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§1. INTRODUCTION.

The fundamental paper on combining helices with stochastic processes on
filtered probability spaces by J. de Sam Lazaro and P. A. Meyer [10] was
published in 1975, during the prehistory of semimartingales. In this article
we use techniques developed to study semimartingales in a Markov process
framework (i.e., [3]) to develop systematically a part of the program begun
in [10]. This is the content of paragraph three, the chief result being
Corollary (3.2).

Processes with stationary and independent increments are semimartingales
and they have local characteristics of a very special form, due to the Levy-
Khintchine formula (c.f. [8, p. 92]). With the notation of paragraph five
of this article the local characteristics of such a semimartingale are of the

form:
(1.1) B, = bt; C, = ct; T = F(dy) x dt.

In particular the local characteristics are non-random and moreover ¥ factors

with one factor being Lebesgue measure. It is, perhaps, interesting to see

how much of this characterization is retained by a semimartingale with stationary,
but not necessarily independent, increments. Since these semimartingales can

be realized as helices one can use Palm measure techniques and we obtain in
paragraph five (i.e., (5.10)) a factorization of the local characteristics

roughly analogous to (1.1). Paragraph four develops the necessary theory

about random measures used in paragraph five.



§2. PRELIMINARIES.

We use in this article the basic framework and notation developed in the
fundamental work of J. de Sam Lazaro and P. A. Meyer [10]; for semimartingales
our notation is that of Meyer (c.f. [12], [4], or [11]).

We suppose given a probability space (2,#,P) and a group (et)tenl
of measure-preserving transformations from @ to @. (The group action is

.) Moreover we assume there exists a sub o-field 49 of 4 such

9% 7 %¢4s
that £ isthe P-completion of ﬂo and such that (t,w) -——>et(w) is
B (IR)®:¢0/3¢O - measurable.

For a given o-field 3 c & such that eE](?f)c &for t < 0, we can define

a filtration (3t) by setting

teR

&0-13‘; Et =0y (30)
Thus 3 .4 = e;163s). This is an increasing family of o-fields and we set
& _ = 03, ;3 = Vv 3 . This filtrationF = (3,) is a filtration
" teR ° te R ¢ t"%€R

under the flow (e Given a o-field 30 inducing a filtration under

t)teR'
R> e can set ;& to be the completion ofiE*0 in 4 . In this case

(6)g¢

3, = 3—; ; that is, the filtration is right continuous (cf [10, p. 4]).

We will always make the assumption that:3_= s#and & __ contains all P-null sets,

for any filtration being considered.
A helix will mean a real-valued process (Zt)te R with right continuous

paths, Ztae &, Z0 = 0, and such that

(2.1) JA -7 = (Z, - Zs) Q6

t+h s+h t h



holds identically for all s,t,he€ R. This is also called a perfect helix.

A crude helix is an & -adapted process with right continuous paths (Zt)telR
with Z0 = 0 and such that (2.1) holds a.s. for all s,t,h € R. The exceptional
sets can depend on the choice of s,t, and h. The following fundamental result
is due to J. de Sam Lazaro and P. A. Meyer, and uses the "perfection" techniques

developed by John Walsh:

(2.2) THEOREM. If Z is a crude helix then there exists a (perfect) helix, Z,

which is indistinguishable from Z.

Since.a process with stationary increments might naturally be interpreted as a

crude helix, Theorem (2.2) is especially useful.

(2.3) DEFINITION. A right continuous process (Zt),te g Will be called a

semimartingale if: Zﬁega_t, te R; ZO =0 a.s.; and if (Zt)tzp is a
semimartingale in the traditional sense (that is, there exist a local
martingale (Mt)t>0 and a process (At)t>0 with paths of finite variation on

compacts such that Z, = M, + A, t20 (cf [4] or [11])).

We will be interested here in helices that are semimartingales. These
can be thought of, essentially, as semimartingales with stationary increments.
Processes with stationary and independent increments are well known to be
semimartingales and can easily be put into this framework (cf [10, pp. 30-32]).
A time homogeneous Markov process with semigroup (Pt)t>0 and admitting an

invariant measure (i.e., aPt = a) can also be put into the helix framework



(cf [10, p. 32]). A helix semimartingale defined within a Markov framework
would correspond to the "additive semimartingales" studied in [3] or the
generalized additive functionals studied in [13]. Other examples can be
obtained from Lazaro's characterization of the space of square-integrable
helix martingales under certain hypotheses [10].

Finally, one might wonder whether or not all "nice" helices are semimartingales.
This is not the case: Let (o, &, (3t) £50° (et)tzO’ (Bt)tzo’ (Px)xeﬂk) be the
Dynkin representation of standard Browni;h motidn_ka [2])j— One can fix P to

1/3

be PQ andextend B to t in (-~,0] in the usual way. Then (Bt)t>0

is a helix
but it is not a semimartingale (cf [3, p. 195]).

It will be convenient to use the idea of the "big shift", originally
proposed by M. Sharpe for the study of Markov processes. We adapt it slightly
here for our situation:

t s t-h_zs-h) ° %

for any process Z, and h,s,t, € RR. We then have the obvious

(2.4) PROPOSITION. An adapted, right continuous process Z with Z, = 0

0

is a helix if and on]y,lfreh(Zt-Zs)'=>ZtTZ§ holds, all t,s,h{e R.

We write ehZ to denote the process (eh(zt'zo))tgp’

We establish here some notation (Y is always adapted and right continuous):
3 = {Y: (Yt)t;p is a semimartingale}

d_= {Y: (Yt)t;p is a special semimartingale}

T o= {Y: (Yt)t>0'a.s. has paths of finite variation on finite intervals}
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{Y: (Yt)t>0 has paths of locally integrable variation}
& = {Y: (Yt)t;O is a local martingale}

P={Y: ( "is predictably measurable}

Y1'.)1:;0
We Tet L(Y) denote the (linear) space of predictable, Y-integrable processes

for a semimartingale Y, and for ﬂeaL(Y), we will let both H-Yt and fg Hdes’

t20, denote the stochastic integral of H with respect to Y. If YGEJ,

we let Y denote its dual predictable projection (also known as the “"compensation"
of Y), and if Y € 4, then Y® will denote its continuous martingale part,

[Y,Y] will denote its quadratic variation process, and if [Y,Y] € &, then

L g Y
[Y,Y] will be sometimes denoted <Y,Y>, to conform with the notation of [10].

(2.5) COMMENT. Helices are defined for all t€ R, whereas objects such as
semimartingales, dual projections, etc. are defined only for t>0. When we
come across a process Y defined for t>0 and satisfying the shift identity

(2.1), we can extend the process to (-»,0] by defining Y_¢= Y o6

0 "-t
(for t>0). The process Y now defined for all t € R will continue to justify

(2.1) and this will be a bona fide helix.

§ 3. SEMIMARTINGALES AND FLOWS

In this paragraph we will consider semimartingales and how they behave
with respect to the "flow" operator (et)te R Our results are analogous to
those of paragraph three of [3]. Our main result is Theorem (3f]), while our

most useful result is perhaps Corollary (3.2).



(3.1) THEOREM. Let Y€ &, s>0, and Y, = 0 if tz0. Then:

t

(i) o Y€ §. If Yedp (respectively £, %.vd; P N,7), then

oY € ép (respectively <, 7, 4, PN7).

(i) If Ye ép has canonical decomposition Y = M + A, then oY = oM + o A

is the canonical decomposition gf_eSY.

Ve o
(1) If Y €<, then'o Y = o V.
(iv)  We have (oY) = o (Y°).

(v)  We have [o,Y, oY1 = o ([Y,Y]).

(vi) If Hi€L(Y) then o H €L(e.Y) and (o H)- (o Y)

eS(H-Y).

(vii) If Y €= is square-integrable, then <0.Y,0.Y> = 0. <Y,Y>.

The proof of Theorem (3.1) follows the proof of Lemma (3.7). Our next
corollary contains some results already well known: for example part (vii),
that <M,M> is a helix if M is a square-integrable martingale helix, is proved

by Lazaro and Meyer in [10, p. 54].

(3.2) COROLLARY. Let Y€ & be a helix. Then

(1) There exist helices M € £, A-€ % such that Y = M + A.

(i) IfY ¢ ép with canonical decomposition Y = M + A, then both M and A

are helices.



(iii) If Ye &, then the dual predictable projection,qi is a helix.

(iv)  The continuous local martingale part of Y, Y©, i

(v)  The process [Y,Y] is a helix.

(vi) If HelL(Y) is homogeneous (i.e., Htoes = Ht+s’ all t,s) then there

exists a version of the stochastic integral H-Y which is a helix.

(vii) If Ye £ is a square integrable then <Y,Y> is also a helix.

PROOF. We first note that Y being a helix means Yt # 0 for all t < 0 in
general, whereas in Theorem (3.1) we assumed Yt = 0 all t £ 0. This does
not really pose a problem, however, since YO = 0 for all helices Y which
implies (eSY)t =Y, for all s > 0, which is the crucial consequence of the
assumption that Yt = 0, t < 0 used in Theorem (3.1).

We begin the proof of (i1).
Let Ye»ép and Tet Y = M+A be its canonical decomposition. For s > 0,
eSY = oSM + esA is the canonical decomposition of OSY by Theorem (3.1).
Moreover since Y is a helix, (GSY)t = OS(Yt-YO) = (Yt_s—Y_s)oeS = Yt—Y0 = Yt;
therefore (esY)t = Yt = OSM + eSA; by the uniqueness of the canonical
decomposition we have OSM = M and esA = A. Since this holds for all s > O,
we conclude M and A are helices by ?roposition (2.4). The proofs of (iii),
(iv), (v) and (vi) are analogous. Statement (vii) is an immediate consequence

of (ii1) and (v), since <Y,Y> is the dual predictable projection of [Y,Y].



It remains to prove (i). Let Y€ & be a helix and let AYt = Yt—Yt_, which

is defined up to an evanescent set. We set

J, = )

AY_ 1 .
0<s§ﬁ S {IAYS|>]}

Then J is a helix in ¥ as is easily checked, and hence Y' = Y-J is a helix
in §. Since |AY'|<I, we know that Y € eSp. Letting Y' = M'+A' be its
canonical decomposition, by (ii) we have that M' and A' are both helices.

Thus Y = M' + {A' + J} is a decomposition of Y into helices. O

We now present five lemmas which lead to the proof of Theorem (3.1).

(3.3) LEMMA Let X €b3_, and let "X = E{X|3 }, t > 0, taking the right
continuous version; and we set TTXt=0 for t<0. Then for all t>s>0, we have

(9"X)y = "(Xo8),.

PROOF. lett>s >0 and Webd, .. Then

, T
E{Woes(es X),}

t

i
E{Woes Xt_soes}

T . . “
E{W Xt-s}’ since es 1S measure preserving

= E{wx}, since Weaa t-s >

of = o o
E{WXo0 } E{w,esx 6.}

m
E{Woes (Xoes)t}



since Weo . € 3, . Moreover since S, = e;](3t_s), random variables of the

form WOeS, We bat_ » generate b3t » and the result follows. O

S

(3.4) LEMMA. Leét Y€ = be such that the jump process AY is bounded by a

constant c. Let Yt = 0, t<0. Then @SYE £, every s>0.

PROOF. Let T, = inf{t: |Y.| > n}, and T, = inft: (oY), [>n}. Then
T s . o = o = .
Tn = inf{t>0: ,Yt-s esl>n} s + Tn 8> hence [es(YTﬁ/\-)t] (esY)Tﬁ/\t .
Since (Yt7\T )t>0 is a martingale bounded by n+c, using the notation of Lemma
n =
(3.3) we have:

Y ="y, ).,
‘Tn/\t Tnt

_ T o . - .
Therefore (OSY)TEI\t = (YTn es)t a.s. if t>s, and (eSY)t 0 if t<s.
Therefore ((OSY)TA/\t)tgp is a martingale, each n. Since ;12 Ty = = a.s.,
we conclude that (@SY) € L. Ci

(3.5) LEMMA. Let Y" be a sequence of elements of & such that Y"1 - yN ¢ 2,

nonnegative and increasing. Then Y"1 - ¥ ¢ 4. Moreover if Y = sup Y" and
n

¥' = sup ¥", then Ye &' if and only if ¥ €, in which case ¥ = V' a.s.
n

PROOF. This lemma is taken from [3]. The first statement is clear. For the
second, note that the dual predictable projection 7 of a process ZG@J+ is
characterized by its predictability and the property that E{Q%} = E{ZT} for

every finite stopping time T, and then apply the monotone convergence theorem.
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(3.6) LEMMA. Let Ye <with Y, =0 for t < 0. Let ¥ be its dual predictable

. ) ~
projection. Then eSY € < and oY = esv for every s > 0.

PROOF. It suffices to prove this when Y is positive and increasing (i.e. YeF;+).
Let Y" = YAn = min (Y,n). Then a¥" = |aY"| < n, and of course ¥¢€ 6p . Let

y" = M" + A" be its canonical decomposition (MQe:ig AQE{J+ and predictable).
Then A" = Y, and ¥ = sup Y'. Moreover it is well known (e.g. [4]) that

n
|aY"| < n implies that |aM"| < 2n. Then Lemma (3.4) implies esMneli. Since

Yn =M" + Vn, also OsYn = eSMn + esvn, and sinqe esMne % we must have that

esvn is the dual predictable projection of eSY".
Since Ye ¥ is predictable, it is clear that OSYG;W' and predictable as

well. This implies OSYGMJ?(e.g., (8, p. 171). But OSY = sup esYn, and
. n

GSV‘= sup esV“. Therefore esv is the dual predictable projection of eSY by
n

Lemma (3.5). O

(3.7) LEMMA. If Ye< and Y, =0 for t <0, then o Y€ <£and (o,Y)€ = o (Y°).

t [

PROOF.  Let J" = AY 1 , and Tet N7 = 3" - I". where J" is
t 0<§§I s {[aY [>1/n} _

the dual predictable projection of J4". Then Y-n' € 2 and |A(Y-N1)| < 2.

Therefore by Lemma (3.4) we have eS(Y-N])E £ . Lemma (3.5) implies eSN]e £ .

Therefore esY.e £ .
Now that we know eSYe £ , we may consider its continuous local martingale

c n n n
Y)©. Set K, = ) . Th J =K', and
part (es ) et Ky oggé;A(QSY)U]{|A(95Y)u|>1/"} en o, and as

~—
we have seen from Lemma (3.6), RN = ean = esﬁn. Recall N" = 30", and we
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conclude that 11'm(ean)t = (eSY)t - (esY)i with convergence in probabitity. Since
n

Tim N" = v, - v¢

(in probability), and since ©_ is measure preserving, we
n t t t S

c _ c . c _ cy -
have that (OSY)t = es(Y )t a.s. when t > s. Since (eSY)t =0 (Y )t 0 for

S
t<s, the proof is complete. O

PROOF of Theorem (3.1): Statement (iii) is the content of Lemma (3.6) and

thus already established.

If Ye ¥ (respectively © N7 ), then esY € 7 (respectively # N7 ). But
Lemma (3.7) showed that Y€ imblies oY € < and statements (i) and (i)
follow easily.

Concerning (iv), Tet Y = M + A with Me £, be a decompositfon. Then Y¢ = MC,

and similarly (oSY)C = (OSM)C, and thus (iv) follows from Lemma (3.7).

Concerning {(v), fix a t and Tet I(n,t) = {0 = ty < t] << tn = t} be a
n
subdivision of [0,t] such that Tim mesh I(n,t) = 0. Let V. = Y2 + ¥ (Y, -Y )2.

It is well known that Tim V

= [Y,Y]t for any semimartingale Y, with
N

I(n,t)
convergence in probability. Thus

[Y’Y]toes =P - -I-lm VI‘(n,t)oeS

2 n
P - Tim[ (e Y)g + ,Z]((OSY)
1=

121,
1

stt, - (esY)s+t1_

and since (esY)u = 0 for u<s, the above limit is [esY, esY]s+t a.s., and (v)

follows.
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Statement (vii) follows from (v) and (iii), since <Y,Y> is the dual
predictable projection for Y € £ and square integrable.

It remains to prove (vi). Let Y€ , HeL(Y). Set D = {|ay| > 1}
U{|HAY] > 1}, and Y% = Y0 + 0<§<t AYle(s). Let Y" = Y-Y'. Then Y' € 7,
Y' € ép , and |AY"| < 1. Let Y" = M + A be the canonical decomposition of Y".
The assumption that HeL(Y) implies that the Stieltjes integral process H-Y'
and H-A exist, and also that the stochastic integral H-M exists (c.f. [8, p. 54]).
Hence H2-[M,M] efJ*.: Since the following are pathwise Stieltjes integrals

it is simple to verify:

(eSH)-(eSY')

L}
@]
(%]
~
p
.
—<
N

"
©
e
T
=
o

(o H) - (e A)
(0 H)%-[ogM,oM] = o (HE-[M,M])

where (v) is used in the last equality above. By (i) the first two processes
are in 7, and the third is int« . Therefore eSH is integrable with respect
to o Y', OSA, and OSM. Hence o H € L(OSY).

Now let H be simple predictable: that is, let H be of the form

o
(3.8) H, = Z H 1(ti_],ti](t)'

noi
Then H-Y, = Z HY(

th\ti - Yt/\ti_]) and a 57mp1e computation shows that

[l

o (H-Y) = (o H) - (oY)
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for Y€ d.and H simple predictable. Let % be the linear space of all bounded,
predictable processes for which (vi) holds. Let (H") be a sequence of elements
of Hwhich converge uniformly to. a bounded process H. Let Zt = HoYt. Then

P - 1:’1m (Hn.Y)t = Z,, each t > 0. Therefore 1;m es(H".v)t = (67), a.s., as

well. Moreover ean converges in probability to OSH, and hence Tim OSHn . eSY =
n

eSH . OSY. Since H" € %, we have

. n
OS(H-Y)t 1im OS(H -Y)

n t

. n
1;m (OSH -eSY)t

(eSH-esY)t.

¥ contains all processes of the form (3.8), hence a monotone class argument
shows that & 1is exactly the set of all bounded, predictable processes.
n _ . n, -

For general HeL(Y), set H = Hl{lHl <} Then P - 1im (H Y)t Zt

for t.> 0. Since (vi) holds for each H", it will hold for general He L(Y) by

passing to the 1imit (with convergence in probability). O

We next prove a Radon-Nikodyn type theorem (Theorem (3.11) for helices.
These results are already known (c.f., [7], [10, p. 45] or [9]) with a different

method of proof. This result is analogous to Motoo's theorem for Markov processes.

(3.9) LEMMA. Let A be an increasing helix and suppose dA, << dt a.s. Then

. . _ (t -
there exists a r.v. ¢ € % such that A, = fO G ds a.s., where ¢, = ¢o o..
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PROOF. Let Z, = Tim inf (A, -A;)/s. Then by Lebesgue's derivation theorem
sv0 s€Q 5

we have A, (w) = fg Z (w)ds for al1 t > 0. That A is a helix implies Z is
homogeneous : Zt = Zooet. Z0 is 1n{30 by the right continuity of the

filtration. Taking ¢= ZO compietes the proof. 0O

(3.10) THEOREM. Let A, A" € ¥ both be helices, continuous, and suppose that

. : - n. - (t :
for any « € 3, such that ¢ - A =0((grA), =[5 ¢, dA, where ¢ = go o)

-

we have ¢+A' = 0. Then there exists y& 3, such that A' = y- A,

PROOF. Without loss of generality (c.f. (2.5)), we take our processes to
be defined only on ox[0,»). Let A+, A~ (respectively A'+, A'") be the positive

and negative variation processes of A (respectively A'), and set C = A+ + A

¢t = AT+ AT, A1l of these processes are crude helices as is easily verified;
we take their perfect helix versions. Next set Ft =t+ Ct + C%, and let
T, = inf{s>0: F,>t}, the right continuous inverse of F. Define A: = A: ;
X : t
At o~ am . §|+£ Poopem oo N s
At._ ATt, At ATt, At ATt, and 0y eTt. Then all the time changed processes

are still "helices" under 8 (that is, they satisfy (2.1)). (For the proofs of
these claims we refer the reader to Lazaro and Meyer [10, p. 48].) The process
dA: << dt by Lebesgue's change of time lemma (c.f., e.g. [2, p. 206]), hence

Lot ot o (et Yoo .
by Lemma (3.9) we have A, = fO h ds = foh eTS ds for a r.v. h.€‘3TO 3, -

We obtain analogous results for A', A'+, A'" which yield, respectively, random
. - ot - . . . + _ ot t - _ (t-
variables h™, h'", h'". Time changing back yields Ay fohdes, AL thSdFS,
etc. The hypotheses on A and A” imply that {h*=h"} c:{h'+ = h'"} up to a set

of u-measure O where u is the measure on R xo given by u(H) = E{ngdes}.
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Therefore we set

N G L V(LI 0 i I B
{h #h }

and we obtain

t t t 0 s S
_ (Eat
= fo(hs.—hS JdES

=t ot
n fows(hs hs)dFs
= JSugdn, . O

The following theorem covers the discontinuous case (again, we are taking our

process to be defined only on ox[0,~)).

(3.11) THEOREM. Let A, A'€ 7 be helices such that for ¢ a homogeneous

process IS ‘PsdAs = 0 implies fS(deA; = 0 a.s. Then there exists a homogeneous

process ¢, such that Aj = jg b dA, .

PROOF. Set Ai = At - AO - 7 AAS, and define A'C analogously. Then A€ and
O<s<t
A'C verify the hypotheses of Theorem (3.10) whence A'C = fg stAg' Let

= {AA = 0}. Then ]D is a homogeneous process and 1D-A = (0. Hence by
hypothesis 1D-A' = 0 a.s. as well. Hence up to an evanescent set {AA'#0} c

{AA=0}. Next set

AA'

bs = Yslp T A ! and

nC
the result follows. O
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COMMENT. In theorems (3.10) and (3.11) the only time we used that (et)
are measure preserving was when we used perfect versions of the helices.

Thus these results essentially hold in any such "shift" framework.

§4. RANDOM MEASURES AND FLOWS

In this paragraph G will denote a Borel subset of a compact metric
space (i.e., a Lusin space), and G will denote its Borel o-field. We let P
denote the o-field P®G on @ xR x G, where P (resp.® ) is the smallest o-field on
ox R containing the .adapted processes whose paths are left (resp. right) continuous
with compact support. We state the following well known lemma without proof
(c.f. [6]). Let (E,€&) denote a measurable space and suppose %is an arbitrary

family of positive o-finite measures on it.

(4.1) LEMMA. Let {f(B); Be G} be a family of functions in, € such that

f(UBn) = Zf(Bn), m - a.e., for every m€ %, and every sequence (Bn) of

pairwise disjoint sets in ¢ . Then there exists a positive kernel K(a,dy)

from (E,: €) into (G,G) such that K(-,B) = f(B) m - a.e., for all m€ % and Be G

If r{w; dt, dy) is a positive kernel from (248) into (R x G, 8®g)
(where @ denotes the Borel sets of R), for any measurable W on 5 =ox RxG

we set:
W * Ft(w) = fW(w,s,yH(_w’t](S)P(w;ds,dY)

whenever this integral makes sense.



(4.2) DEFINITION. T as above is called a random measure if W*T is

G-measurable (i.e., optional) whenever W, positive is O®G-measurable on 5.

We denote

o = {T': T a random measure and such that there exists a

&S-measurable partition Dn of 5 such that ]D *T o€ oo,

n
every n}

@ rn;hj=={r£@;6 : W*T is predictably measurable for Wel3@+}.
Note that r{w;dt,{0}) = dYt(w) defines a random measure if \,}(e.:ﬁ+
by taking G = {0}. Random measures play many roles analogous to those of
processes in®J+. ~In particular for r‘et;o, we restrict r toq xIR+x G by

taking

Mws;dt,dy) = T-(“’;dt’dy”ms[oaw)x(;

as the restriction of I'. We then know that there exists a random measure,
denoted T, on 2 x R x G, which is the "dual predictable projection" of 4,
the restriction of . We refer the reader to Jacod [8] for all facts about
random measures.

We next extend the concept of the "big shift" to Q. We define
(4-3) @h{w(wat:y) - w(w,S,)’)}

= W(-Shw,t-h,y) - W(ehw,s—h,y)

17
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and ehW(w,t,y) denotes @ha(w,t,y)-W(w,O,y)].

(4.4) ohr(w;du,dy) = r(ehw;du-h,dy).

A simple computation yields:

(4.5) PROPOSITION. Let W be positive and either W(w,t,y) =0 for t < 0, or

W(w,t,y) i

a helix for fixed y. Then o (W*r), = (@hw*ehf)t

A

(4.6) THEOREM. Let T @< , and Jet ¥ be the dual predictable projection

of the restriction of I to @ x R, x G. Then 6, T €+ and es? is a version

of the dual predictable projection of 6.T.

PROOF. Let (Dn)n>1 be a P -measurable partition of @ such that 1D *Tr €. o

= n

for every n. Set Dy = @ X (-=,s) x G, and D/ = {(w,t,y): o1y (w,tsy) =11,
n

for n>1. Then (D') is a ﬁ’—measurab1e partition of 5. Moreover ]D' *
0

n’n>0

(esr)=0. For n>1, 1, * (esr)=e§(]D *r) by Proposition (4.5), and these processes
"~ “n n

belong to-« by Theorem(3.1). Therefore esrfe ig, and we let esr_denote the
dual predictable projection of its restriction to @ x R_ X G, which we now
know exists. Analogously we know @S? is in ﬁ ﬂ;&. ~"Then n>1 and Be&.G,

we have:

. P _ . ny
(1B1D.n) * I = (1B]D6*OSP)

= (eS1B1Dn*(esr))”

(@s(1Ban*r))”
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with the Tast equality by Proposition (4.5). On the other hand:

* o ¥ = *o ¥
1BlDrll esr Gs]B]Dn @Sr

_ n
= es(1B1Dn*r)

os[(1gTp *)"]

v

= [es(lBan*r)]

with the second equality by Proposition (4.5) and the last equality by Theorem
(3.1). The result now follows. Ci

(4.7) DEFINITION. A random measure T is called integer valued if it has the

form:

P(w;dtde) = Z l'A (w,S) E(S,Z (w))(dtde)
S

s>0

where L s an optional set and where Z is a G-valued optional process. Here
€ denotes the Dirac point-mass measure at a point a. We wi]l.write’;ﬂ for

those random measures in%q%” which are integer valued.

(4.8) DEFINITION. A random measure T will be called additive if

(i) r(-,{0} x G) = 0 a.s.
(i1) (e r)(-.dt,dy) = r(-,dt,dy)

for all s € R, a.s.
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In what follows, since we will be dealing with dual projections and
increasing processes and hence be interested only in R,, we will freely
abuse the word "helix" and apply it to processes defined on [0,~) and
satisfying (2.1). These can easily be extended to be true helices as

discussed in Comment (2.5).

(4.9) THEOREM. Let T be an integer valued measure in .3] such that

there exists a ug-measurable partition (Dn)n>1 of & xR, x G where

=1 * re «is a helix for each n. Then there exists an increasing,

n
D
predictable helix F and a positive kernel K(w,t;dy) from (Qx]R+x3) into

(G,G ) such that
(wsdt,dy) = dF, (w)K(w,t3dy), t20,

is a version of Yep rné{y of the dual predictable projection of the restriction

frto(ox ]R+xG).

PROOF. Let a = E{fge-lsldcg} < . Choose b such that ngl ab <«

Let H = X ann. Then HGGJ+ is a helix, and we let F denote its dual
n>1

predictable projection, which is also a helix by Corollary (3.2).

For B€ G, the process Y(n,B) = (1B1D ) * re & call its dual predictable
projection Y(n,B). Since Y(n,B)t << dCE <E dHt; we have dV(n,B)t<< dFt a.s.‘
By Theorem (3.11) there exists a homogeneous process f(n,B) such that ¥(n,B) =
f(n,B).- F a.s.

We next apply Lemma (4.1) where (E;€) = (QXJR+x3) and %= {P(dw) x dcg(w)}.

For every pairwise sequence (B) we have Y(n,UB ) = = ¥(n,B ), and hence

z
q
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V(n,UBq) = 3 V(n,Bq) up to an evanescent set. Therefore f(n,UBq) = zf(n,Bq)
m - a.e., each m€ % . Therefore by Lemma (4.1) there exists a positive kernel
K? (4,t;dy) such that K"(-,B) = f(n,B) m - a.e., all me€ % and B€ G . We

now set:
(4.10) P (w3dt,dy) = dF ()K" (u,tsdy).

Since T = N ™ is then the dual predictable projection of T, and since the -same
n>1
F appears in (4.10) for each n, if we set K = } K", we obtain the desired
n>1

result.

§5. LOCAL CHARACTERISTICS OF HELIX SEMIMARTINGALES

Let ¥ = (Y'),

i be an m-dimensional semimartingale. Let Jl =

i _ g qd ,
NS . ,and J = (J )1<m' Then Y = Y0

Y 3 - J is an m-dimensional
0<s<t t]a¥ [>T} =

special semimartingale. We let Y - YO -J =M+ B be its canonical decomposition.

The jump measure T of Y is defined by:

(5.1) r{wsdt,dy) = ‘Szo]{ASY(w)#O} €(s,AYs(m))(c“:’dy)'

Note that T is an additive random measure on @ xR x G if Y is a helix. (Once
again, we abuse the word "helix" to apply to processes defined on Q xR,

but extendable to @ x R; c.f. comment (2.5).)

(5.2) DEFINITION. The local characteristics of Y consist of the triplet

(B,C,T) defined as follows:
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(i) B=(8")

i<m

—
s
—le

~
[ep]

It

ij
(C )iajim’ where
¢ = [(vHe, (v)E]
(i1i) ¥ is the dual predictable projection of the integer-
valued random measure of (5.1).

See Jacod [8, pp. 88-97] for all facts concerning local characteristics.

(5.3) THEOREM. Let Y be an m-dimensional semimartingale.

the local characteristics of 6.Y, any s > 0.

(i1) If Y is a helix then B and C are helices and ¥ is additive.

PROOF. (i) The jump measure of oY 1s easily seen to be o.I, and eJ is

the corresponding J-process for eSY. The result then follows from Theorem (3.1)
and Theorem (4.6). (if) T is additive because Y is a helix. Therefore T is
additive as a consequence of Theorem (4.9). B and C are helices by Corollary

(3.2). O

there exists:

(i)  a predictable, increasing "helix" F on R, x o3

(1)  a homogeneous process b = (b1)1<mi
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(i11) a homogeneous process c = (c1J) with values in the set of all

k,j<m
symmetric nonnegative matrices;

(iv) a positive kernel K(w,ts;dy) from (Qx]R+,G) into (]Rmaaam) such that

the local characteristics of Y are given by:

‘ Tw;dt,dy) = dFt(w)K(w,t;dy)

where b-F denotes fgbdes.

COMMENTS. Although F is only defined on R, x @ one can extend F to a helix
on R x o (cf Comment (2.5)). The fact that c can take its values in the
space of all nonnegative symmetric matrices is part of the established theory
of local characteristics (c.f. [8]). Also, it is known that one can take the

kernel K such that K({0}) = 0 and fmin(1,|y|2)K(dy) <,

PROOF. By Theorem (5.3) we know that B and C are helices and that T and hence
T are additive random measures, where T is as defined in (5.1): the jump
measure of Y. Let D0 =2 x R, x {0}, and for n > 1 set

_ } m 1.1
D, = {(wstsy):w €0, t >0, ye R, y e[n’n—l)}'

Then ]D * T€Jg , hence Feujl. Theorem (4.9) then guarantees the existence
n

of F' and K' such that

tﬁ(w;dt,dy) = dF.[':(w)K' (w,t;dy).



24

Next set

t i i,
Fom Fpr D Jg laegle 1 ocpt
t t i<m 0 S i<m t

where fg [st] denotes the total variation process. Then dF_ << dF} and

t
hence T admits a second factorization with a new kernel K such that:

v
I'(w;dt,dy) = dFt(w)K(w,t;dy).

Since dB% << dFy and dCl’J “<< dF;, by Theorem (3.11) there exist homogeneous

processes b and ¢ such that B = beF and C = c-F. O

We next record a result which is fundamental to the theory of helices.
It is due to Mecke, and we present it here as interpreted by Lazaro and
Meyer [10] (c.f. also Geman and Horowitz- [5]). Let Z be an increasing
helix such that Z = 4+~ and Z__ = -» for all w. Such a helix we will call

a total helix.

(5.5) THEOREM. Let Z be a total helix. Then there exists a o-finite measure

it Qﬂ_(9i30) such that one has, for all positive f BOana-measurable,

fP(dw) ff(etw,t)dzt(w) = fff(w,t)u(dw)dt.
Moreover, u is given by

w(A) = fP(du) [§ 1,(0.0)dZ (u).
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We refer the reader to [10, p.43] for the relatively simple proof. The

measure uy is called the Palm measure of the helix Z. Next we combine Theorem

(5.4) with Theorem (5.5) to obtain:

(5.6) LEMMA. Let Y be a helix semimartingale with local characteristics B, C,

and T. Then'there'exist;BO -measurable random variables b and c, a positive

kernel K(w,t;dy) and a o-finite measure n gg_(ﬂzao ) such that for any

1 @B -positive H:
(1) [fH(egw,s)dB (w)P(dw) = [[H(w,5)b(whu(dw)ds
(1) [ H(gw,s)dCq(w)P(dw) = [fH(w,5)c(w)u(dw)ds

(iii) for any 3®G®@" -measurable positive W:

[fW(w,t,y)T (ws3dt,dy )P (dw)

= ffw(e_twatsY)K(e_tw’t;dy)u(dfn)dt.

PROOF. By Theorem (5.4) we know that there exists an increasing "helix" on

Y e . .
2 x R, such that Bt(w) = fObS(m)][O,t](s)dFS(w)' Without loss of generality
we can extend F to be'a helix on @ x R (c.f. (2.5)), and we can then replace

E with Ft = Ft + t, so that F is a total helix. We can then write

By(v) = [b(ogw) Trg 4q(s)dFg(o),



and hence by Theorem (5.5):
ffH(esw,s)stdP = ffH(esw,s)b(esw)1[O’t](s)dFO(w)

= [TH(0:8)1p ¢1(5)b(w)u(du)ds.

The proof for C is analogous.

As for (ii1), take W to be positive and 3=®(;S®n3+ measurable. Then
[P(dw) fW(w,t,y)F(w;dt,dy)
= [P(du) f(w,t,y)K(w,t;dy)dF (a),

and letting ﬂ(w,t,y) = w(e_tw,t,y) and R(mgt;dy) = K(e_tw,t;dy) we have by
Lemma (5.6):

fP(dw)fﬁ(etw,t,y)k(etw,t;dy)dFt(w)
= [IW(w,t,y)K(w,t3dy)u(do)dt

= [fW(e_ywst,y)K(e_yu,tsdy)u(de)dt.

26

The following Temma is quite simple and we omit the proof. (See [10, p. 42]

for an analogous lemma.)
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(5.7) LEMMA. Let A be a positive measure on © x R x G such that one has

for every positive W which is 30® & ® G measurable:

fW(w,t,y))\(dw,dt,d_y) = fW(w,t-u,y)A(dw,dt,dy) ’

for any u:-€ R. If the measure t on @ xG, t(A) = A(Ax]0,1]) is o-finite, then

one has A(dw,dt,dy) = 1(dw,dy) x dt.

We now come to our principal result which describes the local characteristics
of a helix semimartingale in a way roughly analogous to Jacod's description
of the local characteristics of a process with stationary and independent

increments [8, p. 92].

(5.8) THEOREM. Let Y be a helix semimartingale with local characteristics

B, C, ggg_?. Then there exist 3b -measurable random variables b and c, a

positive kernel K(ws;dy) from (2,3 ) into (G,G) , and a o-finite measure u on

(s 30). such that for any positive 3®8 positive H
(i) ffH(eSm,s)dB (w)P(dw) = [fH(w,s)b(w)u(dw)ds
(ii) ffH (o @ S)dC (w)P(dw) = ffH (w,s)c(w)u(dw)ds

(iii) for any & ® (®B -measurable positive r.v. W:

Jfi(egw,5,y)H(usds,dy)P(du) = fW(w,s.9)T[g .y (s)K(w3dy)u(do)ds
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(5.9) COMMENT. One can summarize Theorem (5.8) in shorthand by saying that
under the bijections f(w,t) = (etw,t) and g{w,t,y) = (etw,t,y), the local

characteristics of a helix semimartingale are given by:

-1

f ° st(w)P(dw) b(w)u(dw)ds

(5.10) f']o dCS(w)P(dw)

c(w)u(dw)ds
97" o Flusds ,dy)P(da) = Trg ) ()K(usdy)u (du)ds

where the o-finite measure p can be taken to be the same in all three equations,

and where "ds" denotes Lebesgue measure.

PROOF. The statements (i) and (ii) are the same as in Lemma (5.6) and hence

already proven. Consider then (iii): define the measure A by
- A(dw,dt,dy) = T(w;dt,dy)P(dw)
on @ x [0,») x G, and
A(dw,dt,dy) = %(w,—dt,dy)P(dw)

on @ x (-=,0] x G. Since ¥ is additive and 6, are automorphisms under P

we have

(5.11) JW(w,t,y) A(dw,dt,dy) = fW(euw,t-u,y)A(dw,dt,dy).
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We next define a new measure A by
= fW £ »t,.Y) I‘(m dt,dy)P(dw).

Thus A is the image of A under the bijection (w,t,y) — (etw,t,y). Then
(5.11) implies

fW(w,t,y)ra{dw,dt,dy) = [W(w,t-u,y)A(dw,dt,dy).
Lemma (5.7) then implies
(5.12) ffw(etw,t,y) T(wsdt,dy)P(dw) = [[W(w,t,y)7(dw,dy)dt.
On the other hand, by Lemma (5.6) we have
(5.13)  [fW(eyu,t,y)¥(w3dt,dy)P(do) = [fW(w,t,y)K(o_w,tsdy)u(de)dt.

The equalities (5.12) and (5.13) together imply t(dw,dy)dt = R(e_tw,t;dy) u(do)dt

which means there exists a kernel K(w;dy) such that

A

K(o_w,tsdy)u(de) = K{wsdy)u(dw)

-t

a.e. (dt). O
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IX,



RESUME . -- On etudie des semimartingales dans un cadre de la theorie ergodigue
d'apres J. de Sam Lazaro et P. A. Meyer. On montre que les caracteristiques
locales d'une semimartingale - helice possedent une forme a peu pres analogue

a ceux des processus a acroissements indépendents et stationnaires.

SUMMARY.-- We study semimartingales within an ergodic theory framework as
pioneered by J. de Sam Lazaro and P. A. Meyer. We show that the local
characteristics of a helix semimartingale have a form roughly analogous to

those of a process with stationary and independent increments.



