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ABSTRACT

The Stein effect, that one could improve frequentist risk by com-
bining "independent" problems, has long been an intriguing paradox to
statistics. We briefly review the Bayesian view of the paradox, and
indicate that previous justifications of the Stein effect, through con-
cerns of "Bayesian robustness," were misleading. In the course of
doing so, several existing robust Bayesian and Stein-effect estimators

are compared for a variety of situations.
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1. INTRODUCTION

Suppose Xi‘wm(ei,og) (0? known), and that it is desired to estimate 8 by
an estimator ai(xi) under squared error loss. The standard estimator
GQ(X.) = X is admissible when frequentist risk (expected loss) is the criterion.

Stein (1955) showed, however, that if one combined p such problems, i.e., consid-

ered the problem of estimating 8 = (e],...,ep)t, based on X = (X1,...,Xp)t under

sum of squares error loss, then the corresponding natural estimator, Qo(é) =

(61(31),...,6g(xp))t = X, is inadmissible when p > 3. Indeed, James and Stein

(1960) showed that (when all 0? = 1) a better estimator is given by

07500 = (1 - L=2)) o (1.1)
|l

thus, in terms of frequentist risk

N 2
R(g,8) = o 18(X) - 8l
James and Stein (1960) showed that R(8,5°7>) < R(g,s°) for all g.

Note that §~>

involves all the xj in estimating each 0. This is counter-
intuitive when the 6, are from completely different problems, as in the follow-
ing example.

Example 1. Suppose 61 is the mean corn yield per acre in Indiana in 1985,
6, is the mass of the universe, and 63 is the age of a newly discovered Greek
artifact. A large business conglomerate is simultaneously interested in esti-
mating these three quantities, and the directors ascertain that the overall loss
)2+ (8,76,)°

to the business in mis-estimation is [(61-6 + (63-63)2]. It
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strikes most people as rather odd to combine measurements involving such 0,

in a manner such as (1.1).

This phenomenon, that one can combine independent problems and obtain im-

proved estimators, is called the Stein effect. It is a very general phenomenon

in frequentist decision theory (see Berger (1985a) for references). Several
explanations for the phenomenon have been proposed. One common explanation

(cf. Efron and Morris (1973)) is that if the 6. are related, as in being i.i.d.
observations from a common population, then estimators similar to QJ—S can arise
as empirical Bayes estimators. However, while such situations are extremely
important areas for application of Stein estimation, they are not cases in
which the coordinate problems are truly 1ndependent; since the 0, arise from a
common population, knowledge concerning ej is clearly relevant to estimating 0,
We will be considering instead situations such as Exampie 1, where the Stein
effect holds, but in which it would be absurd to think of the 6, as coming from
a common population.

A second common "explanation" of the Stein effect is that it is natural
because the losses for the different problems have been combined. Indeed, such
combination can force a dependence into the final estimate when one has a non-
linear utility function. The Stein phenomenon is usually stated, however, in
terms of combining the individual losses, Li(ei,si), in a linear fashion, to
yield
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(or perhaps some weighted linear combination), and the situation is then not so
clear. It may seem that this forcing of the Li to be on a common scale might be
the cause of a dependence in estimation, but a number of intuitive arguments
refute this. The simplest, which we will pursue in this paper, is the Bayesian
view of the situation.

Let n(g) denote a prior (density for convenience) for 9. The assumption
that the problems are completely unrelated can be expressed by the Bayesian con-

dition that the ei are apriori independent, i.e., that

Now, for such a prior and with a loss as in (1.2), it is straightforward to

verify that the Bayes rule is

s"(x) = (6 (x]),...,aﬂp(xp))t,

M e
where § 1(x1.) is the Bayes rule for estimating ei under loss Li and with respect

to the prior n{. Thus a Bayesian feels that, if the problems are truly unre-
lated (and the prior is known), then only Xs should be involved in the estimation
of 0. The combination of losses in a Tlinear fashion, such as (1.2), has no
effect on the Bayes rule.

To obtain a Bayesian explanation for the Stein effect in a setting such as
Example 1, we must, therefore, leave the pure Bayesian framework. A natural and
practically relevant direction to Took is towards concerns of Bayesian robust-

ness. Indeed, Berger (1982a) so approached the problem, imagining the specification



of a prior no, of the form (1.3), and advocating consideration of the class of

priors
r = {r = (1-g) 2+ eq; q an arbitrary distribution}, (1.4)

where 0 < ¢ < 1 is a constant reflecting the accuracy of the specification of
wo. The idea is that, in practice, WO will merely be an approximate quanti-
fication of prior beliefs, and that priors "close to" WO are also plausible.
The robust Bayesian seeks to conduct an analysis which is Tikely to be satis-
factory for all such "close" priors. The class in (1.4) is a simple and useful
class of close priors. (It might be argued that allowing the "contamination,"
q, to be arbitrary allows too much deviation from wo, but for the purposes of
this paper such a concern is irrelevant; the same results can be shown to hold
as long as there are priors in T corresponding to q which give arbitrarily small
mass to compact sets).

In Berger (1982a, 1984), it was shown that the Stein effect is valuable
in achieving Bayesian robustness with respect to classes such as (1.4); indeed,

it was shown to be possible (in symmetric situations) to construct Stein-type

estimators which are nearly optimal in terms of Bayes risk
r(r,g) = E" R(g.g) = [ R(g.8) n(g) dg, (1.5)

for an elicited prior wo, and yet are also highly robust with respect to 1,

in the sense that

ro(g) = sg? r(m.g) (1.6)



is also nearly optimal. The criteria (1.5) and (1.6) are, of course, partly
frequentist in nature, and are of interest to a Bayesian only in that they can
indicate good average posterior expected loss for §. (In Berger (1984, 1985b)
the value of such criteria to a Bayesian is more fully discussed.) It suffices
here to note that these criteria are of interest, and that Berger (1982a,
1982b) showed that a Stein-type estimator cando much better by these criteria

than can robust coordinatewise independent estimators of the form
N (. - t
(%) = (87(xq)s00u8 (x )™ (1.7)

Thus there appeared to be value in the Stein effect, even from a Bayesian
perspective.

The intuitive paradox has caused us to continue to examine the issue, and we
noticed a disturbing step in the above argument. The step was the inclusion of
priors in (1.4) that are coordinatewise dependent; even though HO is of the form
(1.3), many (indeed most) of the priors in (1.4) will have dependent coordinates.
And, although it may often be the case that dependence among the 0 is possi-
ble (in which case (1.4) might be reasonable), our stated goal was to investi-
gate the value of the Stein effect for completely unrelated problems. Thus, in
Example 1, while we might be quite uncertain as to the choice of wo, our prior
belief in the independence of the ™. may be so strong that only priors satisfy-
ing (1.3) would be deemed reasonable.

A sensible class of priors for such a situation is

| P ' |
T, = {r= 1 [(1-¢) w@(e.) + eqi(ei)]’ the g arbitrary}. (1.8)



(Again, the only essential requirement for the following results is that r, con-
tain priors corresponding to 95 which give arbitrarily small mass to compact
sets.) This class contains priors which are close to no and which preserve
the independence structure. The obvious question to ask is--Does the Stein
effect allow improved performance, from a robust Bayesian perspective, for
r]? We will see that the answer is, essentially, no; there does not appear to
be value to the Stein effect in combining independent probiems.

To avoid possible confusion, we again emphasize that we are not consider-
ing the formally related empirical Bayes situation where « is of the form (1.3),
and the coordinatewise priors, T have unknown and partially common features.
The coordinate problems are not then independent to a Bayesian (placing a
second stage prior on the common features and integrating out clearly reveals the
dependence), and a Bayesian will naturally employ coordinatewise dependent
estimators.

2. PRELIMINARIES

For convenience, we restrict ourselves to the symmetric situation with in-

dependent X, ~ n(ei,oz), i=1,...,p, 02 known, loss Li(ei,éi) = (81-61)2 in
p
estimating e, by ¢, and overall Toss L(s,s8) = } (61—81)2 in estimating

nvoNy .
i=1

_ o o t . o
8 = (e],...,ep) by § (§],...,6p) . We imagine that the o, are apriori in

dependent, and that rough quantification of the prior information results in a
W(ui,rz) prior, to be denoted n?, for each 0, Here we presume that 12 and

B = (u],---,up)t are subjectively specified numbers. Thus the "base" prior for

p

the Bayesian robustness investigation is no(g) = 1 w?(
i=1

distribution. Note that, since 2 is assumed known, this is not an empirical

e-i)s the WP(H,TZI)

Bayes situation. It is a situation where, by coincidence, we have p completely
independent problems which have similar known variances. This is not being

put forth as a realistic practical situation (although the amount of theoretical



literature on the situation is quite astounding), but rather because it is the
situation most conducive to improvements via the Stein effect; if the Stein .
effect is of no or Timited value to Bayesian robustness here, it is unlikely
to be helpful in more realistic scenarios involving complietely independent
problems with very different variances.

We will work with two classes of prior distributions. The first has al-
ready been discussed, namely Iy in (1.8). The second class is somewhat less
conservative, allowing at most one of the coordinates of § to have a contaminated

prior. The class is

p .
Z ([(1—¢)w?(ej) + eqj(ej)] 1£j n?(ei)), the Qj arbitrary}. (2.1)

Note that Ty & Tys SO that demanding robustness with respect to Iy is less
stringent than demanding it for Ty

By looking at r(no,g), r (g), and r_ (¢8) (see (1.5) and (1.6)), we hope

T r
1 2
to obtain reasonable indications of the performance of an estimator $. It is

actually somewhat more conveninet to normalize r(no,g) and rr(g) as follows:

define
( ) ( "
rin, §) - r(n .8 ) 2 2 2
RSR(r0, 5) = —— AR CaRS o RS (2.2)
r(ﬂoaso)" r(ﬂo’%ﬂ ) po °
and
r*(s)—(“”’rm-ﬁ (2.3)
' T'n 2°



The "relative savings risk" of g, RSR(wO,Q), measures the proportion of available
improvement over QO(%) = x that is achieved by § (for the prior wo). RSR riear 0
is optimal, while RSR near 1 indicates performance as bad as that of QO. (Efron
and Morris (1971) first introduced this concept.) The main purpose in using
these scaled versions of risk is that the scaled versions are often independent
of 02, T2, and y.

Note also that ro (or r*) can be used to define r-minimaxity. A r-minimax

r

estimator is an estimator which minimizes o (or, equivalently, r;) over all

possible estimators.

3. THE ESTIMATORS AND RISKS

The estimators that are to be considered are various robustified versions
of the Bayes estimator with respect to no, which is given for the situation

of Section 2 by

G”O(x) = (s ”?x ) ;8 TTO(X ))®

LY A ‘I 'I 2 L] p p L]
where

’ITO ‘-'02
8 (xi)=x1—(0 +T)(x1—ui)
0 ﬂo ﬁO ﬂo
Clearly RSR(w ,6 ) = 0, but it is easy to see that r*(s" ) = r*(s" ) = «,
0 Y F-I’\J F2'\J

so that QW is highly suspect from a robustness viewpoint. (Note that rF(QO) =1

for any T, so that values of r? larger than one can be avoided.)



0 .
The most natural way to robustify Q“ is on a coordinatewise basis. An

appealing choice is the limited translation estimator of Efron and Morris (1971),

given by

where

~ 0
A robustified version of g" that involves the Stein effect is given in

Berger (1982b), and can be written as

M,S
(

$
N

X) = x - min {1, 0y (] - J»elz/(o2 + %))} — 7
(o’ + T

where, for p = 3,5, and 7 (the 3 cases to be considered in this paper), pM’p(Y)

is given by

_M 2 __ M
om,3tr) = e o5 (M) = Ty

S o

_ M2 + Mr) 10

P
w,7{r) = 2 + 6/Mr + Wy Ty
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For general discussion of the properties of these estimators, see Berger
(1982b). Their Bayesian robustness is indicated by the fact that they equal
Q”O if Jx - k| is small (i.e., the prior information appears to be correct), and
yet are not allowed to deviate excessively from QO(%) = x if ]% - gl is large.
For various ¢ and ryor T, (defined in (1.8) or (2.1), respectively), we
will calculate and compare the "most robust" estimators of the forms (2.4) and

M,I M,S
) of rx(s7°7)

(2.5). This will be done by simply minimizing rF(g over M (for
the various e and r'). For notational convenience, M* will be used to denote the
optimal value of M in each situation. (Note that this will, in general, depend
on the choice of r, ¢, and the form of the estimator.)

*
M, 1 is that it can be shown to be nearly optimal among

The 1interest in $
all coordinatewise independent estimators (i.e., those of the form (1.7)),

*
in terms of minimizing r; or r* Likewise, QM >3 is nearly optimal among all

% .
"Stein-effect" estimators]of thezform Q(%) =X - p(l% - &{2)(% - H)‘ (The
arguments are similar to those in Berger and Berliner (1984) or Marazzi (1985),
and will be omitted.) Thus a comparison of the performance of these estimators
should provide a strong indication as to the value of the Stein effect in the
situations considered. The following lemmas present risk formulas needed for
the calculations and comparisons.

M,I

Lemma 1. The estimator $ has

SR = -y i e - (B W2 )

where ¥y is the c.d.f. of the chi-square distribution with one degree of freedom.

Also



and

Proof.

(1971).

(1.3),

11

ex (50) = (1 - rsR(x?, g 1) + e+ 1) (2.7)
1

e (D) = (1 - SRsR(a0, M Ty + S+ 1), (2.8)
2

Equation (2.6) is given in a slightly different form in Efron and Norris

To verify (2.7), observe that, since Iy contains only priors of the form

D
sup r(wo,gM’I) = sup .) r(wi,aT’I)
'ITGF-I ﬂeI‘].i:-l ’

P
=sup (1 - e)r(ﬂ?,G?’I) + er(qi,sT’I)
'n'EI‘.I i=1

D M
= (1= (a0, gM Ty + o § sup rlag657)

i=1 9
P
= (1= )%™y v e T osup R8T
i=1 9.
1
4
= (-l - E)Y‘(WOsQM’I) + SP(M%“—__Z + 02)9
(" + %)

the last fact following from a result of Efron and Morris (1971). Using the
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definitions of RSR and r¥ and simplifying, yields (2.7). Equation (2.8) is
1

similarly established. O

M,S

Lemma 2. The estimator g >~ has

P/2 -y/2
wsR(e0, %) = -y o ey ML e (2)

where wp is the c.d.f. of the chi-square distribution with p degrees of freedom

and y is the solution to the equation

pM’p(,Y) = 1.

Also,
ex (1) = (- P RGN - (- 1B e, 2a0)

and

M, : 0 M,S
(8 %) = (1= )RR + e+ ). (2.11)

Proof. Equation (2.9) follows from Berger (1982b) or Chen (1983). To establish

(2.10), note first that any distribution of the form

w*(e) = [m ”?(91)] [mq;(e;)] (2.12)

some other
indices indices
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satisfies

sup r(m*, M’S) sup R(Q,QM)
{q%} )

o0

4
pcz + M02 .
(6" + 1

Ll

5o
)
(These equalities follow by letting one of the involved 95 give mass to a point

e?, letting |e?| + «, and using results about the behavior of °M,p from Berger

(1982b).) But any m€r, can be written

W) = (1= & lg) + Inxg),

where the ﬁz are of the form (2.12) and have total mass [1 - (1 - e)p]; thus

sup r(m,8 ) = (1 - &) r(x0,g"™3) + sup T r(nt,g"%)
€l {qi} 2
P, 0 M,S P 2, MY
= (1= )P (el gS) 11 - (1 PR ¢
(6" + 1)

Using the definitions of RSR and r¥ and simplifying, yields (2.10). The veri-

1
fication of (2.11) is similar and will be omitted. O

Having derived explicit formulas for r? and r; for the estimators being
| 1 2

1.
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considered, it is a sample matter to numerically minimize over M to find the
optimal M*. Table 1 presents the values of M* for various ¢ and p = 3,5,7.

Thus, when ¢ = .2, p = 3, and Iy is the class of priors considered, the estimator

of the form (2.5) which minimizes r¥ s Q'42’S (i.e., M* = ,42).
2 *
Table 2 compares the robustness of %M*,I and QM ,S, as measured by r; .

1
for various € and p = 3, 5, and 7. (The estimator QT will be discussed shortly.)

Table 3 presents the analogous results for robustness as measured by r; . In both

cases, QM*’I is superior to QM*’S. Thus greater overall robustness appgars to

be available from the class of coordinatewise independent estimators (i.e. (1.7)),

than from the class of Stein-effect estimators. This is in sharp contrast to the

results obtained in Berger (1982a, b, 1984) for the "dependentf class T in (1.4).
Of course, rF] and r;z do not tell the whole story, in that they essentially

measure only the "worst" that can happen. It is thus interesting to also look at

the "best" that can happen in using an estimator $3 this best will be roughly
given by RSR(wO,g), which again can be thought of as the percentage of availa-
0

ble Bayesian gains sacrificed by using $ instead of Q” . Table 4 gives values

M*, 1 M*,S

of RSR for $ and $ » when M* is the optimal choice with respect to r],

while Table 5 gives the corresponding values of RSR, when M* is the optimal

choice with respect to T Observe that the Stein-effect estimators seem to do

*
better than the coordinatewise independent estimators. Thus, while QM 1 is

M*,S

*
generally better than $ in the "worst case scenario," the reverse seems to be

true in the "best case."

To attempt a finer comparison of the coordinatewise independent and Stein-

*
effect estimators in terms of RSR, it was decided to replace M* in QM 1 by M
. M',I M*,S
the value of M for which $ and $

MaIy _ M*,S
g ) = r; (g )). The RSR of $

are equally robust (i.e., for which

M',I

r; ( was then calculated, and is given in
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Tables 4 and 5. The results are unclear. For small e the coordinatewise inde-

pendent estimator, QM 1

M*,S

, tends to be better, while for Targe ¢ the Stein-effect
estimator, $ , has smaller RSR. This is, perhaps, not surprising, in that,
at the extreme ¢ = 1, only minimax estimators are allowed, and only Stein-effect
estimators can be minimax and have small RSR.

A different method for achieving a type of Bayesian robustness was proposed

in Stein (1981) (see alsoDeyand Berger (1983)). The method, when applied to

our situation, results in the estimator

2
T _ . 2{9- 2 ]
$ (%) = x - min { 5 g > ( 2)} Z;
(6" +7%) Izl
here z = (z],;;.,zp)t, z, = sgn(yi) min{lyil,[yl(z)}, yi = (Xi - ui), and

ly’(z) is the ¢ order statistic of the sequence {]y]|,ly|2,...,lylp}.
The choice of % should corresporid roughly to a guess as to the number of ei
for which prior misspecification is feared; because of the small p in this study
and because Ty corresponds to the case where at most one coordinate is mis-
specified, the choice % = p-1 was made.

Using results of Dey and Berger (1983), RSR (wO,QT) can be calculated.
For p = 5 and p = 7, the values are .383 and .337, respectively. Furthermore
rF](gT) and r;z(gT) can be calculated in a manner similar to (but more compli-
cated than) Lemmas 1 and 2. The key idea is to recognize that, if q; gives
probability one to e: and Ie:[ + =, then %T effectively becomes the estimator
with Z5 =Yy for j # i, and z, = sgn(yi) ?;? |yj]; although this is the worst

case, a Stein effect still remains. If, on the other hand, one is maximizing over

two contaminations q; and qj, they can be chosen to give probability one to
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0% and 63, respectively, with |e?| + = and |e§| > o} QT will then collapse back
to 60(

$ &) = X. Thus, in the expansion of terms in r* or r* , those involving at
N

T r
most one 9; yield reduced Bayes risk, while those inlo]vingztwo or more of the q;
result in the minimax risk. Expressions in Dey and Berger (1983) can be used to
calculate all terms. |
Tables 2 and 3 give values of r; and r; for QT, when p = 5 or 7. (For
T(5) = QO(%) = Xs since 2 = p1- 1 = 2?) Even for Iy (a class of priors
for which QT would seem ideally suited, since QT truncates precisely one "bad"

p=3 4

coordinate here), the performance of QT seems inferior to that of the robust
coordinatewise independent estimator. Its value of r; is always larger, and its
RSR (.383 or .337 for p = 5 or 7) is better only for quite large . Observe

M*,S . .
in terms of r*, unless ¢ is small,

that QT does seem to be better than $ 7
M*,S

but its RSR is never better than that of $

4. CONCLUSIONS

The numerical results in Section 3 indicate that a Bayesian who is quite
certain that several problems are unrelated, but is otherwise somewhat uncer-
tain about the prior specification, will not see any clear value in utilizing the
Stein effect; superior robustness can be achieved through use of, say, coordin-
atewise independent limited translation estimators (except possibly for large e,
where no clear conclusions emerged from the limited criteria considered). The
coordinatewise independent estimators also have several additional appealing
propoerties. First, in contrast with the Stein-effect estimators (though not
necessarily the QT versions), the coordinatewise independent estimators do not
suffer from the problem that one or more badly specified ﬂ? can cause the entire

M,S

estimator to collapse back to X (A single large lxi'uil will cause s to
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be approximately x; one bad apple can thus ruin the pie.) A related type of

of the coordinatewise independent estimators, is
M*,S

"additional robustness,

robustness with respect to the Toss. The coordinatewise risk of $ can be

quite large (cf. Efron and Morris (1973)), while the coordinatewise risk of

*
QM 1 is inherently controlled; thus, if there is uncertainty about the "weights"

1*,1

that should be assigned to each component of the Toss, QP can be substantially

M*,S

more robust. (QT will be substantially more robust than $ in terms of this

type of loss robustness, but, again, QT sacrifices a good deal in terms of rF and
RSR.) Related to this loss robustness is the fact that there is no need to de-

termine weights for the coordinatewise losses, Li(ei’6i)’ in calculating %M*,I
(just do each coordinate separately), while the optimal Stein-effect estimator
will depend crucially on such weights. From a practical perspective this might
be of paramount concern, since it is often very difficult to convince practition-
ers to compare and select weights for the losses from the separate coordinate
problems.

Note that the above conclusions have some force for non-Bayesians also,
because of the nature of Stein estimation. It can be argued (see Berger and
Berliner (1984) and the discussion by Brown in Berger (1984)) that (i) prior
information must be utilized to select an alternative to QO; (i) the most appeal-
ing method, in Stein estimation, of utilizing such information is to specify a
prior distribution, no, and seek to minimize r(wo,g) subject to some frequentist
risk restriction (say, R(Q,Q) < C); and (ii1) a more intuitively accessible
mathematical formulation of this last problem is the r-minimax problem of se-
lecting a r as in (1.4), (1.8), or (2.1) (with ¢ related to C), and finding $ to
minimize r;(g). Thus following a natural path within frequentist Stein-esti-

mation theory Teads to consideration of the issues we have been discussing.

0f course, the conclusion that the Stein effect is of no clear value in
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combining completely unrelated problems does not say that it is of no use in
combining related problems. And, from a practical perspective, the only problems
in which practitioners would even think of using a combined estimator are those
in which the parameters might well be related. The message, therefore, is simply
that there is no "paradoxical" feature of Stein estimation to a Bayesian. If
there is reason to suspect some prior relationship between the 6:5 a Bayesian
might well use a (suitably tailored) Stein-effect estimator; otherwise he will
not. The choice would involveccareful consideration of prior knowledge.
Even when the 6, are clearly independent apriori, a Bayesian consultant

can utilize the Stein-effect when dealing with frequentist clients. The use

M*,S

*
of $ can be shown to be preferable to the use of QO(%) = X from a Bayesian

*
perspective (even conditionally); QM S

can thus be recommended when frequentist
Jjustification is an externally imposed requirement. Of course, a Bayesian might
feel somewhat silly in recommending the combining of completely unrelated prob-
lems in such a scenario, but that is the price that would have to be pdid for

agreeing to guarantee standard frequentist validity.
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1.

Values of M*,

0* means smaller than 1 x 10 .

4

* * * *

T]’QM 1 2,(SM 1 r]’gM ,S 2’%M S
e all p all p 3 5 7 3 5 7

0.0 w m o ® @ ® w

0.1 1.30 2.38 0.17 0.002 0*  0.50 0.19 0.05
0.2 0.74 1.67 0.05 0% 0*  0.24 0.06 0%
0.3 0.47 1.30 0.02 o* 0*  0.14 0.02 0%
0.4 0.30 1.06 0.007 o* 0*  0.09 0.002 0%
0.5 0.19 0.88 0.001 o* 0*  0.05 0* 0%
0.6 0.11 0.74 0.001 o* 0*  0.03 o* o*
0.7 0.06 0.63 o* o* 0* 0.0 o* 0*
0.8 0.03 0.54 o* o* 0*  0.006 o* 0*
0.9 0.006 0.47 0% 0* 0*  0.00] 0* o*
1.0 0 0 0 0 0 0 0 0



Table 2. Values of r¥

M*, I

M*,S

for ¢ > § » and §°.
rx (M1 ex (M55 (51
1“.] 2t I‘.l v v

€ all p 3 5 7 5 7

0.0 0 0 0 0 0.38 0.34
0.1 0.33 0.39 0.45 0.54 0.50 0.49
0.2 0.51 0.60 0.70 0.80 0.62 0.67
0.3 0.64 0.74 0.84 0.92 0.74 0.82
0.4 0.75 0.84 0.93 0.97 0.84 0.91
0.5 0.83 0.91 0.97 0.99 0.91 0.97
0.6 0.89 0.95 0.99 1.00 0.96 0.99
0.7 0.94 0.98 1.00. 1.00 0.99 1.00
0.8 0.97 0.99 1.00 1.00 1.00 1.00
0.9 0.99 1.00 1.00 1.00 1.00 1.00
1.0 1.00 1.00 1.00 1.00 1.00 1.00




Table 3. Values of r* for § $ , and §
M ,I) %M*,S) -

€ 3 5 7 3 5 7 5 7

0.0 0 0 0 0 0 0 0.38 0.34
0.1 0.15 0.10 0.08 0.19 0.14 0.12 0.40 0.35
0.2 0.25 0.17 0.14 0.31 0.25 0.22 0.42 0.37
0.3 0.33 0.23 0.18 0.42 0.35 0.32 0.44 0.38
0.4 0.40 0.28 0.22 0.52 0.44 0.42 0.46 0.40
0.5 0.46 0.33 0.26 0.61 0.54 0.51 0.48 0.41
0.6 0.51 0.37 0.30 0.70 0.63 0.61 0.50 0.42
0.7 0.56 0.41 0.33 0.78 0.72 0.71 0.52 0.44
0.8 0.61 0.45 0.36 0.85 0.81 0.81 0.54 0.45
0.9 0.65 0.48 0.39 0.93 0.91 0.90 0.56 0.47
1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00



Table 4. Values of RSR(n',g) for g 1, g5, and ", when m* is optimal for r,.
RsR(xn%, 812 1) RsR(n?,5"">3) RsR(x0, g™ »T)
p

: all p 3 5 7 3 5 7
0.0 0 0 0 0 0 0 0
0.1 0.11 0.0 0.07  0.03 0.03  0.02 0.0l
0.2 0.20 0.11  0.07  0.03 0.08  0.04  0.03
0.3 0.29 0.21  0.07  0.03 0.0 0.08  0.06
0.4 0.38 0.24  0.07  0.03 0.18  0.13  0.11
0.5 0.47 0.27  0.07  0.03 0.26  0.20  0.19
0.6 0.57 0.28  0.07  0.03 0.35  0.30  0.29
0.7 0.66 0.28  0.07  0.03 0.46  0.42  0.42
0.8 0.77 0.29  0.07  0.03 0.60  0.58  0.58
0.9 0.88 0.29  0.07  0.03 0.77  1.00 0.7
1.0 1.00 0.29  0.07  0.03 1.00  1.00  1.00




M*,1

Table 5. Values of RSR(WO,Q) for $ , QM*’S, and QM ’S, ~when M* is optimal for I

o

* * ¢ f
RsR(x, o> 1) RsR(x0,6'""+5) RSR(x", 8" *1)
X 3 5 7 3 5 7 3 5 7
0.0 0 0 0 0 0 0 0 0 0
0.1 | 0.04 0.08 0.02  0.04 003 0.02  .009 .003 .00l
0.2 | 0.08 0.05 0.4  0.08 0.05 0.3  .018 .005 .002
0.3 | 0.1 0.7 0.6 0.1 0.06 0.03  .025 .007  .002
0.4 | 0.14 0.09 0.08  0.14 0.7 0.03  .032| .008 .002
0.5 | 017 0.1 0.9  0.17 0.7 0.03 .03  .009 .003
0.6 | 0.20 0.3 0.0  0.20 0.07 0.03 .08 .0l0  .003
0.7 | 0.23 0.5 011  0.22 007 0.3  .049 .01  .003
0.8 | 0.26 0.7 0.2  0.25 0.7 0.03 .05 .01  .003
0.9 | 0.29 0.19 0.4  0.27 007 0.03 .05 .012  .003
1.0 | 1.00 1.00 1.00  0.29 0.7 0.03  1.00 1.00 1.00




