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Quadratic Estimators of Quadratic
Functions of Normal Parameters

By Andrew L. Rukhin

Quadratic Estimators

Summary

The estimation problem of a quadratic function of normal parameters
6 = gz + bo2 is considered. A necessary and sufficient condition for the
admissibility under quadratic loss of quadratic estimator of the sample mean

and sample standard deviation is given.



1. Introduction and Summary

Let Xys...5X,5 N > 2, be a random normal sample with unknown mean
¢ and unknown standard deviation o. We consider estimating ¢ = gz + be2
where b is a given non-negative number, under quadratic Toss. The case
b = 1 corresponds to the second moment, estimation of which is of interest
if square root transformation of data is made (cf. Box and Cox (1964),
Patterson (1966, Land (1971), Carroll and Ruppert (1984)). Indeed assume
that the original sample Yyse ooy is approximately normalized by the trans-
formation x = y%'WHich is commonly used in practice. In this situation the

2

mean of the y's observations is 52 + o . In the case b = 0, i.e. when estima-

ting the square of the mean, the determination of the best unbiased

estimator is a common exercise in many textbooks (see, for instance,

Lehmann (1983), p. 132). The inadmissibility of the latter estimator

in a similar problem has been noticed by Periman and Rasmussen (1975).
The best unbiased estimator for general ¢ is easily seen to have

(6,5) = X2 + S2In" L+ (b-1)(n-1)717 = X% + s2(bn-1)[n(n-1)1"1"

the form 8
: n , N » 1
Here X = ) xj/n, S =7 (Xj - X)°. However if b # n~~, this esti-
1 1

mator can be improved upon very easily. We consider the class of

estimators of the form

§(X,S) = X% + ¢ 2,

¢ real. Because of the independence of X and S one obtains



(X + cs? - €% - bo?)?

2
2 -
= B - % - o®/n + cs? - (b-n"1)o?)
- 2 2
= E(X° - £2 - Z/n) + E(cS? - (b-n"1)o2) .
The best choice of the constant ¢ is
- . -1 2 4
c=a= (b-n") E0=] S /EO=] S
= (bn - 1)/[n(n + 1)]
which is different from (bn - 1)/[n(n - 1)] unless b = n-]. This

estimator is also different from the maximum likelihood estimator

2

§(X,S) = X% + bs/n.

In this paper we study the admissibility of the resulting estimator

55(X,S) = X2 +a 52

for the scaled quadratic Toss:

L(£,0,8) = (6 - §)% o7

under which 60 has a constant risk. Notice that this estimator is

1

inadmissible if 0 < b < n '. Indeed in this case & is nonnegative but

with positive probability &, is negative. Therefore max(s., 0) is strictly

0 0



better than 60.

In Section 2 we establish the inadmissibility result for a larger
region of b-values, namely, for b such that n'] <b <1+ Zn_]. In
view of this result and other inadmissibility results in estimation
problems of 02 (see Stein (1964), Brown {1968), Brewster and Zidek
(1974), Strawderman (1974)) one may conjecture that §g is inadmissible
for all values of b. However this conjecture is false, and we prove
the admissibility of 8y in Section 4 of this paper in the case
1+20° " <b <2+ 30", In fact we show in Section 3 that in this
case 50 is generalized Bayes procedure with respect to a prior which
admits_a good approximation (in terms of posterior risk) by probability
priors. Similar admissibility phenomenon also happens in the estimation
problems of other functions of normal or exponential parameters (see
Rukhin (1985), (1986a)). The results of Section 3 also suggest the
1nadmissibf11ty of 8 for large values of b, b > 2 + 3n']. However
the inadmissibility proof of Section 2 does not work in this situation
and we prove the inadmissibility of 89 in Section 5 by a different method.
In short, we show that 8 is admissible if and only if 1 + 2/n <b<2+ BAh.
The admissibility of 8o within the class of quadratic estimators .

in a more general setting has been studied by Ping, Wu and Li (1983).

2. Inadmissibility Result for Small b.

In this Section we establish the inadmissibility of 89 in the

1

case n”! <b<1+2n ', 0or0<an<1T1. Weprove this result by

exhibiting a class of estimators improving upon 60. These estimators



have the form

2

5(X,S) = 5,(X,S) - 2n"'s2h(n%|X|/5)

89

where h is a measurable function. In other terms § is a scale
equivariant estimator.
Theorem 1. For 0 < an < 1 estimator of the form (2.1) has

smaller quadratic risk than 60 if

-1
0 > h(z) > (1-an) min[0,(n+1)(n+2)"" - (142%) 1. (2.2)

Proof. The risk function of any estimator (2.1) depends only

on |g|/c. Denote

(o]

n e nelses g = [ en(vFrakey = oD o),

so that d, . = (k+1)d, for all positive k and put C = 4/[dn_2n(2n)%].

k+2 K

One has

2 _ ((S _ n-] 32

0 h - w2/n - b)?]

EL(s5 = n'/n = b)

Seh(n%|x|/S) (X% + as® - n”! s%h - nZ/n - b)

-1
4n En1



=C s" h(x/s) exp{—(x-n)2/2 - 52/2}

O 8

[x2 + ans2 - szh(x/s) - n2 - bn] dxds

n+1h(

C exp (-n2/2) i s z) exp{-52(1+22)/2 + zsn}

O 8

[2252 + ans2 - szh(z) - n2 - bn] dzds

(o]

= 2C exp(-n°/2) ) on
k=0

2K (2k)

(o]

] - 2
Ldp 4342k é 2K(1 + 2y (MK 2 o

+z7) z- +an - h(z)]dz

2

n~ +bn) 22k (1 +z

d 2)-(n+2+2k)/2 h(z)

O 8

n+1+2k dz]

2k

= 2C exp(-n°/2) kZO ™/ (20T dp ey

22k (1+22)—(n+2k+2)/2h(z)

OV—. 8

2 2y-1

[-bn + (2" + an - h(z)) (n+2+2k) (1 + z%)

- 2k(2k - 1) (1 + 22)/[2%(n + 2k)]]dz.



It follows that 6 with a nonpositive function h improves upon 8 if

for all k =0, 1, ...

-bn + (2% + an - h(z)) (n+2+2k)/(1+2%) < 2k(2k-1)t%/ (n+2k),

2

t% = (142%)/2°

/z".

This inequality holds for a nonpositive h if

(1-an+h(z))/(142%) > -bn/(n+242k) + 1 - 2k(2k-1)t2[(n+2k) (n+2k+2)1] (2.3)
which can be valid on the set of values of z such that

(1-an)/(1+2%) > 1 - inflbn/(n+242k) + 2k(2k-1)t2/[(n+2k) (n+2k+2)7]. (2.4)

k>0

It is easy to check that since t2 >1 the infinum in (2.4) is

attained at k = 0, so that the desired values z are such that
(1-an)/(142%) > 1 - bn/(n+2) = (1-an) (n+1)/(n+2).

It follows now from (2.3) that any nonpositive function h under
condition (2.2) produces an estimator (2.1) which is better than 8-

This method can also be used to prove the inadmissibility of 8y

when bn > (n+2)2. In this case the improving function h is positive and



h 5_max{0,z2 +an - (1 +22) max[bn/(n + 2), 1 + 2_2]}.

and &, is

) .

However, the proof fails when 2n + 3 < bn < (n + 2

in fact inadmissible.

3. Generalized Bayes Estimators of .
Let A(g,0) be the density of the (generalized) prior distribution over
{(£,0), o > 0} with respect to the uniform measure d&ds/oc. Noticerthat
the Tatter is traditionally used since it corresponds to the right
Haar measure over the group of linear transfurmations of the real line.

The Bayes estimator Sg has the fcrm

[£2 + bo?1o™"% expi-[n(x-£)% + s21/26%1n(£,0)dedo/o

o "% expi-[n(x-)% + s1/26°1r(€,0)dedo/o

Assume that the following integrations by parts are legitimate:

[s2 + n(x-£)?] Z n 07 expi-In(x-8)? + s27/(20%) }do

2

[(n#2)x - or_Jo ™" expt-[n(x-£)% + s°1/(26°)} do,  (3.1)

1l
O~ 8



o

[ (g-x)er exp{-[n(X-a)2 + 5%/ (20

-0

2)} dg

(o]

L ] exp{-[n(x-£)2 + s21/(20

-0

n
Q

%) de (3.2)

and

T (e-)2x expl-In(x-£)2 + s21/(262)} d

= o7t [ Do ot ] expt-Dn(x-6)? + 571/ (26%) de. (3.3)

-0

Combining these formulae we derive the following representation of the

Bayes estimator

2

? [bo® + (an-1) (£-x)2
0

+ 2e(g-x) - a(sP+n(x-£)%)]

2

a0 ™3 expi-In(x - £)2 + $27/(26%)} dedo

[ A Sl exp{-[n(x - E)Z + 52]/(202)} dedo
0



= T ? (210" expi-In(x - £)% + s21/(26%)} dedo

[ 0™ exp -In(x - £)° + s°1/(26%)} dedo
0

where

-1, -2
= - + + +
s =(a-n")o xgg ngg anoh 2X.

(3.4)

It follows from (3.4) that 8g = 8, if and only if the prior density A

solves the parabolic differential equation

For instance, the conjugate density A(g,o) = O—Z/an

av

A=

N

A (g,0) = exp{-n(2 - an)gz/[Z(an - ])02]}/0 .

Notice that in the case 1 < an <2,

ny
A'(E,G) dg < =

g +— 8

(3.5)

is_a solution of

(3.5). However (3.5) admits many other solutions. One of them is
A
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for all a.

If an = 1, then the general solution of (3.5) has the form
Meso) = 078 (8/0°) (3.7)

where f is arbitrary smooth function.

These facts suggest the admissibility of s, if 1 < an < 2.

0
The following gives a heuristic argument in favor of inadmissi-
bility of 60 when an > 2.
Put r(g,0) = Z(g/oB, c]'s)/os, where g = 2/(an), g > 1. If

u = g/oB, v = 01-8, then

where q = (an - 2)n/(an - 1).
The equation
vz +quz =0 (3.8)
uu v
for g > 0 is closely related to the adjoint heat equation general
solutions of which are known (see for example Widder (1975)).

However none of these solutions corresponds to a prior density
which admits "good" approximation by proper prior densities in terms
of posterior risk. (Exactly this condition is known to be responsible
for the admissibiilty of generalized Bayes estimators, see Farrell

(1968)).
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Indeed in the estimation problem of 02 (which formally corresponds

to a >« in (3.4)) we see that if & (x,s) is generalized Bayes estimator

of 02 under Toss (§ - 62)20_4 and smooth prior density A then

= [ [ [, + nor B0 expi-n(x-6)° + s%1/(26%)} dedo
® 0

o0 o

/m [ o 0 exp{-[n(x-¢

-00

)2 + 52]/(202)} deédo.
Since s2/(n+1) is an inadmissible estimator of o> if follows that

the equation

02 Agg + no AG =0
(which essentially coincides with (3.8)) cannot have solutions
approximable by proper prior densities. Therefore (3.8) cannot have
such solutions either. & similar argument was used in Rukhin :(1986b)
to prove the inadmissibility of the traditional estimator of a linear
function of the mean and the variance.

Theorem 2. Assume that the prior density A is differentiabie

and the integrations by-parts’in (3.1)-(3.3) are legitimate. Then the
generalized Bayes estimator SB has form (3.4) and GB = 60 if and only

if (3.5) holds.
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4. Admissibility Result

We prove here

Theorem 3. TheestimatoraO is an admissible estimator of
6 = £2 + bo® under quadratic Toss if 1 + 207! <b<2+ T,
i.e. if 1 <an < 2.

Proof. To prove the admissibility in the case 1 < an < 2 we

construct a sequence hm =h (o), m=1, 2, ... such that

hm(o) -1, hm > 0,

o o Ny
[ [ r (£,0) dedo/o < o (4.1)
o M
and as m > =
oo o 2 2 Y
o = -i é [Eac(dO - 9) —-Egc(ém -96)7] Am(g,c)dgdo/o 0. (4.2)

Here S denotes the Bayes estimator with respect to prior density
v Y v
Am(g,o) = A(E,c)hm(o) where X is defined by (3.6).

A straightforward calculation shows that with a generic

constant A independent of m

=] [o] 0000MN, . 2
o = A Jax[s""2ds[ [t o™ Pexpi-[n(x-5)° + s°1/(20°) Ydedo]
> 0 -0
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" )2 + 1/ (26%)

~
8 — 8
o 8

X h.o exp{-[n(x-¢ }dedo

<A fdxfs"2 ds [{¥ [n'1%/h exp-[n(x-£)° + s?1/(20%)}dedo
0 =0

-0

a3 )T
0 hmIG} '

Condition (4.1) means that

hm(c) do/o < =

O— 8

so that if, for example,

then (4.2) holds.

Similar argument (with X being replaced by (3.7)) proves
the admissibility of 8 in the case an = 1. Notice that our proof
essentially follows that given by Blyth (1951) (see also Farrell (1964)).
5. TInadmissibility Result for Large b.

In this section we prove the inadmissibility of 60 by

obtaining an unbiased estimator of the risk of any procedure of
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the form (2.1) and by solving the resulting integro-differential
inequality.

Theorem 4. The estimator §, is inadmissible if b > 2 + 37!
and n > 3.

Proof. Let & be of the form (2.1) with bounded differentiable

function h. Then

x exp{-[(sz - n)2 + sz]/Z}dzds (5.1)

One has

f (2252 - n2) h exp{-(zs - n)2/2}dz

(o]

[ [(z + n/s)h' + h] exp{-(zs -n)2/2}dz

- O

[ [h+2zh' - h"/s%] expi-(zs - n)%/2}dz. (5.2)

-0

1]
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Also for any bounded smooth function f(z) and positive v

£ gVt exp{-[(zs - n)2 + 52]/2 dzds

8 v 8
O~ 8

12 + $27/2}dzds

? ? [vsv_] - z(zs - n)s’] f exp{-[(zs - n

H
8*— 8
O— 8

[(v-1) f -2z 71 expi-[(zs - )2 + s2)/2}dzds .  (5.3)

Because of (5.2) and (5.3) applied to f = (an - h)h,

n+2and to (v -1)f-2zf'"=nh",v=nwe see that (5.1)

<
n

can be written as

A=C [ [oh]s™"] expi-[(sz - 0?2 + s21/2)dzds
—» 0

where

2 n-1

sh = =(n + 1)h® + 2zh'h - (an - 2)zh' - z h"(t)t "dt. (5.4)

N— 8

Therefore the inadmissibility of 60 will be established if one

produces a solution to the inequality

sh > 0.
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In the case an > 2 we put

-2
h(z) = (1 + a%2%)

Inequality (5.4) holds if

-5 -3

-4
] + 4(an-2) Z2(1+z%)

el-(n+1) (1+22) - 8 22 (142)

o -4
3_4a2 / [522t2] (1 + 22t2) t™" dt.
1

For this inequality to be valid it suffices to choose ¢ and a

so that

4o ? (1 + zztz)-4 tNdt s e(n+1) (1 + 22)-4 (5.5)
and

(an-2) (1+22)_3 S 28(1+zz)-5 + 562 | (142262) " 20 gy, (5.6)

1

Inequality (5.5) holds if



17

45/ (n+7) = e(n + 1)
and (5.6) is met if
an - 2 > e[2 + 5(n+1) (n+7)/(n-3)].
In the case an = 2 we put
g, r >0, (5.7)
The inequality (5.4) in this case means that

2
) + 4z

-4
e[-(n+1) (1-rz 2(r2%-r-2)/ (1422)](142%)

> [ [brz* + 428455 + ar) - or - 4]
]

i
(1 + 22t2) "

which is implied by two inequalities
4 2r

2(13r% + 34r + 25) [ (1 + 25¢%)" dt
1

e(1+22) ™ [(2r(n+2) + n + 7)2 = (n+1) (n+5)]/ (n+5).

and



18

- 2
2)

4
er (n#5) (1422)  [Z% - (2r(n+2) + n + 7)/(r(n+5))]

-4

t-n

<6 [ (2%t% - (ar+5)/3r)% (142%t2) dt.

—tt— 8

As in (5.5) the first of these inequalities can be used to deter-
mine e, and the second is seen to hold for sufficiently small positive

r.
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The following constitutes my response to A. Rukhin's paper
"Quadratic estimators of quadratic functions of normal
parameters."

With just a few cosmetic changes [ feel that this manuscript
is ready for publication. The proof of Thecrem | has been
corrected and the latter portion of the paper is much more
readable because of the elimination of some unneeded notation
and bulk of material,

Let (p,l) denote page p, line | (with negative | to mean
| lines from the bottom).

Typo:
(3,6): Again, sigma sub zero should be delta sub zero.

Suggested grammatical changes:

Summary: "Necessary and sufficient. ." to "A necessar
y y y
and . . "

(1,3): "We consider statistical " to "We consider

estimating theta=. . ., where b'is a given nonnegative number
, under quadratic loss."
"

to "In this

"
.

(1,10-11): "In this situation the mean
situation the mean of the y observations is

Before the last sentence of section 1l: Might want to insert
"In short, we show that delta sub zero is admissible if
and only if 1+2/n < b <2+3/n."

(7,5): "Let lambda . . ." to "Let lambda( , ) be the density

of the (generalized) . . ." “f

(9,-6): "For instance conjugate" to "For instance, th

conjugate. . " .
(11,7): Since s2/(n+1) is inadmissible" to "Since s2/(n+1)

is an admissible"
-

(11,_3)- "and integrati ' "
. : ons by parts" to "and i _
tions by parts" the integra

(13,-6): "Similar argument" to "A similar argument"
-7

Closing question for the author: Any speculations as to
the statement of Theorem 4 when n=2 or n=3°?



