A Computer Program for Tests of Equality
of Covariance Matrices

by
Regina Becker and K. C. S. Pillai

Purdue University

Technical Report #85-8

Department of Statistics
Purdue University

April 1985

PURDUE
UNNEISITYDEPARTMENT OF STATISTICS

Enclosed is a technical report containing documentation and

a listing of a computer program for performing the computations
described in the paper, "A Computer Program for Tests of Equality
of Covariance Matrices," by Regina Becker and K. C. S. Pillai.
Dr. Pillai passed away on June 5, 1985. He was a distinguished
scholar and a leader in the field of multivariate analysis.

The research and programming for this project was supported by
the Purdue University Department of Statistics. Accordingly,
this work is freely distributed to anyone who requests it.

If, however, you have funds available to support this type of
research, we would be very grateful to receive a charitable
contribution of $50.00 or more. The enclosed form can be used
for this purpose. The money so collected will be used to start
an annual memorial Tecture on Multivariate Analysis and Its
Applications here at Purdue.

e QQ
"9:.‘4 ~ %
g_’) ~ ® Mathematical Sciences Building
Q"f West Lafayette, Indiana 47907

L/

ﬁ')r

Contribution to the

Purdue Foundation*

Date

Amount

From

*Please make check payable to Purdue Foundation and put
the Pillai Memorial Lecture Fund in the corner.

Mail to: Department of Statistics
Purdue University
West Lafayette, Indiana 47907

I. Introduction
This document is a supplement to the paper, ‘“‘Percentage points of the
largest characteristic root of the multivariate beta matrix”’, by K. C. S. Pillai and

Bernhard N. Flury in Communications in Statistics, Theory and Methods (1984)

13(18), 2199-2237. A program is presented here which is an algorithm for the test
of equality of the covariance matrices of two p-variate normal populations ba,sed
on Roy’s largest root test statistic, illustrated by a numerical example. The pro-
gram runs on the Purdue University Computing Center’s CDC 6000 system.
Some minor modifications may be needed for other computers.

Seven subroutines from the IMSL package are needed to run the program,
namely, 1) becovm, 2) linv2p, 3) ludecp, 4) vmulff, 5) vmulfs, 6) eigrs, and 7) al-
gama. Usage of the subroutines is described in the sequel.

Users who do not have access to the IMSL package could substitute their
own subroutines. It is possible that IMSL could allow a user to obtain copies of
these seven routines only for use in this program. For information, contact
IMSL, NBC Building, 7500 Bellaire Blvd., Houston, Texas 77036; (713) 772-1927.

The test mentioned above may be described in more detail. Let §h (pxp)

be the sum product (SP) matrix computed from a random sample of size n; from

Np(gh,gh), i.e. p-variate normal population with mean vector K and covariance
matrix gh which is symmetric positive definite, h = 1,2. The two random sam-

ples are independently selected and p < n;, n,. Then a.e. the p characteristic

roots of §1§2‘1 are all positive. Further, let 7, . . ., 7, be the characteristic roots
of §1§2‘1 Now the test of the hypothesis Hy: v = 1, i = l,...,p, versus Hy:

~>1, i = 1,...,p, ifyi>p may be carried out at level « as follows:

=1

-9-
Reject Hgy if the largest characteristic root of §1(§1+§2)“1 =
. . 1 1
0p,mn>>01-0pmn Otherwise do not reject. Here m = E(HI_p_Q)’ n = E(n2—p—2)

and the upper (I-o) percentile may be found from the reference above (Pillai and
Flury or references therein).

If one prefers to compute the P-value the program gives the method to do
so, however the P-value may be used with confidence only if it does not exceed
ten percent in view of the fact that it is computed from an approximation to the
cdf of the largest root at the upper end (see Pillai and Flury (1984)).

While Section IT describes the input, Section III gives the input for an ex-
ample and Section IV the output for the example. The data consists of measure-
ments on four variables (1) height (inches), (2) weight (pounds), (3) chest (inches)
and (4) waist (inches) of male reserve officers in civilian status of the Armed
Forces of the Philippines, hailing from two regions of the Philippine Islands but
all within the age interval 29 to 31. The numbers of officers selected at random
were 20 and 24 respectively from the first and second regions. (Normality as-
sumption was found to be justified in view of earlier tests. Also for the original
data see S. R. Ventura (1957). On the extreme roots of a matrix in multivariate
analysis and associated tests. Unpublished thesis. The Statistical Center,
University of the Philippines, Manila.)

Section V gives the program listing, including the usages of the seven sub-

routines listed above.

II. Input

Program: eqcov

Order of control cards:

jobcard

feor

parameter card
format card
(input)

s

a0 bDw

pfiles (get,datafile, x=tape?2)
pfiles (get, eqcov, id=dnt)
mnf (i=egcov, 1=trash)

Preparation of cards specific to this program:

parameter card 1-5

6-10
11-15

16-20

21-25

Format card

nv = number of variables
(must be between 2 and 20 unless program modified)

nl =

n2

itape
itape

ntype

sample size of data set 1 (le 300 unless modified)

sample size of data set 2 (le 300 unless modified)

S
2

0
1
2

if information is on input
if information is on tape

if data is used
if covariance matrices used
if cross product matrices used

Columns 1-80 may be used to describe the data format. Use the usual
fortran format statement omitting the word format.

Data or matrix input

a. If data is input, enter each case on a new line. The format statement
Enter nl+n2 cases, each case having nv

should describe one case.

variables. Enter cases for data set 1 followed by cases for data set 2.

b. If matrices are input, enter the lower triangular portion or the complete
matrix for data set 1 followed by the lower triangular portion or the
complete matrix for data set 2.

III. Input for Example

4 20

(4£10.0)

61.9880
157.8800
4.6200
1.0900
72.0163
195.5875
31.3625
2.6062

24

4043.
295.
479.

3045.
281.
388.

8000
7000
1500

9583
2083
6875

73.5500
50.2250

92.4583
36.8125

81.6375

93.6563

IV. Output for Example

test for equality of covariance matrices based on the largest root test

number of variables is 4
sample size for data set 1 is 20
sample size for data set 2 is 24

data set 1 cross product matrix:

61.9880
157.8800 4043.8000
4.6200 295.7000 73.5500
1.0900 479.1500 50.2250 81.6375

data set 2 cross product matrix:

72.0163
195.5875 3045.9583
31.3625 281.2083 92.4583
2.6062 388.6875 36.8125 93.6563

eigenvalues:
.3736 .6583 1.2219 1.5195
the largest root is .6031

P-value is .6662

***note: the P-value is approximate.
if the P-value is .10 or below it can be used with confidence.
otherwise, the value of the largest root may be compared to the tables.

V. Program Listing

program main (input, output, tape5=input, tapeé=output, tape2)

e E R AT T RS SR EE SRR E LR EE R RS EF TR R R R R R T]

c*
c*
c*
c*

c*

Chhhhhkahhhkhhkhkkhhkhkhkkkhkkhkhkkhkhkhkhhhhkhhkhkhhkhkhkhkkhkhhkhkhkhhkhkhkhhkhhhkhkhrhhrkhkkkkdkx

aoocaoQaaaaaocna0ao0n0QQa0n0Qo00nNac0QO0Q

This program is an algorithm for a test for equality
of covariance matrices of two normal populations.
It is based on the procedure described in:

Pillai, K.C.S. and Flury, Bernhard N. (1984),
"Percentage Points of the Largest Characteristic
Root of the Multivariate Beta Matrix,"
Communications in Statistics- Theory and Methods,
13(18), 2199-2237.

Department of Statistics
Purdue University
West Lafayette, IN 47907

programmer - Regina Becker
Department of Statistics
Purdue University

January, 1985

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

jnput information

variables: nv = number of variables (must be less

than or equal to 20)

nl = sample size of data set 1 (must be less than
or equal to 300)

n2 = sample size of data set 2 (must be less than
or equal to 300)

itape = the informational input source
5 if information is on input
2 if information is on tape

ntype = the informational input code
0 if data is input '
1 if covariance matrices input
2 if cross product matrices input

order of input:

1

2.

. parameter card nv,nl, n2, itape, ntype
use (5I5) format

format card Colums 1-80 may be used to describe the
informational input format. Use the usual
fortran type format statement, omitting

aooaoaQaoQo0QcoaoanNQ0Qc0QOQaQ000QQN

the word format.

3. data or matrix input

a.

note: the s

If data is input, enter each case on a new line. The format
statement should describe one case. Enter nl+n2 cases, each
case having nv variables. Enter cases for data set 1
followed by cases for data set 2.

If matrices are input, enter the lower triangular portion or
the complete matrix for each data set. For example, if there
are 3 variables the covariance matrix input should be:

sll
s21
s31
s41
rll
r2l1
r3l1
r4l

s22
s32
s42

s33
s43 s44

r22
r32
r42

r33
r43 r44

matrix is covariance matrix of data set 1

the r matrix is covariance matrix of data set 2

AR R EEEEEELE SR LS T T R R e Y R R R R

a0 00QQQOQ0000000DO0

The following subroutines are called by

1. becovm

2. linvZp

3. ludecp

from the IMSL library, this
the cross product matrix of
is input.

from the IMSL library, this
inverse of a matrix

from the IMSL library, this

the program:
subroutine calculates
each data set if data

subroutine finds the

subroutine performs a

triangular decomposition of a matrix x such that

X = 1 * 1-transpose. 1 is a lower triangular
matrix

vmulff - from the IMSL library, this subroutine performs
multiplication of two matrices stored in full
storage mode

vimulfs - from the IMSL library, this subroutine performs

multiplication of two matrices a and b where a
is stored in full storage mode and b is stored in
symmetric storage mode

eigrs - from the IMSL library, computes the eigenvalues
of a real symmetric matrix

algama - from the IMSL library, this function computes
the natural log of the gamma function

CCCT

C
C
C

subroutine becovm

agoqaoooaoa0ca0qQo0c0000000000Q000

usage:

call

X

ix

nbr

ier

becovm (x, ix,nbr, temp, xm, spl, ier)

input matrix of dimension nbr (3) by nv for which cross
product matrix is desired. nbr (3)=sample size

input, row dimension of x as specified in dimension
statement in calling program. ix = nlsize

input vector of length 6.

nbr (1) = nv

nbr (2) = number of observations per variable
nbr (3) = nbr (2)

nbr(4) = 1

nbr (5) = 1

nbr (6) = 1

input vector of length nv

output vector of length nv containing variable means
output matrix of dimension nv by nv stored in symmetric
storage mode requiring nv * (nv+l) /2 locations. spl -

contains the cross products matrix

error parameter

CCCct

o000 00000000NQO00000

subroutine linv2p

usage:

call

sp2

nv

linv2p (sp2,nv, sp2inv, idgt,dl,d2,wkarea, ier)

nv by nv positive definite symmetric matrix to be
inverted. sp2 is stored in symmetric storage mode

order of sp2

sp2inv output vector of length nv(nv+l) /2 containing

idgt

a1,
d2

the inverse of sp2. storage is symmetric mode.

the approximate number of digits in the answer which
were unchanged after improvement

components of the determinant of sp2
determinant (sp2)=dl*2.**d2 (output)

wkarea work area of dimension nsize (250)

ier

error parameter

CCC

anaaaoaoaoann

subroutine ludecp

usage: call ludecp (sp2inv,ul,nv,dl,d2,ier)

sp2inv input vector of length nv(nv+l) /2 containing the

nv by nv positive definite symmetric matrix stored
in symmetric storage mode

C ul

c

c

c

c

Cc

c nv

c

C dl,
C d2

c

c ier
c

output vector of length nv(nv+l) /2 containing the
decomposed matrix 1 such that sp2inv=1*1-transpose.
1l is stored in symmetric storage mode. The diagonal
of 1 contains the reciprocals of the actual diagonal
elements.

order of sp2inv

components of the determinant of sp2inv.
determinant (sp2inv) = dl1*2.**d2 (output)

error parameter

CCC

C

1

r

cl

c2

ia

ib

1t

ic

ier

aaaacaaoao0o0on0o0000000Q0Q0QCOQCO00Q000

subroutine vmulff

usage: call vmulff(c,l,r,cl,cz,ia,ib,lt,ic,ier)

r by cl matrix stored in full storage mode
cl by c2 matrix stored in full storage mode

number of rows in ¢ = nv

number of columns in c nv
number of columns in 1 = nv

row dimension of matrix c as specified in the dimension
statement in the calling program = maxnv

row dimension of matrix 1 as specified in the dimension
statement in the calling program = maxnv

r by c2 matrix containing the product 1lt=c*1

row dimension of matrix 1t as specified in the dimension
statement in the calling program = maxnv

error parameter

CCeee

1t
spl
1

m

ia

aaaocaoo0o0n0ao00000Q0Q0Q0

subroutine vmulfs

usage: call vmulfs(lt,spl,l,m,ia,c,ic)

1 by m matrix stored in full storage mode

m by m symmetric matrix stored in symmetric storage mode
number of rows in 1t = nv

number of colums in 1t = nv

row dimension of matrix 1t as specified in dimension
statement in the calling program = maxnv

1 by m matrix containing the product c=lt*spl

000

ic

row dimension of ¢ as specified in the dimension
statement in the calling program = maxnv

CCC

aaoaoaaaoo0o0o000000000000000N0

subroutine eigrs

usage: call

ul

nv

jobn

ic

eigrs(ul,nv,jobn,d,c,ic,wkarea,ier)

input real symmetric matrix of order nv whose
eigenvalues are to be computed

order of the matrix ul

= 0 1is an order to compute eigenvalues only
output vector of length nv containing eigenvalues of ul
output nv by nv matrix of eigenvectors

input row dimension of c as specified in dimension
statement in calling program = nv

wKkarea work area of length at least nv

ier

error parameter

CCCe

aooa000000

subroutine algama

usage: call

X

algama (x)

input argument

algama output value of the log base e of the absolute

value of gamma (x)

CCC

a0 00000000000n0

a special note: a parameter statement has been used to set maximum

sizes for these variables:

nl maximum is nlisize = 300

n2 maximum is n2size = 300
nv maximum is nvsize = 20
ind maximum is nvsize* (nvsize+l) /2 = 210

wkarea maximum is nsize. nsize must be at least
nv(nv+l) /2 + n

These sizes may be increased if storage space on your computer allows
for larger array storage. In that sense, variable limits can be
controlled by the programmer.

CCCee

parameter(nlsize=300,n25ize=300,nvsize=20,ind=210,nsize=250)
real pval,x(nlsize,nvsize), temp (nvsize),spl (ind),sp2 (ind),
*wkarea (nsize) ,sp2inv (ind) , 1t (nvsize,nvsize) , 1 (nvsize,nvsize),
*t (nvsize),ul (ind) , c (nvsize,nvsize) ,h(nvsize) ,m,n

real xm(nvsize),d(nvsize)

integer dfl,df2, fmt (80),nbr (6)
double precision sum, f (nvsize), £f

C read in nv=number of variables, nl=sample size of data setl
c n2=sample size of data set2, itape (5 if data is input,
c 2 if data is on pfiles), ntype(0 if data, 1 if covariance matrix,
o] 2 if cross product matrix)
read (5,10) nv,nl,n2, itape,ntype
10 format (315, 215)
maxnv=20
write(6,410)
410 format (1x, '***test for equality of covariance matrices based on',
* ' the largest root test***', //)
write(6,412) nv,nl,n2
412 format (1x, 'number of variables is ',i2/x, 'sample size for data'
* ' set 1 is ',13/x, 'sample size for data set 2 is ',13/)
c check that nv le maxnv
if (nv.gt.maxnv) then
write(6, 8)
8 format (1x, '***number of variables must be less than 21'/)
goto 900
endif
if (ntype.lt.0.or.ntype.gt.2)then
write(6,12)
12 format (1x, '***check input type specification'/
* 1x, 'ntype=0 if data , 1 if covariance matrix, 2 if cross product
* matrix')
goto 900
endif
if (itape.ne.5.and.itape.ne.2) then
write(6,9)
9 format (1x, '***incorrect input medium specified'/
* 1x, 'use itape=5 if data is from input'/
* 1x,'use itape=2 if data is from outside file'))
goto 900
endif
dfl=nl-1
df2=n2-1
min=dfl
if(df2.1t.dfl)min=df2
if(nv.gt.dfl.or.nv.gt.df2) then
write(6,11) min
11 format (1x, ' ***number of variables must be less than the'/
* 1x, 'smaller degrees of freedom which is ',6i4//)
goto S00

endif

pie=4.*atan(1.0)
C read data format and data

read (5, 20) (fmt(i),i=1,80)
20 format (80al)

if (ntype.eq.0) then

do 30 i=1,nl

read (itape, fmt) (x(i,3j),j=1,nv)
30 continue

o] call becovm to get variance-covariance matrix

nbr (1) =nv
nbr (2) =nl
nbr (3)=nl
nbr (4)=1
nbr (5) =1
nbr (6) =1
ix=nlsize

call becovm (x, ix,nbr, temp, xm, spl, ier)

c spl has cross product matrtix since nbr (6)=1
C this is stored in symmetric storage mode

do 40 i=1,n2
read (itape, fmt) (x(i,]j).j=1l,nv)
40 continue

nbr (2) =n2
nbr (3) =n2
ix=n2size
call becovm(x, ix,nbr, temp, xm, sp2, ier)
else
do 43 i=1,nv
ii=(i-1)*i/2
read (itape, fmt) (spl(ii+j),j=1,1i)
43 continue
index=nv* (nv+1) /2
do 45 i=1,nv '
ii=(i-1)*i/2
read (itape, fmt) (sp2(ii+j).j=1,1)
45 continue
if (ntype.eq.2)go to 49
do 47 i=1,index
spl (i)=spl (i) * dfl
sp2 (i)=sp2 (i) * df2
47 continue
49 endif

write (6,400)
400 format (1x, 'data set 1 cross product matrix:'/)

do 401 i=1,nv

ii=(i-1)*i/2

write(6,402) (spl(ii+j),j=1,1)
401 continue

403

402
404

50

60

70

406

write (6,403)
format (/x, 'data set 2 cross product matrix:'/)

do 404 i=1,nv

ii=(i-1)*i/2

write(6,402) (sp2(ii+j),j=1,1)
format (1x,12£10.4)

continue

find sp2 inverse

call linv2p(sp2,nv,sp2inv, idgt,dl,d2,wkarea, ier)

sp2 inverse = sp2inv. decompose this to 1*1 transpose
call ludecp (sp2inv,ul,nv,dl,d2, ier)

ul has matrix 1 such that l1*1-transpose = sp2inv
diagonal of 1 has reciprocals of actual diagonal elements

ul (1) = 1./ul (1)
Jj=1

do 50 i=2,nv
=g
ul (jj)=1./ul (jj)
continue

write 1 in full storage mode

do 60 i=1,nv
inc=(i—l).* i/ 2

do 60 j=1,1

1(i, j)=ul (inc+j)
if(i.ne.j) 1(j,1)=0.0
continue

multiply l-transpose * spl * 1

do 70 i=1,nv
do 70 j=1,nv
1t (3,1)=1(1, j)
continue

call vmulfs (1t, spl,nv,nv,maxnv, c, maxnv)
call vmulff(c,l,nv,nv,nv,maxnv,maxnv,lt,maxnv,ier)

this results in l-transpose*spl*1l into 1lt. need characteristic
roots of 1lt. convert this to ssm, put in ul (not used now) .

call vcvtfs (1lt,nv,maxnv,ul)
get eigenvalues of ul
call eigrs(ul,nv,0,d,c,nv,wkarea, ier)

write (6,406)
format (//x, 'eigenvalues:'/)

write (6,666) (d(i),i=1,nv)

666 format (1x,12£f10.4//)
C d contains eigenvalues, smallest to largest
c arrange theta(i) (called t(i)) largest to smallest

do 80 i=1,nv
t(nv—i+l):d(i)/(l.+d(i))
80 continue

m=float (dfl-nv-1) /2.
n=float (df2-nv-1) /2.

rnv=float (nv)

nvt=nv,/2

if (nv.eq.2*nvt) then

hh=1.0

else

xx=t (1)

call mdbeta (xx,m+1.,n+1l.,hh,ier)
endif

c compute h(l) to h(nv)
h(1)=1.0

do 100 i=2,nv-1
h(i)=float (nv-i+l) * (2.*m + float(nv-i+2)) * h(i-1)/

* (float (i-1)*(2.*m + 2.*n +float (2*nv-i+2)))
100 continue
ol compute f

£(1)=(m+n) / (mtn+rnv)
do 120 i=2,nv-1
f(i)=((m+n) *h (i) - (m+float (nv-i+1)) *£(i-1))/
* (m+float (nv-i+1))
120 continue

sum=0.0

do 130 i=1,nv-1

sum=sum+ (-1.0) **i * f£(i) * t(1)** (nv-1i)
130 continue

z1=.5% (2.*m+2.*n+2. *rnv+1.)
z2=.5*% (2.*m+rnv+1.)

z3=.5% (2.*n+rnv+1.)
z4=.5*rnv

z5=.5% (2.*m+2.*n+rnv+2.)

cst=(.5*alog (pie) +algama (m+tn+rnv+1.) +algama (z1)) -
* (alog (m+n) +algama (z2) +algama (z3) +algama (z4) +algama (z5))

C find antilog of cst

cst=exp (cst)
ff=hh + cst *(t(1)**m)*((1.-t(1))**(n+l.)) *sum

write(6,408) t (1)

408 format (//x, 'the largest root is ', £10.4)
p=1.-ff
write(6,407) p

407 format (//x, 'p-value is ', £6.4///)

write(6,409)

409 format (1x, '***note: the p-value is approximate.')
write (6,414)
414 format (4x, 'if the p-value is .10 or below it can be used',
* ' with confidence.')
write (6,415)
415 format (4x, 'otherwise, the value of the largest root may be'
* ' compared to the tables.'//)
900 stop

end
#eor

