, Weibull, binomial, nonparametric and distribution-free
procedures, restricted families, IFR and IFRA families, convex and tail
ordering, quantile selection, total 1ife statistic, comparison with control.
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SELECTION AND RANKING PROCEDURES IN RELIABILITY MODELS;

Shanti S. Gupta and S. Panchapakesan
Purdue University and Southern I1linois University

1. Introduction

Situations abound in practice where the aim of the sté%ﬁstica1<ana1yst
is to compare two or more populations in some fashion with a view to rank them
or select the best one(s) among them. For example, a purchasing firm may
want to determine which one of several competing suppliers of components for
a certain computer is producing the highest quality producff“'Typically, the
populations that are compared will be life length distr;bu;ipns of the
components from the competing manufacturers. The best pbbu]ation could be
defined as the one with the largest mean 1ife or with the largest quantile
(percentile) of a given order. 1In such situations, the classical tests of
homogeneity are not designed to answer efficiently several possible questions
of interest to the experimenter. Selection and ranking procedures were initially
devised in the early 1950's to provide the analyst appropriate tools to answer
these questions. Most of the investigations in the last thirty odd years have

adopted one or the other of two basic formulations. One of them is the so-

called indifference zone (IZ) formulation of Bechhofer (1954) and the other

is the subset selection (SS) appraoch of Gupta (1956_)f

Our main purpose in this paper is to describe some important selection
procedures that are relevant to reliability models. Selection procedures are
available in the literature for various parametric families of distributions.
Many of these distributions serve as appropriate models for the 1life length
‘of a unit. However, we will be concerned with only a few of these such as
*This reserach was supported by the Office of Naval Research Contract

NO0014-84-C-0167 at Purdue University. Reproduction in whole or in part
is permitted for any purpose of the United States Government.



exponential, gamma, and Weibull distributions. Besides some nénparametric
and distribution-free procedures, we emphasize selection procedures for

restricted families of distributions such as the increasing failure rate (IFR)

and increasing failure rate on the average (IFRA) families which are of
importance in reliability problems. In dealing with these"ﬁ;ocedures, we
mainly use the SS approach.

In the last three decades and more, the literature on selection and
ranking pré%edures has grown enormously. Several books have appeared exclusively
dealing with selection and ranking procedures. Of these, the monograph of
Bechhofer, Kiefer and Sobel (1968) deals with sequentia?'progedures with
special emphasis on Koopman-Darmois family. Gibbons, 01kfh and Sobel (1977)
deal with methods and techniques mostly-under the IZ formulation. Gupta and
Panchapakesan (1979) provide a comprehensive survey of the developments in
the field of ranking and selection, with a special chapter on Guide to Tables.
They deal with all aspects of the problem and lprovide an extensive bibliography.
Buringer, Martin and Schriever (1980) and, Gupta and Huang (1981) have discussed
some specific aspects of the problem. A fairly comprehensive categorized
bibliography is provided by Dudewicz and Koo (1982). For a erii{&al review
and an assessment of developments in subset selection theory andvtechniques,
reference may be made to Gupta and Panchapakesan (1985).

Section 2 discusses thg_formu]ation of theﬂbasic‘problem of selecting
the best population using the IZ and SS approaches. Section 3 deals with
selection from gamma, exponential and Weibull populations. Procedures for
different generalized goals are discussed using both IZ and SS approaches.

Nonparametric procedures are discussed in Section 4 for selecting in terms

of a-quantiles. This section also discusses procedures for Bernoulli distribu-



tions. These serve as distribution-free procedures for se]ecpfng fr&h life
distributions in terms of reliability at an arbitrarily chosen £1me. Procedures
for selection from restricted families of distributions are described in
Section 5. These include procedures for IFR and IFRA families in particular.

A brief discussion of selection in comparison with a standa?a or control

follows in Section 6.

2. Selection and Ranking Procedures

Let LATERRL be k given populations where uF has the associated

distribution function F, , i=1,...,k. The o, are rea]-valued parameters
: 1 -

taking values in the set @. It is assumed that the 0 are unknown. The
ordered 0, are denoted by e[]] 5_6[2175;..§_e[k] and the (unknown) population
s associated with 9[1] by T({)> i=1,...,k. The populations are ranked
according to their e-values. To be specific, T(5) is defined to be better
than T($) if i < j. No prior information is assumed regarding the true

pairing between (61,...,6k) and (e[]],...,e[k]).

2.1 Indifference Zone (IZ) Formulation

The goal in the basic problem in thérIi apbroach iéﬂfb séTect the best
population, namely, the one associated with e[k]. A procedure is required

to choose ghg_of the populations. A correct selection (CS) is a selection

of population(s) satisfying the goal. Here CS corresponds to choosing the
best population. Any selection procedure is required to guarantee a minimum

probability of a correct selection (PCS). In the IZ formulation, this require-

—

ment is that, for any rule R,

(2.1) . P(CS|R) > P* whenever ‘G(G[k]’e[k—l]) > &%,



where P(CS|R) denotes the PCS using R, and a(e[k],e[k_]]) is qﬁ épprébriate
measure of separation of the best population (k) from the next‘best

T(k-1)" The constants P* and &* are specified by the experimenter in advance.
The statistical problem is to define a selection rule which really consists ~

of a sampling rule, a stopping rule for sampling, and a deGision rule. If

we consider taking a single sample of fixed size n from each popu]é%ion,

then the minimum value of n is determined subject to (2.1). A crucial step
involved iﬁfthis is to evaluate the infimum of the PCS over 96*=={e=(e],...,ek):
G(G[k],e[k_]]) > &*}. Any configuration of g where this infimum is attained

is called a least favorable configuration (LFC). Between two valid (i.e.

satisfying (2.1)) single sample procedures, the sample size n is an obvious

criterion for efficiency comparison.” -The region 9., is called the preference

8
zone. No requirement is made regarding the PCS when 9 belongs to the

complement of Qs which, in fact, is the indifference zone.

2.2 Subset Selection (SS) Approach

In the SS approach for selecting the best population, the goal is to
select a nonempty subset for the k popu]qtipns which inglgdes‘thekbest
population. The size of the selected subset is not fixéd in:édVahce; it is
rather determined by the data themselves. Selection of any subset consistent
with the goal (i.e. including the best bopu]ation) is-a correct selection. It

is required that, for any rule R,
(2.2) P(CS|R) > P* for all ge @

where § ='{g} is the whole parameter space. It should be noted that there

is no indifference zone specification in this formulation. As is to be



expected, a crucial step is the evaluation of the 1nf1hum of the PCS over Q.
Any subset selection rule that satisfies (2.2) meets the criterion of validity.
Denoting the selected subset by S and its size by |S|, the expected value

of |S| serves as a reasonable measure for efficiency comparison between valid
procedures. Besides E(|S|), possible performance characteriStics include
E(|S|) - PCS and E(|S])/PCS. The former one represents the expected number

of nonbest populations included in the selected subset. As an overall

measure, one can also consider the supremum of E(|S|) over Q.

2.3 Some General Remarks -

-

The probability requirement, (2.1) or (2.2) as the case may be, is

usually referred to as the basic probability requirement,or the P*-requirement, )

or the P*-condition. There are several modifications and generalizations of

the basic goal and requirements on the procedures in both IZ and SS formulations.
These will be described as the necessity arises during our discussion of
several procedures. For details on these aspects of the problem, reference
may be made to Gupta and Panchapakesan (1979).
Suppose that the best population is the one associated with the largest
9.. A procedure R is said to be monotone(if fhe<probabfi}fy’bf‘sélecting s

1

is at least as large as that of selecting s whenever 05 > ej.

2.4 Two Types of Subset Selection Rules

. (1= 1,...,k)

Let Ti be the statistic associated with the sample from s

with distribution function F(x,ei); the 6, are the parameters to be ranked.
Most of the rules that have been studied in the literature are of one of the

following types:



R1: Select s if and only if
(2.3) Ty > max T, -d
1<j<k 9
and - )
RZ: Select s if and only if
(2.4) T.>c max T, .
1<j<k J a

where d>0 and c¢ (0,1) are to be determined so that the P*-requirement is
satisfied. T

These rules R1 and R2 have been typically proposed when 0; is a location
and a scale parameter, respectively. When 0 is neither a location nor a
scale parameter (e.g. a noncentrality parameter), usually one of these two
rules has been proposed depending on the nature of the support of Ti' Most
of the rules that are discussed in this paper come under one of these two
types. Treatment of Ry and R, in the Tocation and sca]é'Eése; ¥é;pective1y,
is given in Gupta (1965). The following properties hold for R1 in the Tocation
case and R2'1n the scale case.

(1) The procedure is monotone (Gupta, 1965).

(2) If the distribution F(x,s) possesses a density f(x,8) having a monotone
Tikelihood ratio (MLR) in x, then E(|S|) is maximized when 0] =en™ 8 énd this
maximum is kP* (Gupta, 1965). "

(3) Under the MLR assumption, the rule is minimax when the loss is

measured by |S| or the number of non-best populations selected (Berger, 1979).



(4) 1In a fairly large class of rules, the procedure is mihimax when the
loss is measured by the maximum probability of including a non;bést population
(Berger and Gupta, 1980).

A comprehensive unified Theory is due to Gupta and Panchapakesan (1972),
who have considered a class of rules which includes R],and Ré-as special cases;
see Gupta and Panchapakesan (1979, Section 11.2). Gupta and Huang-(1980)
have obtained an optimal rule in the class of rules for which the PCS is at

Teast vy by minimizing the supremum of E(|S]).

3. Selection from Parametric Families. o

-

Numerous parametric models are employed in the analy;is of life length
data and in problems connected with themodeling of aging or failure processes.
Among univariate models, a few partiédi&?'distributions, namely, the exponential,
Weibull, and gamma, stand out in view of their proven usefulness in a wide
range of situations. Of course, these distributions are related to each other.
In this section, we will discuss a few typical procedures for selection from

these populations.

3.1 Selection from Gamma Populations - e

Let TyseeesTy denote k given gamma populations with density'functions

a-1

(3.1) fx,0;) = X—exp(-x/6,), x > 0, 6., a >0, 1=1,....k

i o
T a)ef.

with a common known shape parameter a. For the goal of selecting a subset
containing the best population, namely, the one associated with e[k]’ Gupta
(1963a) proposed a rule based on the sample means X}, i=1,...,k, arising

from n independent observations from each popu]ation. The rule of Gupta (1963a) is



R .

3 Select s if and only if

(3.2) X, >c max X

where ¢ is the largest number with 0 < ¢ < 1 for which the«P;-requirement

is met. The LFC is given by By =---% 6 and the constant c is defé}mined by

(3.3) - e'v‘" (x/c) g (x) dx = ¥,

OV §

where v = na and, Gv and g, are the cdf and the density3-respectively, of

a standardized gamma random variable (i.e. with 6 = 1) witﬁ shape parameter v.

1(1)25, k = 2(1)11, and

Gupta (1963a) has tabulated the values of c for v
P* = .75, .90, .95, .99. Tables 1A and 1B (at the end of this paper) are
excerpted from the tables of Gupta (1963a) and they provide c-values for
k = 2(1)11, v = 1(1)20, and P* = 0.90 and 0.95, respectively.

Depending on the physical nature of the problem, we may be interested
in selecting the population associated with e[]], wh{ch is the best population

now. In this case, the procedure analogous-to R3 is e

R4: Select m if and only if

— 1 L =
(3.4) X. <= min X,
1= Coqgqek J

1

where 0 < ¢' < 1 is the largest number for which the P*-condition is met.

—

The constant c¢' is given by

(3.4) [ 11 -6, (0T g (x) de=Pr o
[0



where v = na. The values of the constant c' have been tabuTatéd for»
v = 1(1)25, k = 2(1)11, and P* = .75, .90, .95, .99 by Gupta and Sobel
(1962b) who have studied rule R4 in the context of selecting from k normal

populations the one with the smallest variance in a companion paper (1962a).

It is known that the gamma family {F(x,6)}, with common parameter r,
is stochastically increasing in o, i.e., F(x,ei) and F(x,ej) are distinct
for 0 # ej, and F(x,ei) 3_F(x,ej) for all x when 0, < ej. This implies

that rankf&é them in terms of 6 is equivalent to ranking in terms of

o~-quantile for any 0 < a < 1. -

-

3.2 Se]ectioﬁ from Exponential (One-Parameter) Populations -

We first note that this is a special case of gamma populations with

densities f(x,ei) in (3.1) witha = 1. Thus the rules R3 and R, are

applicable. Now consider a life testing situation where a sample of n
items from each population is put on test and the sample is censored

(type-I1) at the r-th failure. Let Xi] < Xj5 <...< X; denote the r

ir
completed lives in the sample from s i=1,...,k. Define

. o
(3.5) T. = Z] Xij + (n-r) Xsps i=1,...,k.

The Ti are the so-called total life statistics. It is well-known that
27. : ] .
—L has a chi-square distribution with 2r degrees of freedom. In other

0.
1

words, Ti has a gamma distribution with scale parameter 8; and shape

parameter r. Thus for selecting the population with the larges® mean life

0;, the procedure Ry (stated in terms of the Ti) will be
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R3: Select ﬁi if and only if

(3.6) T. >c max T,
! 1<j<k 9

where ¢ is given by (3.3) with v = r. -

3.3 Selection from Two-Parameter Exponential Distributions

Let ni~have density

: 1 (x-84) ..
(3.7) f(x,gi,o) = — exp - > X>055 84507 > 05 i=1,...,k:

The density (3.7) provides a model for life length data when we assume a
minimum guaranteed life 85 which is\he;e‘a location parameter. It is

assumed that all the k populations have a common scale parameter o. The

6; are unknown and our interest is in selecting the population associated

with the largest 0y We will discuss some procedures under the IZ formulation.
Consider the generalized goal of selecting a subset of fixed size s so that
the t best populations (1<t<s<k) are included in the selected subset. This
generalized goal was introduced by Desu aﬁd Sobel (1968)l Tﬁé special case

of t=s, namely, that of choosing t populations so that they are the t best,

was considered originally by Bechhofer (1954). When-s=t=1, we get the basic

goal of selecting the best pepulation. The probability requiremént is that

(3.8) PCS > P* whenever Ok-t+1] = O[k-t] > 6% >0

—

where o* and P* are specified in advance and a correct selection occurs when

a subset of s populations is selected consistent with the goal. Also, for a
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meaningful problem, we should have-%— <P*¥<1. In describing'several
t
procedures, we will adopt either the generalized goal or one of its special

cases. We will consider the two cases of known and unknown o separately.

Case A: Known o. We can assume without loss of genefajity thato= 1.

Let Xij’ j=1,...,n, denote a sample of n observations from is i=1,...,k.

Define Y. = min X.., i =1,...,k.
<jen W

Raghavachari and Starr (1970) considered the goal of sg]gcting the t

best populations (i.e. 1<s=t k) and they studied the 'néiura]' rule

(3.9) R5: Select the t popu]atjonf gssoc1ated with Y[k—t+1]"”’Y[k]‘

The LFC for this rule is given by

. _ _
9[]] = ... = e[k_t]§

(3.10) 4 Olk-t+11 7 00 T kD

L Ork-t+1] = O[k-t] = O

The minimum sample size required to satisfy (3.8) is the smallest integer

——

n for which

(3.11)  (1-eTM)Kt o (ko) 1(e™F, 1, k-t) > Px -
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where

N

(3.12)  Iza.8) = f u® H(1-0)®") du, a,p0, 0<z<T.

o

Equivalently, we need the smallest integer n such that
(3.13) ne* > -logv,
where v (O<v<1) is the solution of the equation -

3.18)  (1-0)%" T & (ket)v™t 1(v,t+1,k-t) = P*.

Raghavachari and Starr (1970) have tabulated the v-values for k=2(1)15,
t=1(1)k-1, and P* = .90, .95, .975, .99.
In particular, for selecting the best population, the equation (3.14)

reduces to
(3.15) (k) [T-(1-0)%T = P, -

For the generalized goal, Desu and Sobel (1968)_$tudied the following

rule R6‘ _
Rg: Select the s populations associated with Y[k-s+1]""’Y[k]‘
Given n, k, t, 6*, and P*, they have shown that the smallest s for which the

probability requirement (3.8) is satisfied is the smallest integer s such that

(3.16) (3) > px (K) O,
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It should be pointed out that Desu and Sobel (1968) have obtained gené?a] results
for location parameter family. They have also considered the dué] problem of
selecting a subset of size s(s<t) so that all the selected populations are among

the t best.

—

Case B: Unknown o. In this case, we consider the basic goal of selecting

the best population. Since o is unknown, it is not possible to determine in
advance the sample size needed for a single sample procedure in order to
guarantee th; P*-condition. This is similar to the situatiqp that arises in
selecting the population with the largest mean from seveﬁa]iﬁ;}mal populations
with a common dnknown variance. For this latter prob]em;iBechhofer, Dunnett
and Sobel (1954) proposed a non-elimination type two-stage procedure in which
the first stage samples are uti]ized\ﬁdfély for estimating the variance without
eliminating any population from further consideration. A similar procedure
was proposed by Desu, Narula and Villarreal (1977) for selecting the best
exponential population. Kim and Lee (1985) have studied an elimination type
two-stage procedure analogous to that of Gupta and Kim (1984) for the normal
means problem. In their procedure, the first stage is used not only to
estimate o but also to possibly eliminate hon-confenders: .Thé%r“Mohte Carlo
study shows Fhat, when e[k] - e[k_]] is sufficiently large, the elimination
type procedure performs better than the other type procedure in terms of the

expected total sample size. -

The procedure R7 of Kim and Lee (1985) consists of two stages as follows.

Stage 1: Take Ny independent observations from each s (1<i<k), and

compute Y§1) = min Xi" and a pooled estimate o of o, namely,
1<j<n, J
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b0
o = 121 j§1 (Xij_Yi )/k(ny-1).

Determine a subset I of {1,...,k} defined by

p= G > max v o (ak(ng-n)ozng-e%) s,
1 1<j<k J -

where the symbol a’ denotes the positive part of a, and h(>0) is a design
constant tajbe determined.

(a) If I has only one element, stop sampling and assert that the
population associated with Yél% as the best. *-

(b) If I has more than one element, go to the second stage.

Stage 2: Take N - n0 additional obsérvations Xij from each s for

iel, where
N = max {n,, <2k(n0-1)8h/e*>},

and the symbol <y> denotes the smallest intgger equal thgpeater“than y.

Then compute, for the overall sample, Yi = max Xij and chbbsévthe
1<j<N '

population associated with max Yi as the best.
\ iel

The constant h used in the procedure R7 is-given by

(e8]

(3.17) [ 1-(1-a()) 12/ (%2 ()} £ (x) dx = px

0 -
where o(x) = exp(-hx) and fv(x) is the chi-square density with v = 2k(n0-1)
degrees of freedom. The h-values have been tabulated by Kim and Lee (1985)
for P* = .95, k = 2(1)5(5)20, and ng = 2(1)30.
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3.4 Selection from Weibull Distributions.

Let Lh have a two-parameter Weibull distribution given by the cdf

C.
(3.18) Fi(x) = F(x3045¢5) = 1 - expl=(x/8;) '}, %20, 055c > 0, .= 1,...,k.

—

The c; and 6, are unknown. Kingston and Patel (1980a,b) have considered the
problem of se]ecting'from Weibull distributions in terms of their reliabilities
(survival probabilities) at an arbitrary but specified time L > 0. The
reliability at L for Fi (i=1,...,k) is given by -

| .
(3.19) oy =1 - F,(L) = expt-(L/8;) '}

We can without Toss of generality assume that L = 1 because the observed
failure times can be scaled so that L = 1 time unit. Further, letting

C.,
(6:) T =, we get p. = exp{-XJ}. Obviously, ranking the populations in
i i

i i
terms of the P is equivalent to ranking in terms of the Ay and the best
population is the one associated with A[k]’ the 1argést Aje Kingston and
Patel (1980a) considered the problem of selecting the bgsi:oqg ynder the

IZ formulation using the natural procedure based on estimates of the A
constructed. from type II censored samples. They also considered the problem
of selecting the best in terms of the a-quantiles for a given ag¢ (0,1),

o ¥ 1-e'], in the case where 6, =...= ek =9 (uhknown). The a-quantile of

1 1/¢.

Fi is given by £y = o[-Tog(1-a)] T so that ranking in terms of the a-quantiles

is equivalent to ranking in terms of the shape parameter. It should be noted

that the ranking of the-ci is in the same order as that of the associated Ei

1 1

if o < 1-e” ', and is in the reverse order if o > 1-e '. The procedures

discussed above are based on maximun likelihood estimators as well as simplified
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1inear estimators (SLE) considered by Bain (1978, p. 265). For further
details on these procedures, see Kingston and Patel (1980a). J

In another paper, Kingston and Patel (1980b) considered the goal of
selecting a subset of restricted size. This formulation, usually referred

to as restricted subset selection (RSS) approach, is due to*ﬁupta and Santner

(1973) and Santner (1975). 1In the usual SS approach of Gupta (1956), it is
possible that the procedure selects all the k populations. In the RSS
approach,_ﬁé restrict the size of the selected subset by specifying an
upper bound m(1<m<k-1); the size of the selected subset is-still random
variable taking on values 1, 2,...,m. Thus it is a genéralization of the
usual approach (m=k). However, in doing so, an 1ndifferéﬁée-zone is introduced.
The selection goal can be more general .than selecting the best. We now
consider a generalized goal in the RSS approach for selection from Weibull
populations, namely, to select a subset of the k given populations not
exceeding m in size such that the selected subset contains at least s of the
t best populations. As before, the populations are ranked in terms of their

A-values. Note that T<s<min(t,m)<k. The probability requirement now is that

(3.20) PCS > P* whenever ) = (A],...,Ak) € O x
where
(3.21) Qa = Q7 W] S Mpe1] A2 1 .

—

When t=s=m and »* > 1, the problem reduces to selecting the t best
population using the IZ formulation. When s=t < m=k and x* = 1, the problem

reduces to selecting a subset of random size containing the t best population
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(the usual SS approach). Thus the RSS approach integrates thg'formu{ations
of Bechhofer (1954), Gupta (1956), and Desu and Sobel (1968). éenera]
theory under the RSS approach is given by Santner (1975). |
Returning to the Weibull selection problem with the generalized RSS goal,
Kingston and Patel (1980b) studied a procedure based on typéTII censored

samples from each population. It is defined in terms of the maximum likelihood

estimators (or the SLE estimators) Xi' This procedure is

R8: fﬁc]ude s in the selected subset if and only if

-

~ - -

(3.22) Ay > max {x[k—m+1]’ o x[k_2+1]},

where ¢ ¢ [0,1] is suitably chosen‘E6>§5tisfy (3.20).

Let n denote the common sampie size and consider censoring each sample
at the rth failure. For given k, r, n, s, t, and m, we have three quantities
associated with the procedure R8’ namely, P*, ¢, and A* > 0. Given two of
these, one can find the third; however, the solution.may not be admissible.
For example, for some P* and A*, there may not be a constant c¢ [0,1] SO
that (3.20) is satisfied unless m=k. Kinésfoﬁ and Pateiﬂ1i980b) have given a

few tables of r*-values for selected values of other constants. Their table

values are based on Monte Carlo techniques and the choice of SLE's.

4. Nonparametric and Distribution-Free Procedures

Parametric families of distributions serve as life models in situations
where there are strong reasons to select a particular family. Ea} example,
the model may fit data on hand well, or there may be a good knowledge of
the underlying aging or failure process that indicates the appropriateness

of the model. But there are many situations in which it becomes desirable to
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avoid strong assumptions about the model. Nonparametric or distribution-free
procedures are important in this context.

Gupta and McDonald (1982) have surveyed nonparametric selection and
ranking procedures applicable to one-way classification, twqfway classification,
and paired-comparison models. These procedures are based 8; rank scores and/or
robust estimators such as the Hodges-Lehmann estimator. For the usual types
of procedures based on ranks, the LFC is not always the one corresponding
to identical distributions. Since all these nonparametric procedures are
relevant in the context of selection from 1ife length dist;fﬁutions, the
readef is best referred to the survey papers of Gupta a;H McDonald (1982),
and Gupta and Panchapakesan (1985), and Chapters 8 and 15 of Gupta and
Panchapakesan (1979). -

There have been some investigations of subset selection rules based on
ranks while still assuming that the distributions associated with the
populations are known. This is appealing especially in situations in which
the order of the observations is more readily available than the actual
measurements themselves due, perhaps, to excessive cost or other“physical
constraints. Under this setup, Nagel (1970j,.Gubta, Huéﬁémaﬁd Nagel (1979),
Huang and Panchapakesan (1982), and Gupta and Liang (1984) have investigated
Tocally optimal subset selection rules which satisfy the validity criterion
that the infimum of the PCS is P* when the distributions are identical. They
have used different optimality criteria in some neighborhood of an equi-
parameter point in the parameter space. An account of these rules is given
in Gupta and Panchapakesan (1985). )

Characterizations of life length distributions are provided in many

situations by so-called restricted families of distributions which are

defined by partial order relations with respect to known distributions.
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Well-known examples of such families are those with increasing'(decréésing)
failure rate and increasing (decreasing) failure rate average. lée]ecfion
procedures for such families will be discussed in the next §ection.

In the remaining part of this section, we will be mainly- concerned with
nonparametric procedures for selection in terms of a quanthg and selection
from several Bernoulli distributions. Though the Bernoulli se]ecfibn
problem could have been discussed under parametric model, it is discussed
here to eﬁéﬂasize the fact that we can use the Bernoulli selection procedures

as distribution-free procedures for selecting from unkngwnfbontinuous (1ife)

distributions:in terms of reliability at any arbitrari]?-chosen time point L.

4.1 Selection in terms of Quantiles

Let be k populations with continuous distributions Fi(x),

ERRREL
i=1,...,k, respectively. Given 0 < o < 1, let xa(F) denote the ath
quantile of F. It is assumed that the a-quantiles of the k populations are
unique. The populations are ranked according to their a-quantiles. The
population associated with the largest a-quantile is defined to be the best.
Rizvi and Sobel (1967) proposed a procedure_fqr ;e]ectinghg subset containing
the best. Let n denote the common size of the samples from Ehé given
populations and assume n to be sufficiently large so that 1 < (nt1)a < n.

Let r be a positive integer such that r < (n+1)o < r+1. It follows that

1 <r<n. Let Yj,i denote -the jth order statistic in the sampie from

i i=1,...,k. The procedure of Rizvi and Sobel (1967) is

Select m if and only if -

(o]

(4.1) Y . > max Y

Y‘,'I - .Iijik Y‘—C,J
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where ¢ is the smallest integer with 1 < ¢ < r-1 for which the'P*-co;dition
is satisfied. |

For the procedure R9, the infimum of the PCS is attained when the
distributions F],...,Fk'are identical and it is shown by Rizvi and Sobel

(1967) that c is the smallest integer with 1 < ¢ < r-1 satTEfying

(4.2) kT () dou) 5 P

. - é e (u) d6 (u) >

where .
(4.3) 6.(1) = T v (-0 0 <<l

Rizvi and Sobel have shown that the maximum permissible value of P* such

that a c-value satisfying (4.2) exists is Py = P](n,u,k) given by

o k1 DT
(4.4) Py = () 120 W'
’

A short table of P]-va1ues is given by Riiv{'énd<30be1 FOP‘u’; 0.5 and

k = 2(1)10. The n-values range from 1 in steps of 2 to a value (depending

on k) for wﬁich P1 gets very close to 1. Also given by them is a table of
the largest value of r-c for_a = %—(which means_that r = (n+1)/2), k = 2(1)10,
n = 5(10)95(50)495, and P* = 0.75, 0.90, 0.95, 0.975, 0.99. For the IZ

approach to this selection problem, see Sobel (1967). -

4.2 Distribution-free Procedures Using Bernoulli Model

Let MyseeesT be k populations with the associated continuous (1ife)

distributions F]""’Fk’ respectively. The reliability of s at L is
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Py = 1 - Fi(L). Let Xij’ j=1,....n, be sample observations from w;,

i=1,...,k. Define

1 if Xij > L,

0 otherwise, -

Then Yil,LF,,Y are independent and identically distributed Bernoulli

in
random variables with success probability Pys i=1,...,k. We are

interested in selecting the population associated with §he largest Py

Gupta and Sobel (1960) proposed a subset selection rule-based on

n
Y. = ) Y..,i=1,...,k. Their rule is
i Lo i
Jj=1
R]O: Select s if and only if
(4.2) Y. > max Y. -D

1 J

T 1<j<k

where D is the smallest nonnegative integer for which the!P*trequirement
is met. |

An interesting feature of Procedure R]0 is that the infimum of the PCS
occurs when Py =---S 0 =0 (say) but it is not independent of Eheir common
value p. For k=2, Gupta and Sobel (1960) showed that the infimum takes place
when p = %u When k>2, the common value of °0 for which the infimum takes
place is not known. However, it is known that this common value ;0 > %—as
n>~. An improvement in the situation is provided by Gupta, Huang and Huang

(1976) who investigated conditional selection rules and, using the conditioning

argument, obtained a conservative value of d. Their conditional procedure is
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R Select T if and only if

11"

(4.3) Yi > max Y. - D(t)
1<j<k J

k
given T = ) Yi = t, where D(t) > 0 is chosen to satisfy thé P*-condition.
i=1

Exact result for the infimum of the PCS is obtained only for k=2; in this
case, the infimum is attained when Py =Py =P and is independent of the common
value p. For k>2, Gupta, Huang and Huang (1976) obtained a conservative

value for D(t) and also for D of Rule R]O' They have showr -that inf P(CSIR]])zP*

-

if D(t) is chosen such that -

d(t) < for k = 2
(4.4) D(t) = _
max{d(r): r = 0,1,...,min(t,2n) for k > 2

where d(r) is defined as the smallest value such that

Px (4N for k = 2
(4-5) N(Z;d(r)srsn) > - e o
[1-(1-P) (k-1)11 (3" for k > 2

and N(k;d(t),t,n) = Z(n yo«+(" ), the summation being over the set of all

1 Sk
k
nonnegative integers s, such that ) s; = tands, > max S - d(t).
i=1 1<j<k-1

A conservative constant d for Procedure R,, is given by d = max d(t).
10 0<t<kn

Gupta, Huang and Huang (1976) have tabulated the smallest value d(t) satisfying
(4.5) for k = 2,4(1)10, n = 1(1)10, t = 1(1)20, and P* = 0.75, 0.90, 0.95, 0.99.
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They have also tabulated the d-values (conservative) for Procgdure R]b for
P*¥ = 0.75, 0.90, 0.95, 0.99, and n = 1(1)4 when k = 3(1)15, and n = 5(1)10
when k = 3(1)5.

Under the IZ formulation, one can use the procedure of Sobel and Huyett
(1957) for selecting the population associated with the 1af§;st o Which

guarantees a minimum PCS P* whenever °rk] " °[k-11 2 A* > 0. Based on

samples of size n from each population, their procedure based on the Yi

defined in (4.1) is

(4.6) R ‘Select the population associated with the targest Y.,

12°
using randomization to break ties, if any.'A

The sample size required is the smallest n for which the PCS > P* when

°r1] = ... = PrKk-1] = PrKk] - A*, the LFC in this case. Sobel and Huyett

(1957) have tabulated the sample sizes (exact and approximate) for k = 2,3,4,10;

A* = 0.05(0.05)0.50, and P* = 0.50, 0.60, 0.75(.05) 0.95, 0.99.

When n is large, the normal approximation to the PCS yields

(4.7) N c2(1-a%2) /8p%2

where ¢ = c(k,P*) is the constant satisfying

o«

(4.8) [ o* N (xee) o (x) dx = P
and, ¢ and  denote correspondingly the cdf and density of the standard
normal distribution. The c-value can be obtained from tables of Bechhofer
(1954), Gupta (1963b), Milton (1963) and Gupta, Nagel and Panchapakesan (1973)

for several selected values of k and P*.
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The Bernoulli selection problem has applications to the q?ug selection
problem and to clinical trials. This fact has spurred Tots of research
activity involving investigations of selection procedures using sampling

procedures such as the play-the-winner (PW) sampling rule (introduced by

Robbins, 1952 and 1956) and vector-at-a-time (VT) rule witﬁ;; variety of
stopping rules. One of the main considerations in many of these brocedures

is to design the sampling rule so as to minimize the expected total number

of observations and/or the expected number of observations from the worst
population. Some of these procedures suffer from one drawback or another.

For excellent review/survey/comprehensive assessment of’these (and other)
procedures, reference should be made to Bechhofer and Kuik;rni (1982),
Buringer, Martin and Schriever (1980), Gupta and Panchapakesan (1979,

Sections 4.2 through 4.6), and Hoel, Sobel and Weiss (1975). For corresponding
developments in subset selection theory, see Gupta and Panchapakesan (1979,

Section 13.2).

5. Selection from Restricted Families of Distributions

A restricted family of probability dis;ributions i;Jggfinedﬁby a partial
order relation with respect to a known digtribution. Ag we.ﬂaQe pointed
out earlier, such families provide characterizations of 1ife length distributions.
Selection rd]es for such restricted families were first considered by Barlow
and Gupta (1969). We define-below the binary partial order relations (é) that
have been used in studying selection procedures. These are partial ordering
in the sense that they enjoy only reflexivity and transitivity graperties,

that is, (1) F < F for all distributions F, and (2) F < G, G < H implies

<
4]

G.

F < H. Note that F < G and G < F do not necessarily imply F
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Definitions 5.1 (1) F is said to be convex with respect to G (F 8 G)
1

if and only if G" 'F(x) is convex on the support of F.
(2) F is said to be star-shaped with respect to G (F g G) if and only
if F(0) = G(0) = 0, and G']F(x)/x is increasing in x > 0 on the support of F.
(3) F is said to be r-ordered with respect to G (F ;,ﬁ) if and only if

1 1

F(0) = G(0) = 5 and G~ 'F(x)/x is increasing (decreasing) in x positive

(negative).

(4) Fis said to be tail-ordered with respect to G (F § G) if and only

1

if F(0) = G(0) = %—and G 'F(x) - x is increasing on the support of F.

It is well-known that convex ordering implies star?erdering. Further,
when G(x) = 1—e'x(xzp), F g G is equivalent to saying that“F'has an 1ncréasing
failure rate (IFR) and F g G is equivalent to saying that F has an increasing
fajlure on the average (IFRA). Of course, if F is IFR, then it is also IFRA.
IFR distributions were first studied in detail by Barlow, Marshall and Proschan
(1963) and IFRA distributions by Birnbaum, Esary and Marshall (1966). The
r-ordering was investigated by Lawrence (1975). Doksum (1969) used the tail-
ordering. The convex ordering ans s-ordering (not défined here) have been
studied by van Zwet (1964). Without the assumption of thé’cqmmgﬁkmedian zero,
the definition 5.1-(4) has been used by Bickel and Lehmann (1979) to define

an ordering-by spread with the germinal concept attributed to Brown and

Tukey (1946). Saunders and Moran (1978) have also pefceived this kind of

-

ordering (called ordering by dispersion by them) in the context of a neurobio-

logical problem. .
Gupta and Panchapakesan (1974) have defined a general parttal ordering

through a class of real-valued functions, which provides a unified way to

handle selection problems for star-ordered and tail-ordered families. Their

ordering is defined as follows.
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Definition 5.2. Let ¥ = {h(x)} be a class of real-valued functions h(x).

Let F and G be distributions such that F(0) = G(0). F is said to be }-ordered
with respect to G (F % G) if G-]F(h(x)).z h(G']F(x)) for all he ¥ and all
x on the support of F.

It is easy to see that we get star-ordering and tai]-gréering as special
cases of ¥ -ordering by taking ¥ = {ax, a>1}, F(0) = G(0) = 0, and -¥ = {x+b,
b>0}, F(0) = G(0) =-%, respectively. Hooper and Santner (1979) have used a

modified definition of ¥ -ordering. For some useful probability inequalities

involving ¥ -ordering, see Gupta, Huang and Panchapakesan £]984).

5.1 Selection in terms of Quantiles from Star-Ordered Distributions.

Let TyseeesTy have the associated absolutely continuous distributions
F],...,Fk, respectively. A1l the F{'are star-shaped with respect to a known
continuous distribution G. The population having the Targest a-quantile (O<a<1) is
defined as the best population. It is assumed that the best population is
stochastically larger than any of the other populations. Under this setup,

Barlow and Gupta (1969) proposed a procedure for selecting a subset containing
the best. Let Tj,i denote the jth order statistic in a sample of n independent

observations from M i=1,...,k, where n is assumed to be large enough so

that j < (n+1)a < j+1 for some j. The Barlow-Gupta procedure is

R]3: Select m if and only if

—

(5.1) T > C max T.

Js1 — ]i‘“f_k JsTr

-

where ¢ = c(k,P*,n,j) is the largest number in (0,1) for which Ehe P*-condition

is satisfied. The constant ¢ is given by
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(5.2)

O 3

Gg'l(x/c) gj(x) dx = P*

where Gj denotes the cdf of the jth order statistic in a sample of n
observations from G, and gj is the corresponding density function. The
values of ¢ satisfying (5.2) are tabulated by Barlow, Gupta—ﬁnd Panchapakesan

(1969) in the special case of exponential G, i.e. for selecting from IFRA

populations, for P* = 0.75, 0.90, 0.95, 0.99, and the following values of

k, n, and 3= (i) 3 =1, k = 2(1)11 (in this case, c is independent of n),
(ii) k = 2(1)6, j = 2(1)n, and n = 5(1)10 or 12 or 15 qepending on k.
Table 2A (at the end of this paper) is excerpted from tﬁe tables of Barlow,
Gupta and Panchapakesan (1969). It gives the values of ¢ for P* = 0.90,
0.95, k = 2(1)5, n = 5(1)12, and j such_that j < (n+1)/2 < j+1 (i.e.
appropriate for selection in terms of median).

For the selection of the population with the smallest o-quantile (assumed

to be stochastically smaller than any other Fi) the analogous procedure is

R Select s if and only if

14°

(5.3) dT. . < min T,
i S ek T

where d = d(k,P*,n,j) is the largest number in (0,1).satisfying the P*-condition

and is given by -
= k-1 - D% -
(5.4) J [1-6:(xd)T"  "g.(x) dx = P
0 - 3 J

where Gj and g; are defined as in (5.2). Barlow, Gupta and Panchapakesan (1969)
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have tabulated the values of d in the case of exponential G fqﬁ p* = 6.75,

0.90, 0.95, 0.99 and the following values of k, n, and j: (i) j =1,

k = 2(1)11 (d is independent of n), (ii) k = 2(1)6, j = 2(1)n, n = 5(1)12
for k = 6, and n = 5(1)15 for other k values. Table 2B (at the end of this
paper) is excerpted from the tables of Barlow, Gupta and Péﬁghapakesan (1969).
It gives the values of d for P* = 0.90, 0.95, k = 2(1)5, n = 5(])121 and j
such that J < (n+1)/2 < j + 1 (i.e. appropriate for selection in terms of
median). -

Suppose that G is the Weibull distribution with cdf G(x) =1 - exp{-(g)k},
x >0, and 6,:A > 0. It is assumed that X is known. Then it is easy to see

]/A, where ¢ is the constant in

that the new constant Cy is given by cp=c
the exponential case (A=1). Another interesting special case of G is the
half-normal distribution obtained by folding N(O,oz) at the origin, where o
is assumed to be known. The class of distributions which are star-shaped
with respect to this folded normal is a subclass of IFRA distributions.
Selection in terms of quantiles in this case has beeq considered by Gupta and

Panchapakesan (1975), who have tabulated the constant ¢ associated with R]3 for

k = 2(1)10, n = 5(1)10, j = 1(1)n, and P* =0.75, 0.90, 0.95,.0.99.

5.2 Selection in terms of Medians from Tail-ordered Distributions

Barlow and Gupta (1969) considered also the selection of the population
with the largest median (asstmed to be stochastically larger thén other
populations) from a set of distributions Fi’ i=1,...,k, which have Tighter
tails than a specified distribution G with G(0)=%. This means tﬁgf, for each 1,
Fi centered at its median A; is r-ordered with respect to G, and

(d/dx)F. (x+a) | o 2 (d/dx)G(x)[,_q. This definition of F, having a Tighter

tail than G used by them implies that Fi centered at A is tail-ordered with
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respect to G. The procedure of Barlow and Gupta (1969) has been-shown by
Gupta and Panchapakesan (1974) to work for this wider class defined using
tail-ordering. Actually, Gupta and Panchapakesan have also shown a generalized
version of this by considering tail-ordering of Fi and G whgp:both are centered
at their respective a-quantiles. - -

For selection in terms of medians, the procedure of Barlow and Gupta is

R -§e1ect s if and only if

15°

(5.5) T..> max Ty.-D, J<(n1)/2<3i+%1,
JSj' -lirik J,r -

where the Tj . are defined as 1in the»case of the procedure R]3, and the

appropriate constant D = D(k,P*,n) > 0 1s'given by

(5.6) ;T (w)g, (D)dt = pe.

-0

Here, Gj and gj are the cdf and the density of the jth order statistic in
a sample of n independent observations frqm_Gﬂ The va]ug§;of D are given by
Gupta and Panchapakesan (1974) in the special case wheré G 1§:tﬁe logistic
distribution, G(x) = [1+e'x]'],f0r k = 2(1)10, n = 5(2)15, and P* = 0.75,
0.90, 0.95, 0.99.

Using the 3-ordering (Pefinition 5.2) with the functions h satisfying
certain properties, Gupta and Panchapakesan (1974) have discussed a class
of procedures for selecting the best (i.e. the one which is stosh&stical]y
larger than any other, assumed to exist) of k distributions Fi’ Taeeesks

which are 3}- ordered with respect to G. The procedures R]3 and R]5 are

special cases of their procedure.
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Hooper and Santner (1979) considered selection of good populations in terms of
a-quantiles for star- and tail-ordered distributions using the RSS approach.
Let m have the distribution Fi and let F[i] denote the distribution having
the ith smallest a-quantile. Denoting the a-quantile of any distribution F
by xa(F), n: is called a good population if Xa(Fi) > C*xa(ffk-t+1])’ O<c*<1,
in the case of star-ordered families, and if Xa(Fi) > Xa(F[k-t+1])<_ d*,

d* > 0, in the case of tail-ordered families. The goal of Hooper and Santner
(1979) is-to select a subset of size not exceeding m(1<m<k-1) that contains at
lTeast one good population.. They have also considered the ECQb]em of selecting
a subset of fixed size s so as to include at least r 9059 populations (r<t,
rgs<k-t+r) us%ng the I1Z approach.

Selection of one or more good Eopulations as a goal is a relaxation from
that of selecting the best popu]ation(QB.» A good population is defined
suitably to reflect the fact that it is 'nearly' as good as the best. In
some form or other it has been considered by several authors; mention should
be made of Fabian (1962), Lehman (1963), Desu (1970), Carroll, Gupta and Huang
(1975), and Panchapakesan and Santner (1977). A discussion of this can be

found in Gupta and Panchapakesan (1985, Sgctiqn 4.2).

5.3 Selection from Convex Ordered Distributions

Let ﬂ];...,ﬁk have absolutely continuous distriputions F],...,Fk,
respectively, of which one is assumed to be stochastically larger than the
rest. This distribution, denoted by F[k]’ is defined to be the best. It is
assumed that F[k] § G, where G is a known continuous distribution, A1l
distributions in the context are assumed to have the positive réal line as
the support. Let X(j% (Yj,m) denote  the jth order statistic in a random sample

of size n from Fi(G)' Considering samples of size n from F]""’Fk each

censored at the rth failure, define
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(5.7) o= 7 ax(i) = 1,0,k
. .i L jj’n’ 9 ) 3
Jj=1
where
_ j-1 14 - e
aj gG ( ) (n)9 J ]a s ]s -
(5.8)
L i §
ar"gG (n )s

and g is the density associated with G. =

If G(y) = 1-eY, y > 0, then a;=...=a = 1/n, ana-ar = (n-r+1)/n.

r-1

X( i) + (n-r+1) X(i) » the well-known total life
-I Jn o Y‘,n - T

IIMI

Consequently, n Ti =
J

statistic until the rth failure from Fi'

Now, for selecting a subset containing F[k]’ Gupta and Lu (1979)
proposed the rule

R Select s if and only if

16°

(5.9) Ti >c max T., = T
1232k

where ¢ is the largest number in (0,1) satisfying the P*-condition. They

have shown that, if ay >0 for j=1,....,r, a,>c, and g(0) < 1, then
(5.10) inf P(CS|Ryc) = [ 657N (y/c) der(y),
g 16 0 T T

where GT is the distribution of T = » and @ is the space of all

r
Z J J n

k-tuples (F1,...,Fk) such that there is one among them which is stochastically
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larger than the others and is convex with respect to G. Thus, ‘the constant
c = min(ar,c*) where c* is the solution for ¢ by equating the f%ght-hand
side of (5.10) to P*.
For the special case of G(y) = 1-eY, y > 0, we get ¢ = min(c*,(n-r+1)/n),n

This special case is a slight generalization of the results—of Patel (1976).

6. Comparison with a Standard or Control

Although the experimenter is generally interested in selecting the best

of k(>2) competing categories, in some situations even the best one among

them may not be good enough to warrant its selection. §uch a situation arises

when the goodhess of a population is defined in comparison-with a standard (known)

or a control population. For convenience, we may refer to either one as the

~ L

control.

Let mys...om be the k (experimental) populations with associated

distribution functions F(x,ei), i 1,....k, respectively. The ei are unknown.
Let 8 be the specified standard or the unknown parameter associated with
the control population 0 whose distribution function is F(x,eo). Several
different goals have been considered in the.literature. ‘fpr example, one may
want to select the best experimental popuiation (i.e. tHe oné:aésotiated with
e[k], the 1§rgest ei) provided that it is better than the control (i.e. e[k] >
eo), and not to select any of them otherwise. An alternative goal is to select
a subset (of random size) of-the k populations which includes all those
populations that are better than the control. Some of the ear}y papers dealing
with these problems are Paulson (1952), Dunnett (1955), and Gupta” and Sobe]v(1958).
One can define a good population in different ways using comparison with
a control. For example, my may be called good if 0; > eO+A, or |ei'eO|5A

for some A>0. Several procedures have been investigated with the goal of
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selecting good populations or those better than the control and’ these will
not be described here. A good account of these can be had froh‘éupta and
Panchapakesan (1979, Chapter 20). A review of subset selection procedures
~ in this context, including recent developments, is contained in Gupta and
Panchapakesan (1985). —

An important aspect of the recent developments is the so-ca]]éa isotonic
procedures which become relevant in the situations where it is known that
6y < 6, 5_.:1 < 6y although the values of the 6; are unknown. This is
typical, for example, of experiments involving differen?_dose»]evels of a
drug so that the treatment effects will have a known ordering. Suppose that
a population s is defined to be good if 0, > 8y and bad Géhérwise. For the
goal of selecting all the good populatigns, any reasonable procedure R should
have the property: If R selects ms then it selects all populations ms for
j>i. This is the isotonic behavior of R. Naturally, one would consider
procedures based on isotonic estimators of the 05 - Such procedures have
been recently studied by Gupta and Yang (1984) in the case of normal means
(common variance 02, known or unknown), by Gupta and‘Huang (1982) 1in the case
of binomial populations with success probabilities 855 and’bthgbfa and Leu
(1983) 1in the case of two-parameter exponential populations with‘guarantee

times (location parameters) 6; and common (known or unknown)scale parameter.

A1l these papers deal with both cases of known and uﬁknown 8-

—

7. Concluding Remarks

In the preceding sections, we have described several selectidn procedures
that have special significance in reliability studies. However, we have
confined our attention to the classical type procedures since they are of

common interest to a wide variety of users. We have also generally restricted
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ourselves to single-stage procedures.. There is ample literature on two-stage
and sequential procedures. Further, we have not discussed decision-theoretic
formulations and Bayes and empirical Bayes procedures. Therg_have been
substantial developments in these regards, especially using subset selection
approach, in the last ten years. For a comprehensive survey of developments
until the late 1970's, we refer to Gupta and Panchapakesan (1979). A critical
review of .developments in the subset selection theory including very recent

developments is given by Gupta and Panchapakesan (1985).

-



Table 1A. Values of the constant ¢ of Rule R3 satisfying Equat}on
P¥ = 0.90
A 2 3 4 5 6 7 8 9 [97 11
1 |.111 .072 .059 .052 .047 .044 .041 .039 .038 .036
2 |.244 .183 .159 .145 .135 .128 .123 .119 .116 .113
3 |.327 .260 .232 .215 .203 .195 .188 .183 .178 -.174
4 1,386 .317 .286 .268 .255 .246 .239 .232 .228 .223
5 |.430 .360 .329 .310 .297 .287 .279 .273 .268. .263
6 |.466 .396 .364 .345 .332 .321 .313 .307; .301T .29
7 |.494° 426 .394 .374 .361 .350 .342 .336 .330 .325
8 |.519 .451 .419 .400 .386 .376 .367 .360 .355 .350
9 |.539 .472 .441 .422 .408 .398 .389 .382 .376 .371
10 |.558 .492 .460 .441 .428 417 .409 .402 .396 .391
11 |.573 .508 .478 .459 .445 434 .426 .419 .414 .408
12 |.588 .524 .493 .474 .461 .450 .442 .435 .429 .424
13 |.600 .537 .507 .488 .475 .465 .456 .450 .444 .439
14 i.612 .550 .520 .502 .488 .478 .470 .463 .457 .452
15 [.622 .561 .532 .514 .500 .490 .482 .475 .469 .464
16 |.632 .572 .543 .525 .511 .501 .493 .486 .481 .476
17 |.641 .582 .553 .535 .522 .5]12. .504 .497 _.491  .486
18 |.649 .591 .562 .544 .532 .522 .514 .507 .501 .496
19 |.657 .599 .571 .553 .540 .531 .523 .516 .510 .506
20 {.664 .607 .579 .562 .549 .539 .531 .525 .519 .514
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Table 1B. Values of the constant c of Rule R3 satisfying Equation (3.3)
P* = 0.95
k: -

Y 2 3 4 5 6 7 8 9 10 11
1 {.053 .03 .028 .025 .023 .021 .020 .019 .018 .018
2 | .156 .119 -.104 .095 .089 .085 .082 .079 .076 .074
3 |.233 .188 .168 .156 .148 .142 .138 .134 .131 .128
4 1.291 .242 .220 .206 .197 .190 .184 .180 .176 .173
5 | .33 .285 .261 .247 .237 .229 .223 .218- .214 .210
6 | .372. .320 .296 .281 .271 .263 .256 .251 -.247 .243
7 | .403 .350 .326 .310 .300 .291 .285 .279 275 .271
8 | .428 .376 .351 .336 .325 .316 .310 .304 .300 .296
9 |.451 .399 .374 .358 .347 339 .332 .326 .322 .317

10 | .471 .419 .394 .378 .367 .359 .352 .346 .341 .337

11 | .488 .437 .412 .396 .385 .377 .370 .364 .359 .355

12 | .504 .453 .428 .413 .402 .393 .386 .380 .376 .371

13 | .518 .468 .443 .428 .417 .408 .401 .395 .390 .386

14 | .531 .481 .457 .442 .430 .422 .415 .409 .404 .400

15 | .543 .494 .470 .454 .443 .434 428 .422 .A17 .413

16 | .554 .505 .481 .466 .455 .446 .439 .434 .429 .424

17 | .564 .516 .492 .477 .466 .457 .450 .445° .440° 2436

18 | .574 .526 .502. .487 .476 .468 .461 .455 .450 .446

19 | .5682 .535 .512 .497 .486 .477 .470 .465 .460 .456

20 | .591 .544 520 .506 .495 .486 .480 .474 .469 .465




Table 2A. Values of the constant c of Rule R]3 satisfying Equation (4:2)
for selecting the IFRA distribution with the Targest median,
G(x)=T-e™%, x>0, j<(n+1)/2<j+1, P*=0.90 (top entry), 0.95 (bottom entry)

k 2 3 4 5
] _

5 .32197 .25464 .22607 .20924

.22871 .18353 .16388 .15215

6 T | .32397 .25665 .22808 .21123

.23045 .18521 .16551 .15377

7 .38021 .31045 .27994 . .26164

- .28527 .23611 .21406 *_ 20068

8 .38198 .31228 .28179 -.26351

.28692 .23774 .21568 .20229

9 .42434 .35398 .32257 .30353

.32973 .27855 .25515 .24079

10 .42587 .35559 .32422 .30519

.33121 .28005 .25665 .24228

11 .45939 .38927 .35750 .33808

.36592 .31377 .28958 .27461

12 46071 .39069 .35896 .33956
.36724 .31512 29094 27597
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Table 2B. Values of the constant d of Rule R]4 satisfying Equation g5.4)
for selecting the IFRA distribution with the smallest median

G(x)=1-e7%, x>0, j<(n+1)/2<j+1, P*=0.90 (top entry),.0.95 (bottom entry)

k -
n 2 3 4 —5
5 .32197 .23711 .19983 17752
.22871 .17100 .14576 . 12953
6 - — .32397 .23881 .20134 .17891
- .23045 17244 . 14643 .13060
7 . 38021 .29477 . 25597 . . 23226
.28527 .22441 .19623 . -17883
8 | .38198 .29636 .25744 ~ +23365
.28692 .22585 .19755 .18007
9 .42434 .33988 - .. .30072 . 27650
.32972 .26775 .23845 .22014
10 .42587 .34131 .30208 .27779
.33121 .26909 .23971 .22134
11 .45939 . 37647 .33748 .31315
.36592 .30378 .27399 . 25521
12 .46071 37775 .33871 .31433
.36724 . 30501 .27516 .25634
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