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"~ 'ABSTRACT

Simultaneous estimation of p gamma scale-parameters is con-
sidered under squared-error loss. The problem of minimizing, sub-
ject to uniform risk domination, the Bayes risk (or more generally
the posterior expected loss) against certain conjugate or mix-
tures of conjugate priors is considered. Rather surprisingly, it
is shown that the minimization can be done conditionally, thus
avoiding variational arguments. Relative savings loss (and a
posterior version thereof) are found, and it is found that in the
most favorable situations, Bayesian robustness can be achieved
without sacrificing substantial subjective Bayesian gains.

1. "Introduction

In multiparameter estimation, one often encounters the deci-
sion-theoretic problem of estimating a vector 8= (e],ez,...,ep)




of p parameters under a certain loss, say, squared-error, i.e.,

L(

P 2

lg,g) = 121(61'91) . (1.1)
The development in multiparameter estimation has been of two
broad types: frequentist, and Bayesian. The emphasis in the
frequentist research has been on identifying the admissible pro-
cedures; perhaps the problem which has received the most atten-
tion is that of mathematically demonstrating the inadmissibility
of certain standard classical estimators in large dimensions
(popularly known as the Stein-effect) and finding explicit better
estimators. To a pure Bayesian, the important problem is to find
the rule that minimizes the posterior expected Toss with respect
to a certain prior w. Both approaches lead to problems, natu-
rally of different kinds. Since the celebrated work of Stein
(1956), numerous results have been proved which show that the
presence of Stein effect is just part of a very general phenom-
enon, having 1little to do with the exact form of the loss func-
tion or the underlying distribution. The class of improved esti-
mators, in many problems, is startlingly large; often times a
disappointing feature of these improved estimators is the very
nominal risk-improvement which makes the researcher feel that the
gains were not'worth the effort. Also there exists the very
serious problem of actually selecting an alternative estimator
for practical use.

The subjective Bayesian problem is easily stated, but has
its own problems. All said and done, the prior = determined in a
subjective fashion can be no more than an approximation to the
"true prior" and sensitivity of the subjective Bayes rule to mis-
specification of m can be of concern. The problem of finding
reasonably insensitive Bayes rules is thus of major importance.
Very briefly stated, this is the robust Bayesian problem. See
Berger (1980, 1981, 1985) for further discussion. It is in this
context that therfo]]owing restricted risk Bayes problem assumes



importance. Many times in multiparameter estimation, there
exists a natural estimate so(é) of the parameter vector 2. Let-
ting R(g,a) denote the frequentist risk of any estimate s, often
one can find a class of estimators £L such that

R(8,8)< R(e,ao) + ¢ for all & in 8 . In particular, every rule
in &y uniformly dominates the standard estimate §g- Let W(Q)
denote a subjectively determined prior, and sﬁ the estimator
which minimizes the integrates Bayes risk r(w,s) = fR(e,s)dn(g)
(or more generally the posterior expected loss). The restricted

risk Bayes problem is to find an estimator 8. from £2 such

that r(n,sﬂ’e) - r(m,8) < 0 for every s in £2,? The resu]tihg
estimator aﬁ’g_wi11 be especially attractive if it is only mar-
ginally worse than the unrestricted Bayes rule 8, in terms of the
average Bayes risk; then we will have an estimator which is never
much worse than 8y in a frequentist sense (and thus has a degree
of built-in robustness), and yet is only marginally worse in
terms of the Bayes risk.

The restricted risk Bayes problem, as stated above, is ex-
tremely difficult in most cases. In Berger (1982), a modified
version of this problem was considered for the symmetric normal
case. In many multiparameter problems, one can find an unbiased
estimator D8(x) of the risk-difference R(g,8) - R(g,ao). If an
estimator § is such that D§(x) < e for every x, then clearly s
belongs to “27 The modified problem addressed in Berger (1982)
was to find an estimator (we will call it Gﬂ’s again) with the
smallest Bayes risk with respect to = among all estimators § with
Dd(é) < e. This slightly different problem was treated in Berger
(1982) when ¥ ~ N (g, 6°I) and g ~ N (4, <°I) and it was found
that the solution 6“ . is a combination of the James-Stein esti-

H]

mator and the unrestricted linear Bayes estimator; specifically,
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| (1.2)
An intuitive way to understand this estimate is that it coincides
with the optimal Bayes estimate when data support prior informa-
tion and otherwise it is a boundary point of the class of im-
proved estimators (note the multiplier 2(p-2) instead of the
customary p-2). The proof involves complicated variational argu-
ments; more evidence of this was later found in Chen (1983). The
objective of this paper is to show that the hard variational ar-
gument can often be avoided by minimizing the posterior loss,
pointwise, and then showing that when these restricted Bayes
actions for different fixed X are combined to give a procedure,
one does not go outside of the class of estimators one started
with. The conditional minimization also has the added appeal of
good posterior interpretation. We will mostly deal with estima-
tion of multiple gamma parameters but will first consider the
normal example to illustrate the basic 1dea

Example. Let X~ N (8 021) ~ N (E,r I), p>3, 02, 12 > 0
known. The prob]em is to f1nd an est1mator 8 (5) with the small-
est Bayes risk in the class of spherically symmetric estimators
§(X) of g of the form

1% ) |
5(%) =K - p<—&(—§—— e (1.3)
satisfying D ¢(r) < 0, where D is as in (4.9) in Berger (1982),
l]é'&llz _ ()
r T e

= ——?;?——-, and p(r)=i$

unbiased estimator of R(g,s) - R(Q,X)]. It is assumed the loss
is ordinary squared-error. The unrestricted Bayes estimator is

[De(r) is just the usual un-



: 2
e . . [ ..
5. (X) = X - ;%:;?-(5—£); by familiar calculations, s (X) mini-
mizes the Bayes risk among all such & if

E 11550 - 5 (117 < Ells () - 8,00115

where Em denotes expectation with respect to the marginal distri-
bution of X.

By Lemma 3 in Berger (1982), for |[x-u||? > 2(p-2)(c%+:%),
and for any § satisfying (1.3),

2 xel?\\2
|1s(x) - 6“(5)112 =( > - p(————’é—» . IIé-gll2

N ( 2 _ 2(p-2)02 >.
“\oPe? gl
s_(x) - s 115,
where ¢ is as in Berger (1982).

2 2
For | Ix-rl1% < 2(p-2)(c%+:%), []6_(x) - 6(x)[| = 0. Conse-
quently, s¢ is the required estimator and moreover, it does mini-

|kl 12

mize the posterior expected loss pointwise. Note that it can be
checked directly that s satisfies ﬁ'¢c(r).i 0. For a generali-
zation to the case when 02 is unknown, see DasGupta and Rubin
(1986).

2. ESTIMATION'OF MULTIPLE GAMMA PARAMETERS

Let X;5Xp5.-. X5 be independently distributed and suppose X; has
density

-0.X;
e TxaTge
f(xilei) = ) » X; > 03 a > 0 known. (2.1)
Suppose it is desired to estimate (e;],eél,...,eg}) under

squared-error loss L(g,8) = } (Gi-e;])z.
i=1

The usua]_estimate is



X
50(5) = :%T" The following result was proved in DasGupta (1986).

x ar(t) + {8

Theorem 1. Let 8, = GZGi(é) =Tt 1 i
p
where t = ( H'Xi)]/p ,
i=1
i) 0 < r(t) < cyt, with ¢5 = __giﬂ:%)?__,
pla + BQ

ii) v(t) is differentiable (lack of derivative at a finite num-
ber of points causes no problem),
iii) r(t) is non-decreasing,

iv) r%El-is non-increasing.

Then for every estimator 5(5) e 85, R(g,a) < R(Q,éo) for all g,
if p> 2.

Thus every rule in SO uniformly dominates 8y and hence can-
not have worse Bayes risk than §y no matter how badly the prior
m is specified. The problem we will consider is to find a §€ in
ﬁo which has the smallest Bayes risk in ﬂo with respect to a
prior w. The calculations are most easily carried out with a
conjugate prior. In the next two theorems, we will assume that
the 6; are iid with density

e_reieﬁ']rB
n(o;) = r(s; ‘ . : (2.2)

The use of a conjugate prior is not of concern from a Bayesian
robustness standpoint, because the resulting estimator has a
built-in robustness via dominance over 8g-

As stated earlier, the general finding of this paper is that one
can actually minimize the posterior expected loss pointwise in
@O_; the ability to minimize the posterior expected loss, accor-
ding to us, is very appealing (for further reference, see



L. Brown's discussion on Berger (1983)).
THEOREM 2. Let « and g in (2.1), (2.2) respectively be such
that
i)g <2,
ii) p(28 + aB-2) < 20 + B.
X_i (up+1)cot

c = c =
Then ai(X) por 5T T) , and corresponds to r (t) = cgt-
: X1.+Y‘
Proof: The unrestricted Bayes estimate is Gn,i(é) = T -

It is enough to show that

B c 2 P . 2
121(51(4) -8 )7 < 1.Z](éi(%) - 6, (g7 Vg Ve € 8.
X; ar(t) + tr(t)
Towards this, note that if 61(%) = =7t T P , then
P 2
1,21(61(%) - 6. ;(x))
p [ X. ar(t) + tr'(t) X 2
- 3 iy p e R &
121\ otl atl atp=-1  atp-1
P (8-2)x, ar(t) + Eﬁp(—t) , 2
) 121 (a+])(d+3-1)+ atl T otg-1 )
= p [(ar(t) + tr'(t)) _ (Z-B)t]2 g
(a+])2 P otB-1
2(g-2)(ar(t) + M-)( § -pt) tr'(t)
. * p iz]xi P 2pr(ar(t) + —TE___Q
+ : -
| (a+1)% (arte-1) (o#T) (ae-1)
p(2-p)%t? (2.3
(o +1)% (arp-1)°
Conditions iii) and iv) in Theorem 1 imply that 0 < r'(t) < r(t).
p | ST -t
Since ) x; > pt and 8 < 2, the second term in (2.3) is

i=]



minimized by r(t) = co(t); so is the third term since r > 0; and
finally, the first term is also minimized by r(t) = cots since,

2(p-1)t _ (2-8)t
aptl  — a+B-1

tr'(t)
p

ar(t) + < (o + %&cot =

under condition ii) of the present theovrem. Hence proved.

Remark.
X.+r

atg-1 °

Theorem 2 thus says that we

1. The unrestkicted Bayes rule is For small g, this is

substantially larger than pors, 8

should give the estimate &%T the maximum possible increment to
come closest to the optimal Bayes rule. .
2. The potential use of Theorem 2 for large p is not profound.
For p = 2 and o = 1, condition i1) is satisfied if g < 1.2.
Since o + 8 > 2 is required for E(e}zlé = X) to be finite, the
effective range is 1 < 8 < 1.2 in this case.

Whereas for 8 < 2, the restricted Bayes rule often is just a
boundary point of SO » the restricted Bayes rule for g = 2, as
we shall see now, is a combination of the unrestricted Bayes rule
d“ and a limit point of &0 . This was also found in the situa-
tions considered in Berger (1982) and Chen (1983). Note that
the case B = 2 has some special importance in that with such a
prior for the ei's, some of the improved estimates of the gamma
means obtained in DasGupta (1986) had an empirical Bayesian
Jjustification.

THEOREM 3. Let g = 2 in (2.2). Then

' 1

o - 3 . - pr
) = ar o <t = e
*3 r : pr

the estimate corresponds to



c _ .
ro(t) = ¢yt if t i.to
. t
_r r Oyap .
-y ) if t> t,. (2.5)
_ ) ) Xs4r
Proof: The unrestricted Bayes rule now is 6ﬂ’1(5) =
Hence, for any Se®0 .
4 2 1 : 2
Lo(650x) =8 (X)) = ——— (apr(t) + tr'(t} - pr)°.

Note that for t < tg,

opr(t) + tr'(t) 5_(ap+1)c0t < pr
= (apr(t) + tr'(t) - pr)? > (aprC(t) + tr'S(t) - pr)Z.

Also, for t > to, aprc(t) + tr'c(t) - pr = 0. Hence, for all

e 8y, Vy, 1_E](csi(gg) - csw,]-(;é))2 1151(619(%) --sm(x))z. It
now remains to show that 6Cz-:a90 and this follows by a straight-
forward verification of the conditions of Theorem 1.

Remark

1. Again the optimal estimator ac(%) actually minimizes the pos-
terior expected loss over 85 _

2. The optima1'est1mator 5¢ was obtained by setting-rc(t) equal
to cOt on a certain part and equal to a suitable solution of
apr(t) + tr'(t) - pr = 0 on the remaining part. Essentially this
idea works in the normal example set out in the introduction. We
will now see how this same idea works in our gamma case for cer-
tain non-conjugate priors. For g = 2, each.ei has density

-re;
2 i . . .
re.e . We will now consider more general priors

eig(ei).

w(ei)
w(ei)

1

Lemma 1. The Bayes estimate of e; has the following

representation:
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+Y(X1)

INCHICREMERELC

I PR |
) ) -fe i 19?+] l(e )de , (2'7)

=B X,
ra 1 d,0+]
fe © oy gle,)de,

where Y(Xi

-9 X
B 0‘Hg(e ) =0 for all x..

if 1im e ;

ei+0,m

Proof: Integration by parts.

Lemma 2. Let u(t) = E[y(x,)/t], 1 < i < p. The problem of

def.
minimizing a(e) = r(r,s) - r(rss ) = [{R(g,s) - Rless )}dw(e)

in 8 is equivalent to m1n1m1z1ng E[apr(t) + tr'(t) - pp(t)]
Proof: Familiar calculations.

Lemma 3. If g(e) is such that s = 1nf —gzé%)-> 0 and “ét)

is decreasing in t, then there exists a un1que tO such that for
any r{-) as in Theorem 1, apr(t) + tr'(t) < pu(t) for t <t
(note to may_be_+m). -

Proof: Since s > 0, n(t) > s for every t. -Consequently,
Tim Ei%l-= ., Again, for any r(.) as in Theorem 1,
apr(t) + tr'(t) < (qp+1)c0t. Now, let
- u(t)
tO sup{t: ankd (o + )co}

Lemma 4. If g is log-convex and 0 g(g) is decreasing, then
u(t) is increasing.

Proof: Let Z =

IIM’O

log Xi = p log t. Clearly, it is enough
'l .
to show that E[y(X, )/Z = z] 1is dincreasing in z. It follows from

the definition of y(X]) that

v = Egish

where 8 has density proportional to e'exe“+1 g(s). By a standard
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Montone Likelihood Ratio (MLR) argument it follows that Y(X ) is
increasing in X, if g is Tog-convex (i.e., if 9—-15 1ncreas1ng)
Denoting Yi = log Xi, it would suffice to show that under the

hypotheses of the Lemma,E[h(Y])/Z = z] is increasing in z, where
Y
Y ) = v (e ). Note that h is increasing since y itself is

1ncreas1ng.

Since the ei's are iid, it isclear that the Xi's as well as
the Yi's are marginally iid. Let f(x) denote the marginal den-
sity of (each) Xi and g(y) the marginal density of (each)Yi.

Sof(x) = constant,xu'] fe'ex e“+] g(e)ds. (2.8)

Differentiating (2.8) and then integrating by parts, it follows
that

xf'(x)

-0X_at?
(o=1) = (q+2) - L& o g'(e)ds
) ) f e‘exeoc'*"lg(e)de
f e-SX ot2 a' (6)do
f -6X u+]g( )de

(2.9)

[ty

oo 89'(8) - 1 xf'(x) s }
since _Jfﬂ?ﬂf is decreasing, (2.9) implies that —?127-15 decrea

sing in x, which i o g'(y) . ‘na in v.
1?9 in X ich in turn implies that =307 is decreasing 1? y
Using the convolution formula for the density of the sum of inde-
pendent random variables, it is easy to show that the conditional

P
density of Y] given Z = ZYi =z is MLR in Y], if the marginal

i=1 '
density of each Y is log-concave (i.e., ‘g(y) decreasing). Now
recall that u(t) = E[h(Y1)/Z = 7] where h is increasing and the
Temma follcws.
Remark -In specific examples, it may not be any more diffi-
cult to directly show that 5;T§§l is decreasing in x. This turns

out to be the case in the example given later in this section.

t.
Lemma 5. Let y(t) = fu(s)sup']ds. If g is decreasing and
0
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u(t)

log-convex, 29 ée) is decreasing in e, and “t
t, then rC(t) defined as

is decreasing in

ré(t) t ,ift <t

0 0
Pulty)
P ((1)ultg)) + o (%P, 4 &> 1y (2.10)

satisfies the conditions of Theorem 1.

Proof: First note that tO (as in Lemma 3) is such that
(up+1)cO 0 = pu(t ) and hence r(t) is continuous. Clearly r%(t)
satisfies all the conditions of Theorem 1 for t < ty. We shall
now verify the conditions for t > tO. By straightforward calcu-

lations
r'(t) >0 vt > to
to u(t )
@ =ap(9(t)-u(ty)) +(tPu(t)-tgulty)) + Tg®o s 00 veo gy

(2:11)
Since g is decreasing, ﬁ(to) > 0, and hence it suffices to show
that
£(t) = t%u(t) - apy(t)

is increasing (for t >t ) Since f'(t) = t“p '(t) > 0 by Lemnma
4, it follows r (t) is 1ncreasing. In order to show that
XL%IQ-is decreasing, we will show that tr'c(t) 5_rc(t);Vt > tg-
By direct calculations

-p[(ap+1)t-“p(w(t)-w(t )

- ult) (D P-u(0)].

tr' (1) - (1)

cap t t o,
-pt * [(op+1)f o' (s)ds-/ (agf{u(s)sap})ds].
% ty
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ot .
-pt™Pf {(ap+1)y' (s) - u'(s)s®
tO p

- upsap u(s)ids

t
-pt™*Pf (' (s) - u'(s)s*P)ds
to

t
-pt™Pf Pl (s)-sut (s) 1ds
to
< 0 since su'(s) < u(s). (2.12)

(2.12) also shows rc(t) < cotvt >‘t0. This verifies all the
conditions of Theorem 1.

Theorem 4. If gsatisfies the regularity conditions of Lemma
3 and Lemma 5, then §¢ defined as
tr'€(t)

Cc
c or (t) + D

S1(x) = x; Py
minimizes f(R(Q,a) - R(g,8.))dr(g) in 8 -
Proof: Lemma 5 proves §€ eﬂo. Lemmas 2, 3, and the fact
that aprS(t) + tr'C(t) = pu(t) for t > ty now prove Theorem 4.
Remark.
1. Theorem 4 shows that if the 6. 's have prior density 6. g(e )
and g satisfies all the regu]ar1ty conditions of Theorem 4, then

the restricted risk Bayes rule continues to be either a limit

point of SO or the unrestricted Bayes rule. Theorem 3 follows

2 -r0

as a special case since there g(6) = r which is decreasing

and log-convex and u(t) = ri:; E%El is decreasing.

2. One class of priors for which Theorem 4 is likely to work out
k -r.0
is a m1xture of conJugate gamma priors with g(e) = Z €. rze T s

where Z e; = 1. We will shortly give an example.

An examp]e of a g(e) which satisfies all the regularity conditions
of Lemmas 3 and 5 and yet is not a mixture of exponentials is
g(e) = e %" 2, note that g cannot be a mixture of exponentials



because it is not completely monotonic
3. Of obvious value would be easily verifiable sufficient condi-
tions on g for u(t) to be decreasing. An anonymous referee has

t
pointed out the following sufficient condition for HE(El-to be
decreasing:
Let ¢(x1,t) denote the conditional density of X, given t. By(
u(t)

definition, n(t) = fy(x])w(x],t)dx1. In order to show that %
is decreasing in t, it suffices to show that u(t) is concave.

Now ﬂu(t) = f'Y(X'l) 'Ist)dx-ls where p(x'l at) —-‘Q-RU(X] at)

Clearly, fp(x X7t dx] 0 for every t since fw(x1, )dx1 1 for
every t. wr1t1ng p(x1,t) =p (x],t) -p (x1,t) (for fixed t), it
would be enough to show that fy(x])p (xq>t)dx <fy(x1,t)p Txy st )dxy-
If now, for each t D( X1 t), as a function of X{ s starts with posi-
tive values (at X = 0) and changes s1gn only once from positive
to negative, then it is clear that p (x],t) is stochastically
smaller than p (x],t) and hence E +[y( )1 <E _[y(X )1 since

v (X X;) is increasing in X; for Tog-convex g. Unfortunately,
except for some special priors, 1im p(x1, ) is actually negative

X120
1
so that this sufficient condition often does not hold.
k -r.0
Example. Let 0, be iid with common density } €5 rzee 1 R
i=1
k .
where 0 < e; < 1, N e; =1, ry > 0 known. Thus in the notation
' i=1
k -1, 0
of Lemma 1, g(e) = } e;rie . By direct algebra,
i=1
-r.8 -1 0 -r.6
& Ze.rQe Vo se, rle | -(ze.rie )2 0
log g(8) = i N i >
;;7? -r.8
;] 2
(Ze1r1 )

=g is log-convex. (2.13)
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Also, clearly g is decreasing; moreover,

'Y'_ie

Zgasl.e

-g' (o) _ 2% : v
g(e) 5 r.0 > m.!n Y‘_i > OPVe .

1 1
Ze'ir'ie

Hence, for Theorem 4 to work out, it only remains to verify that
E%E)—-and 5;%§§l-are both decreasing where f is the marginal den-
sity of (each) X; We will analytically attempt below the case
k = p =2 and comment on the more general situations later.

Assume without loss ry > ro.
e.¥2
‘ a-1y—d A
By direct integration, f(x) = constant-x (x+r.)“+2 ’
i

xf'(x)

laborious routine computation shows that e is decreasing if

ry 5_%%$g-r2. In order to show that ”(E)

first note that the joint marginal density of X1 and t is given

is decreasing in t,

as

2a-1

-6, X
11 at+l

f(x],t) = constant + & g(e])de]

X
~0,X
ot]
R TERET (2.14)

Using (2.7), (2.14), and the definition of u(t), it follows that

- X _e§i
f(fe 1o gt(e)de) et - (fe o™ Tg(o)dn)ax,
u(t) = - 1 =
-9X 0%
f(Je 1e°°+]g(e)de)- %; -(fe ]e“+1g(e)de)dx]
(2.15)

Now using the actual form of g(6), by direct computation,
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3, 2 2 3, 2 2
) = e]r1(s]r]f]]+ezr2f]2) + ezrz(e]r]f2]+ezr2f22)
7 2 > P >
eqry(eqryfypte,rafip) +epryleqryfyte,rof)))
reg, + r,g
- 171 272 (2.16)
g] + 92
where f;;(t) = f 72 vz ¥
! (%) ¥ (E%rsx)

2 2
7(t) = eqr(eqrifyg (1) + epryfp(t)),

g,(t) = eora(eqrifyy (1) + eprafyy(t)). | (2.17)
| 2(at2)t
Now note that |f'..(t)| = dx
1] (X +Y“)a+2(t2+r-x )0L+3 1
11 i
2(at2) . , s s
=5t fij(t) (Yt LY, 3. (2.18)
Consequently, IgTEEgI 5_2(z+2) ;) ¥t,i =1,2. As usual, to show
94

that E-,%Q-is decreasing, we will show that tu'(t) < u(t);vt.

First note that u'(t) = )2

(g1+92

g, 9o
(ryrp) fgh - |
= [t (t)] = —

(9]+92)2
9192
(ry=rp)«(a+2). ' (2.19)

I A

ryg,+tng
- 101 272 1y Tt (2.20)

On the other hand u(t) 9,75,

Combining (2.19) and (2.20) it follows “ét) is decreasing if
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'(;L+3 at3 . 2a+6

r< Sy Ty Since‘a;§—> 575 all conditions in Theorem 4
. . 20+6
will hold if ry < 251§;r2'
Remarks.

1. Crude bounds have been used in (2.18) through (2.20) in show-
ing that l—’-1(532-1'5 decreasing in t. That's part of the reason a
wider spectrum of values for rists could not be handled. By ex-
plicitly eva]uatjng'the analogs of the function fij(t) in the
special case a = 1, we have been able to show that for small as

well as large t, “ﬁt) is decreasing no matter what mixture is
used as a prior. For any given mixture prior, the monotone
nature of E%El-in the middle zone can always be verified on the
computer with any degree of confidence.

2. The same phenomenon holds when the prior is of the form
98—]T(6), where T is a mixture like in the example above and

B < 2. ForB > 2, various assumptions made on g(8) in Lemmas 1
through 5 (decreasing, log-convex etc.) fail and we have no
results in that case. In fact, the simple conjugate gamma prior
with B > 2 causes great problems and we are convinced the form
of the restricted risk Bayes rules is basically different in that

case.

‘3. BAYESTAN PERFORMANCE OF THE RESTRICTED RISK BAYES RULES

Finally, in this section, we will get back to the restricted
risk Bayes rule obtained for a conjugate gamma prior with 8 = 2~
in Theorem 3. The form of the optimal estimator in this case is
simple enough so that Bayes risk calculations are done fairly
easily. All estimators in the class QO uniformly dominate the
best equivariant estimator to start with; consequently robustness
of our restricted risk Bayes rule is of no real concern. It is
the sacrifice in potential Bayesian improvement that is the issue
of importance. It is conventional to judge the necessary amount
of sacrifice by looking at the relative savings loss (RSL) of
Efron and Morris (1971) defined as
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--Y‘('nsS) "Y‘(TTQ(S )
RS . = m s (3.])
L) r{nssg) - rlns )
where for any s, r{x.s) - r(ﬂ,aﬂ) is defined as

[(R(gss) - R(Qg@ﬂ))dn(G) and s_ is defined as the rule that min-
imizes the posterior expected loss. It is also meaningful to re-
place in (3.1) the integrated Bayes risk by the corresponding
posterior expected Toss. The corresponding savings Toss will be
called the posterior relative savings loss (PRSL). We will study
both. Before deriving the expressions for RSL/PRSL, we briefly
remind the reader that low values of these quantities will imply
that robustness can be attained without making any serious dent
on the subjective Béyesian gains available. The following
theorem is straightforward.

Theorem 5. If ei's are iid with a prior = as in Theorem 3,
then '

PRSL (,5°) = 0 | if t > Cloaptl)
RSL(m,8") 2(0-1)t? it SHEy

(r -
- ap+1 - (apt1)
> ift«< b1

;

r

Remark. The RSL, being a constant, remains necessarily bounded
away from 1. The PRSL, on the other hand, is a.random variable
and can get arbitrarily close to 1 for "unlikely" data. However,
the attractive feature of the PRSL is that it remains zero for a
fairly long time and at the same stroke the degree of its depar-
ture from zero also gives an idea about how strongly the data at
~_hand support the subjective prior specification. In fact, to
many Bayesians, the PRSL will be the appropriate quantity to look
at to judge performance of the estimator. In order to get an
idea of the magnitude of the PRSL, we have tabulated below values
of the PRSL when t is set equal to its marginal expectation, -
i.e.,
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.I‘((>L"'l P 1”(2—.]—) p
t = E(t) =( Pap)> (’FEB“> r. (3.2)

Note that if t is close to its marginal mean, then prior opinion
is supported and consequently, from a subjective Bayesian view-
point, 6“ is an eminently reasonable estimate to use. Thus while
calculating the PRSL at t = E(t), §C is being compared with 8 on
the Tatter's homeground.

a = 1 0(.=2
p: 5 10 20 p: 5 10 20
PRSL: .15226  .10695 .08746 ,02970 - .00734 .00184

The values indicate that 10% of the available Bayesian gains must
be sacrificed in return for dominance over 84 in 10 dimensions
when ¢ = 1. The numbers, however, are especially encouraging for
o = 2. In this case even for p = 5, full robustness is guaran-
teed by sacrificing a nominal 3% of the subjective Bayesian
gains. We will shortly see that the restricted risk Bayes rules
also give best values of RSL for o = 2; why o = 2 turns out to be
the most favorable situation is not clear to us, except that we
are tempted to think it may have something to do with equaTitybof'
o and g. We now proceed to the RSL calculations; the following
theorem is also straightforward.

Theorem 6. RSL(m,s°) = —%—Z;E [(up+1)c0t-pr]'21t< pr
pr —-iap+15c0 .

Theorem 7. Let f(x) denote the éommon marginal density of
the xi's. Let Toga = E(logx), where E(+) denotes expectation
under f. Then

Tim RSL(r,s%) < (22 -1)%.

p-soo ¢

Proof. Assume without Toss r = 1. First note
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f(xy) = LI ] Hence
o g1
= logx
|E(Togx)| = k|[ % : o Vo >0.
é (]+X)u+2| <

Since xi's are iid, the strong law of large numbers implies that

%—_5 log X; = log t i;

i=1

S. Toga

'at%ﬁ'a,asp+m.
From Theorem 6, using the definition of'co,

Tim RSL(m,6€) < Tim E[g-~t—1]2 (3.3)
po= pro
3 3
. T'{o+>) r(2-2)
Now note that E(t3) = | rup )1/p ( 7 2 )1/p is uniformly

~ bounded 1in p. Consequent]y,'{t2 = tz(p)} is uniformly integ-
rable. This together with the almost sure convergence to 'a"
gives the result.

We will now derive actual expressions for 'a' for integral
a's. These are essential to understand the nature of the RSL for
large p. '

Theorem 8.

i) Tog a = -1 for o

ii) Toga =10 for a = 2
1i1) 1oga=u—_]_]—+a—1——+. +1?, for a > 3
Proof:

i) See Gradshteyn and Ryzhik (1965).
i1) Straightforward.

o g-]
1) I(a) fx—‘—g%dx
‘ 0 (1+x)
1 7 (d—l)xu-zlogx + x*2

o] 0 (1+x)a+]

dx
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(by integrating by parts)

_ a-1 1
= a:l_—-i— I(O(.-]) + m B(G.-] gz)‘ (3'4)
Using induction on a,
_ ] "1 (a=1)(0-2)...3
I(a) = -&-+—.l- B(()L—],Z)'*‘ m B(OL-2,2)+.-.+ —(G.+.l)0b(a"1)o--4 B(232)
I T 1
" o(otT) [a-l toz et 7J (3.5)

Since loga = ET%_7) I{a), the result follows. Using Theorems 7
and 8, the following upper bounds on the limiting RSL's are
easily found.

Limiting RSL (as p » «)

Tim RSL(w,s°)
.0698
0
.0098
.0226
.0330
.0412

L YIS B Y JORY COR R o

At first glance it seems undesirable that except for a = 2, the
1imiting RSL's are not exactly zero. But the actual limits are
fairly small and the values get stabilized for reasonably large
p, so that a non-zero limiting RSL is not going to be serious in
applications. The table indicates an increasing trend in the
limits as o increases. One may suspect that for large o the RSL
may get bad. The following final theorem shows it cannot.
Theorem 9. -

Tim 1im RSL(w,8€) < .0964.
[ hnad p—-)oo

Proof: Since loga = 1og(u-1)-1+y+0(g), where v (=~ .57722) is
the Euler's constant, Theorem'7'gives that

Tim 19m RSL(7,6€) < (2¢""1-1)% ~ .096376.
0¥ oo -
Hence proved.
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