A RATING SYSTEM AND ITS APPLICATIONS TO
RANKING AND SELECTION

by

Takashi Matsui
Purdue University
and
Dokkyo University

Technical Report #85-10

Department of Statistics
Purdue University

May 1985



A RATING SYSTEM AND ITS APPLICATIONS TO
RANKING AND SELECTION

Takashi Matsui
Purdue University
and

Dokkyo University

Let s events be given and consider the sequence of experiments which
consist of paired comparisons of the events. In order to measure the
relative occurences of these events, let us consider a method of
quantification--a rating system--based on n such independeht experi-
ments. This method allots a number to each event by specified way
according to the respective results of experiments, and is essentially
the same as the one given by A. Elo for rating chess players.

A purpose of this paper is to propose the rating system and in-
vestigate the several behaviors. Applications of the system for
selecting the specified events from among s given events are also
studied. The results are given for both indifference zone and subset

selection approaches.



I. INTRODUCTION

A proportion or relative frequency of the occurences of an event
among the given set of events is a broadly used effective measure for
discriminating the each event from others. While we may sometimes use
the other notion of quantification to measure the differences of the
outcomes of the events. The following system of rating the given
events seems effective and easy to handle. Let two mutually exclusive
events A and B be given. We rate the result of the i-th trial of A

and B by using the respective (i-1)th rating values Ai- and Bi— . If

1 1

two rating values are the same, i.e., Ai = Bi’ then certain score ¢

(> 0) is added (or subtracted) according to the occurences of the events
A and B. In case two rating values are different, 100 y percent (y > 0)
of the difference of two rating values (i.e., lAi_Bi| x y) is used as a
handicap value, and an event with higher rating value scores less if it
occurs and vice versa. Illustrations here is only for two given events
A and B but of course this system is extended to the case where more than
two events are involved and compared pairwise at each trial. The idea
of this rating system is essentially due to A. Elo and exclusively used,
world wide, for rating chess players. We note here that in actual
situation of the game, the values 16.0 and 0.04 are used for c and v
respectively. Also our system stated above (or treated hereafter) is
slightly different from the actually organized one in the point of mar-
ginal conditions such as rounding of the handicap value. This system of
rating the events is expressed by using the binomial model in the follow-

ing way. Let two mutually exclusive events A and B be given and consider

the random variable of the following type.



1 with probability p (A occurs)
-1 with probability 1-p (B occurs)

Then the i-th rating values of the events A and B are expressed as

follows, by using the (i-1)-th rating.va1ues.

T
I

A, ¥ X5 {c - X (A, 4 - B,

i i- j-1) x 1)

where A0 and B0 are the initial rating values: .of the events A and B.

Above relations are also written in the form of difference equations as
A, = (1 - vy) Ai_] + Bi_] + cX1.

B. = yA +(1-+)B - CX_i

i-1 i-1

i=1, 2, 3,....
Batchelder and Bershad [1] investigate the rating system due to A. Elo

by using the Thurstonian model. They also suggest the applicability of

this system in many areas of psychology. In [5], Matsui treats this



rating system through binomial model stated above for the case of two
given events (two persons game), and gives the asymptotic distribution
of the rating values. Also he gives the estimator of the occurences
of each event based on the rating values.

Since this rating system can be used in many fields of applications
where the situation of paired comparisons are involved, let us investi-
gate the bahavior of this system for more general case under the binom-
jal model given above. In Section 2, the rating system is investigated
for 2k events case (k is a given positive integer) and moments, asymptotic
distribution of the rating values are given. Applications to ranking and
selection problems are treated in Section 3. The results are given for
both indifference zone approach due to Bechhofer [2] and subset selection

approach due to Gupta [4],

2. BEHAVIOR OF RATING VALUES
2.1 Moments of Rating Values
Let us consider the rating system which we stated in the previous

. k . . . e
section for the case where 2" events are involved (k is a given positive

integer). Hereafter we put s = ok-T,
Let 23(=2k) events Tys MosenssToe be given. Corresponding rating
values based on the i-th trial are written as Z]i’ 221,...,225 i and the

vector of rating values based on the i-th trial is denoted by

= (L Z Z ), i=1,2,3,...

Ly = Dygs Lpgoeenlpg

Vectors of random variables and probabilities which express the trials



resulted from each pair of events are defined as follows:

X, = (X 50 L =1, 23---525-]; m=g+1, g+ 2, e 25) »

i=1,2, 3,....; s(2s-1) x 1 vector.

p=( > 2=1,2,...,2s-1;m=2+1, 2 +2,...,25)",

s(2s-1) x 1 vector.

Random variable sz-i expresses the i-th trial between events LA and

U and associate with the probability Pom in the following way.
1 with probability Pom (ni occurs).
-1 with probability 1-p, (nm occurs).
(1 <2 <mx< 2s). (2.1)
Among the 2s events, 2s-1 trials are necessary for a given event
to have meets with every other different events. We call this sequence
of trials which consists of 2s-1 different meets "a cycle". Method of

meets in each cycle are defined by the matrix 85(25) (i=1, 2,...,2s-1)

given below.



where

§1{s) 9(S)
§§25) = i=0,1, 2, %S
9(s) §1§S)
g(s) 51{5)
(2s) _
S 43 = , i=1, 2, »S
> §1§s) ofs)
sV g, st -y

and Q‘s) is a zero matrix of order sxs. Note that the notation Mﬂs) or
M‘SXt) is used hereafter for expressing the matrix M of order sxs or sxt,
in case it is convenient.

Let us give an example of (2.2) for s = 2. In this case, there
are four events Z],...,Z4 and matrices S§4), i=0,1,...,4 have the
following respective forms.

T-y
5(4) = SéZ) = o T-y
0 S52) Ty
S§2) Y
S$4) - - Y
o (2) Y



(2) Y
NO b [
2 s(2) v
2 Y
(2)

(4) _ ST\ L Y
33 = (2) = Y
S.| Y

Y
5(2) Y
sé‘”: 2 - Y
5(2) !
2 Y
Thus R§4), Ré ) and R§4) are expressed as
@@ [
- _ Y -y
R] SO * SZ 1-v Y
Y 1-v
@@ (7 T
_ _ -y Y
Ry " =557 #5377 = T-y
Y T-v
@ [ !
= = =Y Y
R3 S * S4 % 1-v
Y 1-v

Matrix R§4) specifies the meets of pairs of events 21—22 and 23-24. In

(4) (4) N i -
the same way R2 and R3 show the meets Z]-Z3, 22 Z4 and Z] Z4, 22 23

respectively. Also these matrices are used to form the rating values of



the i-th trial based on the (i-1)th values in such a way as shown in
(1.7).

Turning to the general case, the expression of the rating values
of the i-th cycle (2s-1 trials are performed in each cycle) is given as

follows.

Zios-1)(i-1) + 2~ Ro Zias-1)(i-1) + o -1 TS Q % (2.3)

Here, gi is a 2s x s(2s-1) matrix, which depends on Ri and defined as
follows:

For every meets of =_ and g (2 < m) defined by Bﬁ’ elements of 94 with

%
column {4s(2-1) - 2(2+1) + 2m}/2 and raws & and m takes the values 1 and
-1 respectively. The left of all elements of gj are zero. (On the prop-
erties of Q., see Section 2.3).

At the end of n-th.cycle, we have from (2.3)

n ,
n n-j
Zios-1)n = Bs Lo ¥ jZ1 P 1A (2.4)
where
25~1
Po= r{2s) (2.5)



and

2s-1 2s-1
T=¢ Z T _R_1 g-j—] + c QZS—]- (2.6)
=2 '|=j

On the evaluation of Es and Eg, we have the following Temmas. Note

that the following relations hold.

(s) (s) (s)
5o (1-2YS/2) E + (2/5) YS/Z _6'_ 0
m R(ZS) =
i=1
O(S) (]‘ZYs/z) EKS) + (2/s) Ys/2 g‘s)
(-2vg E) + (2762 60 (v,/5)6")
O
T
(v /s)6') (1-2v, )6 + (275)42 605
Lemma 2.1
2s-1
- (2s) _ (5- (2s) (25), (2.7)
Po= RS (12 JE H (v/s) 6
where EKZS) is a unit matrix of order 2s x 2s, gﬂzs) is a 2s x 2s matrix

with all elements of which are 1, and
vg = {1 - (1 - 2¢))/2 (2.8)

For given constants a, b and matrices E‘S) and gﬁs), we have



Thus we have the next Temma.

Lemma 2.2

b%

where
Yon = {1 - (1= 2y)%"y/2. (2.11)

By using the lemma 2.1 and 2.2, we have finally the last rating

vector of the n-th cycle as
o T X, (2.12)

From this expression, we have the mean vector and variance-covari-
ance matrix of Z(Zs—])n as follows. Since X, and Xj (i # j) are inde-

pendent for each i and j, we put E(X.) = n and V(Xj) =V ({G=1,2,...,n).

Also note that the next relations hold for T and Es-j defined by (2.6)

and (2.10) respectively.

(2s) 1(2sxs(2s-1)) (2s x s(2s-1))

G I( =0 . (2.13)
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P2, = (rpgunstas) ES)+ (1/25)(n - vy, ) 650 (2.18)

Theorem 2.1
Mean vector and variance-covariance matrix of the last rating value

vector of the n-th cycle are given as

t+Pr . In (2.15)

V(Z(ZS-Un) = (Ypg.y/Yps) TV T (2.16)
where
n-1 (25) (25)
Pron = ko Bo.j = (rgunftg) B0+ (1/28)(n - v /vg) 8% (2.17)

The expression (2.15) is also written as

E(Zps-qyn) = (1= 2vg.n) Lo+ (v /s)egd + (vg, /x) T o (2.18)

S+n S

(2s)' (2s) !

where Co =9 = (1,1, ..., 1) (28 x 1 vector).
Especially, if all the initial values are the same, i.e., go = zog_for
given constantz , we have

E(Z /v) T n (2.19)

(2s-1)n’ = "o~ s.n’'s’/ — 4

Initial values vector Zo have much to do with the n-th rating
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values A, B, or their expectations. In order to set the Zo’ let us use
2
Z)°]. By

this criterion, Zo is given as Zo = E[Z(Zs-])n]’ which gives that

the criterion which minimizes the expectation E[(Z(2§-1)n -

Z, = (c /2s) a(2s) (1/2v) T n. (2.20)
We call this optimum initial value.

2.2 Smoothing

In order to make more effective use of the rating value, it is
recommended to use the quantity which is obtained by averaging the
successive rating values. Thus let us use the folloiwng smoothed
quantity ﬂm’ obtained by averaging the last rating values of (n-m+1)-th

through n-th cycles. The smoothed quantity is written as

1N

m
T (2.21)

(25-1){(n-m+j).

ne~133

1 = 1 = .]_
We also write W = (W, Wy,...,W, )", where W, = - & 23 (25-1) (n-mj)
i=1, 2,...,2s.
We first note that ﬂm is written as a sum of the independent

vectors 54, 32""’5n in the following way by using the expression (2.12).

[.
N

g|—

~13

m
1 Es-(n-m+j) Lt .Z
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1 [ ? n-m+1 ?
“m P iy Lyt p .y T X,
m "L ~s-(n-m+j) =o D Ise(n-m+j-i) — &4
n m
¥ z Z Es.(n_m+\'j_-i) "T")LI]’ (m_>_2) (2.22)

i=n-m+2 j=i-n+m

Thus, using the Theorem 2.1, we have the following theorem for mean

vector and variance-covariance matrix of smoothed quantity W

Theorem 2.2
] * * k% k%
EHy) = ﬁ'[(fs-(n+1) } Es-(n-m+1)) L ¥ (Es-(n+1) i Es-(n-m+])) Iﬁ-(2'23)
V(ﬂm) =CTVT, (2.24)

where

P = (1/2v) (nvg, /vg)ES) 4 (174 ) n(n-1)-n/yg + vy, /v 36%) (2.25)

—5+N S

C = (/a2 (vg o/ vgYg oy 4 T2 (MM) Py )/} (2.26)
bs(am) = (ve (n41) = Ysu(nom1)/ Vs (2.27)

and E;-n is given by (2.17).
Note that this result reduces to the Theorem 2.1 when m=1. By (2.13),

we have G T n = 0, so E(ym) is also written as



E(W,) = o Log(mum)Z) + (e /2s) (m-¢ (n,m))d + (1/2v.) (m-¢  (n,m)T n] (2.28)

S

=1

W
If all the initial values are identical, i.e., Zo = zOJ, then

EMW ) = z,d + (1/2my ) (m-¢ (n,m)) T n, (2.29)

W
_m
and if Zo is optimum in the sense as stated in Section 2.1, it is given

as Z, = (cO/ZS)Q_+ (1/2Ys) Tn and

E(W,) = (c /2s) &+ (1/2v,) T (2.30)

Since W 1s written as sum of the independent vectors LSE 52""’Xn
as shown in (2.22), by the same inference as we give in [5], we have the

following theorem for the asymptotic distribution of ym.

Theorem 2.3
If we put m = kn for fixed k (0<k<1), the smoothed rating value
ﬂm follows asymptotically normal with mean vector (2.23) and variance-

covariance matrix (2.24).

2.3. Tnand TV T
Let us consider the problem under the more restricted condition on
probability vector p given in section 2.1. Let us assume here in this

section that for given constant Po such that 0 <P 1,

J(S(ZS‘])) (2.3])

P =P,
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Now, we try to evaluate the mean vector (2.23), variance-covariance matrix
(2.24) of ﬂm under the restriction (2.31).
First, we give lemmas concerning the properties of matrices gi and

T defined in Section 2.1. From the definition of Q., we have
> i=1,2,...,2s-1 (2.32)

Also according to the definition of gd, i=1,2,...,25-1, we obtain the

follwoing lemma.

Lemma 2.3.
o) for i#j. o3
Q. Q. = . 2.33
B {kg(zs)—3§25)3§25) )/2v(1-y) for i = j
For each 2 = 0,1,2,...,k-1 and for such i which satisfies 2" <iz 2 _ 1,
we have
(s(2s=1)) _ ,(s(2s-1))
where
2 [} [ 2
(s(2s-1)) _ (Q(z ), ) i(2 )’ _J_(z )’ 5(2 )), (2.35)

Further we have the following.
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Lemma 2.4

1L )
Td=c =Yy =Y e a1 9o (2.36)

g1 Y pk-l ok=T_58-1" =,4-1

Proof

We have by (2.34), for any 2 such that 0 < ¢ < k-1, Q; J =
J , for 2* < i ;:2£+] - 1. So, for any i such that 2% < i §:2Q_],
2

we have

Ri & g1 = (1-2v) 2

R; d . takes a value J or (1-2y) J in turn. Thus
2

2-1

(1—2y)2 for m = &-1,

.. J = 2-2
A I L T Sl (1-2v)%

for m -2

A

By applying this to the respective sums which compose the matrix T, we
have the assertion.
According to this Lemma, the elements of I_g_(E(T],TZ,...,TZS)')

are given as

3-1)/2%"
(sz_] = Y2k~]_22—])(-])[( )/ ] (2.37)

—
=
—ad
< |=

where [x] is the greatest integer not greater than x. Next, T T' is
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evaluated in the following way. By the first part of the lemma 2.3,

we can write

TT= LT (R Qg g (1Ry)' + 0y y Q5 4]

Again by applying the lemma 2.3, we have

25-1 2s-1
T B)( 1T R.)l +E_}

2 .
TT = (c/v,) 1=
2 17 i=1 7

1

Thus, by using the Temma 2.1, we have the following.

Lemma 3.5

1T = (2cBy, r)(EPS) - (1726)6(29)) (2.38)

By using the lemma 2.3-2.5, we find that T nand T V T' appearing

in Theorem 2.2 reduce to the following respective forms.

Theorem 2.4

Under the assumption (2.31), we have

k
Tqn-= (C/Y)(2P0"1) y (v k-1 ~ A k-1

21 2 2K 1 %" (2.39)

2
1) i;zfﬁ)

TVT = (4c2v25/5v2)p0(1-p0)(255(25) - 6{28)) (2.40)
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3. APPLICATIONS TO RANKING AND SELECTION
3.1. Preliminaries

The rating values can be used in various situations as stated in
Section 1, for measuring the occurrences of each event (such as the ability
or strength of a player) during the sequence of trials. We now apply the
results of previous sections to the ranking and selection problems and
try to select the specified events by using the rating values.

We use the smoothed quantity Hm defined by (2.21), as a statistic
for the selection. Since rating values are fully dependent on the initial
values vector Zo’ we set the initial values of all players to be equal,

25).

that is Zo =z J( We assume here that the probability vector p

0_._
given in section 2.1 has the following form.

p=p, 5B e cp < (3.1)

Asymptotic distribution of ym is normal as given in theorem 2.3.
We write for convenience that

E( ) = u= (U]a u2""’“25)" (3-2)

W
._.rn

VW ) = A =(r..), iJj=1, 2,...,25 (3.3)

W
_m
My andlxij has the following forms.

g =z +c(2p -1)(m-9 (n,m))r,/2myg (3.4)
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C-4c”(25-1 )P, (1-p,)/svps i3

where C is given by (2.26) and T is an element of T J, given by (2.36).

Let us give a lemma for Ti|s which is verified by using lemma 2.4.

Lemma 3.1
For the elements Ts TseersTo of a vector T J, we have the

following relations.

20y, 1F i=2mtl, m=0,1,2,...,25"]

20 =2
m+1 321

ags if i=2M. ¢, g=0dd,

me (1,2,...,k=1) and 2 < i < 25-1.

where

o, = (¢/Y)y 1Y o1 o._1)-
2 k=17 k=101

From this lemma, we can show the following.

Lemma 3.2

For means of the rating values given by (3.4), we have
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My 2 Hp 2 e

v

Uk-
Equality holds if and only if Py = 1/2.

3.2. Indifference Zone Approach
We consider the selection of the t-best events, which are associated

with the events with mean rating values Hys ﬁz,...u as shown by lemma

t
3.2. Our selection procedure R1 is stated as follows, see Bechhofer [2].

R]: Select the events associated with the t-best sample values

w[]], w[z],...,w[tj, where w[]] g:w[z] ;:...;:w[zgj.

The selection criterion using the procedure R1 is stated as
follows:

P(CSIR]) > P* whenever uy - (3.7)

. *
Mgy 20
where P*, ¢* > 0 is a given constants specified. Since Hys Ho oeesby
are associate with events having the t-best rating values, as shown by
lemma 3.2, a probability of a correct selection using the procedure R]

(denoted by P(CS]R])) is given as follows, where WO

1.)1's a sample rating
).

value associate with the event with ﬁi (i=1,2,...,2s

P(CS|R,) =

|
o
—
=
—
-—
—

]
o
—
(=
|=

v
o
~—
w
oo
~—



20

where

A, (gﬂ(ZS—t)X(J-T)),ngS—t)’QK(ZS—t)x(t-j))’_Eﬁ(zs-t)x(zs-t)))’j=],2’
A
A= .
A
(t(2s-t)xt(2s-t))
and
W= (sl )t (2stx1).

From theorem 2.3, ym follows asymptotically normal with mean vector

(3.2) and variance-covariance matrix (3.3), thus we know that

A w=C*(2p-1) 7T

~J =J
Ay AAL = C**po(l-po)(Eﬂzsht) + gﬂ?s-t>>, 3=1,2,...,t
Ay a Ay = Cp(T1-pg) AR RS JE RN TR I
where
C* = C(m—¢s(n,m))/2mvs (3.9)
e = €8¢ (25-1)v, /v, (3.10)
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and

Ij = Aj Td-= (Tj-rt+], Tj-Tt+2,...,Tj-TZS) s J=1,2,...,t.

Thus we find that A W follows asymptotically normal

AW N(A p*, A¥) (3.11)
where
A
Eq u Ij
A u* = . = C*(2p0—1) . = C*(2po—1) T (3.12)
At 123 It
and
E+G E....E
E - ..
* = * % —_ .. . - = *% - *%
A C p0(1 po) e ] E C po(l po) A*% o (3.13)
E....E. E+G
And (3.8) is expressed as
(CS[R,) = p( L
P(CSIR,) = p(U 2
1 C**p0 1 p0
C*(2p0-1)
= P(U £ T T b, T) (3.14)



22

where

(3.15)

Now, the least favourable configuration (L.F.C.) for the procedure

R1 is given as follows. By (3.4), since

u.t - u.t+'l = C*(Zpo - 1)(Tt - Tt_l_'])’

a condition u. - u > 6* in the criterion (3.7) is equivalent to
t t+1 =

Py 2 1/2 + 8%/12C*(ry - ty4q)) (3.16)

Further, T > 0 and (2po-1)//poi1—p0$ is increasing in Py for Po> 1/2,

infimum of the probability (3.14) is attained at pg in the following

manner.

Theorem 3.1
The L.F.C. of the procedure R] is attained at

Po = 1/2 + /(2% (v, - 1)} (=p2) (3.17)

i-e-, th - Ut_l_-l = (S*.

In order to evaluate the probability (3.14), following lemma is

useful. See Gupta [3].
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Lemma 3.3

If n-dimensional vector X follows normal with mean vector 0 and

. . N } 2 _
variance-covariance matrix g = (Oij)’ where O 1 + a and %43
aiaj (i, = 1,2,...,n3 i #j). Then
P(X <W) =/ 1 @(aix + wi) o (x)dx
“o =]
where W = (w], wz,...,wn) and &(x), ¢(x) are c.d.f. and p.d.f. of

standard normal. -
By using the lemma 3.3, we can evaluate the P(CS|R1) for t = 1.

When t = 1, we can see

(2s-1) _(2s-1) + (25—1))

u~n® ) g 6

(3.18)

Thus putting

C*(2p_*-1)
K=1/**‘~)O<('| *)
G *(1-p,

(3.19)

we have the following.

Theorem 3.2

P(CSIRy) ¢ = ff@ g o(x + k(1 ‘Tlfl))¢(X)dX (3.20)
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3.3 Subset Selection Approach

In this section, let us consider a problem of selecting a subset
of events which contain the t-best rating mean values, i.e., the events
associate with events having the rating values Hys Hopseewshye In
this case our procedure R2 is stated as follows, see Gupta and

Panchapakesan [4].

Ro: Select the event i if .and only if W, i:w[t] -d, where w[g] is
the ordered W., such that w[1] ;zw[z] > VL gzw[251.

Then the probability of a correct selection, using R2 is given by
P(CSIRz) = P(W(-l), W(Z),...,N(t) ;W )_d, j=t+],..-,25)
where, as before, w(i) is an unknown sample rating value associate with

the event having Wi (i=1,2,....,2s). Then, in the same way as we

considered in Section 3.2., we have

P(CS|R,) =

1
O
=
ELZ
!
|

(t(2s-t)) + C*(zpo_]) T
vC*p, (1-p,)

j o
==

(3.21)

where all notations are the same as those we used in Section 3.2. Since

T > 0, the right hand side of the bracket in (3.21) is increasing in Py



for Py 2 1/2, and we have the following.

Theorem 3.3

The L.F.C. by using the procedure R2 is attained at P = 1/2

(i.e., W] T Hp = ... = pp  Trom Temma 3.2), and P(CS]RZ) under this

configuration is given by

P(CSIRZ)LFC = P(y_;:Zd//f?¥) (3.22)

where U o N(0,A%*),

Especially, if t =1, then we have

P(CSIR,) pe = S0, 07571 (x + 2d//0F%)o(x)dx (3.23)

25
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