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Abstract

Let F be a probability distribution on R. Then there exist symmetric
(about zero) random variables X and Y whose sum has distribution F if and only
if F has mean zero or no mean (finite or infinite). Now suppose F is a
probability distribution on Hln. There exist spherically symmetric (about the
origin) random vectors X and Y whose sum X + Y has distribution F if and only
if all the one-dimensional distributions obtained by projecting F onto 1ines

through the origin have either mean zero or no mean.



1. Introduction and Summary -

Call a probability distribution F on R balanced if it either has mean zero
or no mean (finite or infinite). Simons (1976) showed that a necessary condition
for F to be the distribution of a sum X + Y, where X and Y are (possibly depen-
dent) random variables symmetric about zero, is that F be balanced. Section 2
will show that this condition is also sufficient. An eaSy corollary is that
for any distribution F, there exist three symmetric (about zero) random variables
X, Y, and Z whose sum has distribution F.

Section 3 considers the distributions of sums of spherically symmetric
(about the origin) random vectors in H{h; Let F be a probability distribution on
R". We will say that F is'bé]anéed if it is balanced in the one-dimensional
sense in every direction, that is, if all the one dimensional distributions
obtained by projecting F onto lines through the origin are balanced. Theorem 3.1
says that there exist spherically symmetric random vectors X and Y whose sum
X + Y has distribution F if and only if F is balanced in the multi-dimensional
sense. Again, an easy corollary is that for any distribution F on Bin, there
exist three spherically symmetric random vectors X, Y, and Z whose sum
X + Y + Z has distribution F.

An obvious corollary of the one-dimensional result is that a sum X + Y
of symmetric (about 0) random variables X and Y can be symmetrically distributed
about C # 0. An example of such behavior has previously been exhibited by Chen
and Shepp (1983). In their example, the summands and the sum a]i have Cauchy
distributions. See also Ferguson (1962), who showed how to obtain an
n-dimensional random vector X for which the scalar product t'X is.a Cauchy

random variable for every t € R", but for which there does not exist a b€ R",

such that t'b is the center of symmetry of the t'X distribution for every t. In



Section 4, the Ferguson-Chen-Shepp construction is generalized to show that, for
every positive integer n, there exist n-dimensional Cauchy rahdom vectors X and
Y. spherically symmetric about the origin, such that the sum X + Y has an
n-dimensional Cauchy distribution which is spherically symmetric about a point
other than the origin. §

In the remainder of this paper, "symmetric" will mean "symmetric about zero"

or "symmetric about the origin" if the center of symmetry is not otherwise

specified.

2. Sums of Symmetric‘Randdm'Varfabfes

We begin with some definitions.

Definition 2.1 Let 8 (Hin) be the set of all probability distributions on RrR".

Definition 2.2 F€ & (R) is balanced if

o 0 .
é xdF(x) = [ [<x)dF(x).

If FES(R™) and X ~ F, then X (or F) is balanced if the distribution of the
scalar product t'X is balanced for all ge.m”.

Definition 2.3 Let X & FEaQ(Rn). Then X (or F) is spherically symmetric if

£ (X) = £(MX) for all n x n orthogonal matrices M, and centrally symmetric if

£(X) = 2£(-X).

L -

: {F&:® (R'1)' d spherically symmetric X and Y on R"
Sats | A Al

P

Definition 2.4 éé”)
with X + Y~ Fh

o adn)
wﬁh&+rth~.

: {Fe s (R™)]:g centrally symmetric X_and*i_on R"

één) and'Cé(n) are defined analogously.
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This section will characterize é% = é% =C;/ and éb_-;v 3= Cg

Theorem 2.5 If F€ 8 (R), then FE é%i if and only if F is balanced.

Definition 2.6 For u > 0 and v > 0, let G(u,v) be the mean 0 distribution putting
all mass on {-u,v}. Let G(0,0) be the point mass at O. -
Lemma 2.7 For any G(u,v) distribution, there exist % [-1,1] (i.e., uniform on

[=1,1]) random variables tk] qnquz and a constant b for which b (U] + Ué)»m G(u,v).

Proof Let Up v o [-1,1], and let 8 =: .(vru)/(v+u). (Set=e =1 if uv = 0.) Define

U, by
2 [ 1+06 -1 if U >oe,
U. =
S B IO T ifuy <o
Then Uy 5 Uy s and b =::(ut+v)/2 are as desired. O

Lemma 2.8 Any balanced FES(R ) is a mixture of G(u,v) distributions.

Proof. In the construction of the Skorokhod representation of a mean 0 random
walk, Lemma 2.8 is proved for mean 0 distributions. The proof in Freedman (1971),
pp. 68-70, goes through word for word for balanced F if his formula C(0) + A(1) = 0O

on page 69 is replaced by A(1) = -C(0). O

Proof of (2.5). Let FES(R) be balanced. By (2.7) and (2.8), there exist random
variables X and Y with X + Y ~ F,where X and Y are both mixtures of uniform random
variables symmetric about 0. ~ ’

Now suppose that FE€J,, so that there exist symmetric random variables X and
Y such that Z =: X + Y has distribution F. Let Z' =: (Z+|Z|)/2 and 7~ =:(-I+|Z|)/2.
We will show that £(Z+) = _E(Z"), which will imply that F is balanced. For
TERT, Tet X. =1 (XAT)V (-T) and Y, = :(YAT)V (-T).

T T

As T » =, (X+ + Y;) coverges monotonically upward to (X+Y)+ = Z+; and (xT + YT)'

+
T+



converges monotonically upward to (X+Y)™ = Z. By the monotone-convergence
theorem
: + oy ot
'E(XT+YT) — E(Z")
and -

E(Yp) T E(Z)

as T » », But for each T, XT and YT are bounded symmetric random variables. Thus

E(XptYp) = E(Xp) + E(Y7) =0

and therefore

+ -

Since the left side of the last equality converges to .E(Z+) and the right side

converges to E(Z7) as T » =, it follows that E(Z+) = E(Z7). O

Remark 2.9 The proof of necessity is essentially the same as that given by

Simons (1976) and is included here only for completeness.

Remark 2.10 The symmetric random variables X and Y obtained in the proof of
sufficiency are unimodal and identically distributed.” They do not necessarily

have means, even when F has a mean.

Corollary 2.11 é% = 8 (R)

Proof - It follows from both Theorem 2.5 and from the Chen-Shepp- example that there

exist symmetric random variables XO, YO and ZO such that



XO+YO+ZO§], ._.7'

(If the Chen-Shepp example is used, then the summand random variables may all be
taken to be Cauchy.) Let F€ & (R). Let W ~ F be independent of Xy» Yo and Zys
and define

, Y =: WY

X =1 WX Z=: Wz

0 0° 0

The random variables X, Y, and Z are clearly symmétric and satisfy W = X+Y+Z,

so that Fedy . 0

Remark 2.12 If XO’ YO, and Z0 above are Céuchy, then the symmetric random variables
X, ¥, and Z will be unimodal but not necessarily identically distributed. (If

X0 is unimodal with mode 0 and W is independent of XO’ then WXO is unimodal.) How-
ever, if (X], Yis Z]) is defined to be a random permutation of the triple (X,Y,Z),
with the permutation. being independent of'(X;Y,Z) and with a}l of the 6 _possible
vermutations having-prbbabi]ity‘T/G;zthenon? Y]};and;zl:aWe symmetric, unimodal,

and identically distributed, and X +Y;+Z; = W ~ F.

Remark 2.13 'Simons (1977) showed that the expectation (if it exists) of a sum of
two random variables is determined by their marginal distributions, but that this

does not hoid for a sum of three random variables.

3. Sums of Spherically Symmetric Random Variables

This section will extend the one-dimensional results of Section 2 to higher

dimensions. .

Theorem 3.1 If F€£4]Rh), then F€<§én) if and only if F is balanced.

_ The "only if" part of Theorem 3.1 is an immediate consequence of Theorem 2.5.
Indeed, if X+Y=Z~ F for spherically symmetric X and Y, then for each t€ R"

Efz_and‘ﬁfx_are symmetric random variables, and Theorem 2.5 implies that

- .. . [ O



t'Z = t'X + t'Y is a balanced random variable. The same reasoning works for
, So that we have

d n)_S cén)'__c{ba]anced F'sy.

(
2

Before proceeding to the proof of sufficiency, let us examine what happens
when one attempts a straightforward adaptation to R" of the argument in Section 2.
Lemma 2.8 remains true in R" if the mean 0, two-point distributions G(u,v) are
replaced by mean 9} (n+1)-point distributions. Indeed, see Lemma 3.17 below.
‘Lemma 2.7 also generalizes. In the proof of Lemma 2.7, it is shown that, for any
G(u,v) distribution with uv > 0, there exists an interval [-b,b] symmetric about
0 with a decomposition into subintervals [—b;eb] and [eb,b] which are symmetric
about the points -u/2 and v/2, respectively. The ratio of the lengths of
[-b,eb] and [gb,b] is necessarily equal to the ratio of the probabilities of the
points -u and v. The random variable bU] is uniform on [-b,b], and bU2 is
obtained by reflecting bU2 dcross the center of the subinterval containing bU].
fhis trick generalizes to ®® as follows. If H is a mean 0 distribution on
three noncolinear points X{s 52, and X3 in RZ, there exists a centrally symmetric
parallelogram A and a decomposition of A into smaller paré]]e]ograms A]; A2, and
A3 whose centers are 51/2, gz/x, and 53/2 respectively. See figure 1. The
ratios of the areas of the Ai's are necessarily equal-to the ratios of the corres-
ponding probabilities. - Let'yj’be uniform]y distributed on A, and obtain 92 by
reflecting U; across the center of whichever A, it is in. Then U, is also uniform

on A, and Uy + U, v H. It follows that Céz) contains all mean 0 3-point



2)

distributions, and hence, by Lemma 3.17 and the fact that C is closed under

(
- 2 . r
mixtures, we have {balanced F's}c CéZX A1l of this works in R" if parallelo-

grams are replaced by n-dimensional parallelopipeds.

Thus, adapting the arguments of Section 2 shows that;Cén) = {balanced F's}.
If one has argued along these 1lines, then the proof of Theorem 3.1 may be completed
as follows. Let gh and y2 be uniformly distributed on a symmetric parallelogram
(or parallelopiped) as in the preceding paragraph, with yq + g2 having the mean
0, (n+1)-point distribution H. Lemma 3.14 below implies that there exists a
random vector V, independent of (gq, QZ), for which §_=::gq + V is spherically

symmetric. Then Y =: 92 - V will also be spherically symmetric, since

SV) = (U = V) = £ (-X) = 2 (X).

1

But X +Y = U + U, ~H, so that §én) contains any mean 0, (n+1)-point distribu-
tion. Now take mixtures and apply Lemma 3.17 to get {balanced F's} E;ééﬂ).

The parallelopiped. approach is geometrically appealing but notationally
clumsy, and we have chosen to take a slightly different route. The proof of
sufficiency is broken up into a sequence of Temmas. We Begin with some

anaTysis which culminates in Lemma 3.10. After that, the “reasoning becomes more

probabilistic. Readers wishina to skip the technicalities may groceed,difectiy |
to Lemma 3.15, providing they are willing to.accept Lemma 3.14 on faith.

Lemma 3.2 shows that a sufficiently gentle perturbation of a spherically
symmetric Cauchy characteristic function (ch.f) is still a ch.f.

Lemma 3.2 Let b : R" — C be a rapidly decreasing C” function in the sense of

.

Rudin (1973), p. 168, for which b(0)= 0 and b(-t) = b(t). Then for sufficiently

large g,

(3.3) {1 - b(t/e)} el 1]



is a ch.f.

Proof. Let q be the Fourier transform of b:
(3.4) qlx) = (h)‘”ﬁn exp {-ix't} b(t) dt.

By Theorem 7.7?‘p. 170, of Rudin (1973), g is also a rapidly &ecreasing;cu’function.
It follows from b(-t) = b(t) that-g .is real. It follows from b(0) = 0 that q is the
denéity of a signed measure with net measure 0. Let m be the measure with density

|g|. The fact that q is rapidly decreasing implies that

(3.5) m{y € Rn:||x|]>rﬁ <K pm(n#1)

when r > 1, for some constant K > 0. Define a, bng(§),=: 8"q(ex), so that qé‘is
the Fourier transform of b(ﬁ/s), and m(Rn) is the integral of quI over R" -
The Fourier transform of e"llj"--II is the spherically symmetric n-dimensional
Cauchy density
2 -(n+1)/2
p(x) =: € (1 + [[x[|")
It is easy to show that, for ¢ > 0, there exists c(e¢) > 0 so that

[1y|l< cle)(1 + ||x||) implies

[p(x +y) - p(x)]| < ep(x). -

L -

(Just consider the cases ||x|| <1 and ||x|| > 1 separately.)
Let a =: c({2m(Rn)}-]) .

The Fourier transform of (3.3) is

(3.6) p-(p*%k
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This function is the density of a real signed measure with net measure 1. If we
can show that (3.6) is everywhere positive, then it will follow that (3.8) is a
probability density, and the Fourier inversion theorem will imply that (3.3) is
its ch.f. It is obvious that (p * qB)/p converges pointwise to 0 as 8 - ». The
idea is that log p is sufficiently flat (cf. the last inequality) and the tails
of g are sufficiently thin (cf. (3.5)) so that this convergence is uniform.

Let A =: {y: |ly|| <a(l + x| .
Then -

) dy

>
Fan
©
Camn
>
1
<
Nt
I
©
—
| >
~—
—
O
w .
—
[<

<[P - y) - PO ag(y)ldy + e Calagly) |y
X ol . X

< {2m(R") 37Tp(x) m(R") + ¢, [claly)ldy

2y

C<p(x)/2 + ¢ m{||y||>8a(l + |[x]})}.
If ga > 1, then by (3.5) the Tast term is less than

(3.7) ¢, kiga(l + [[x])y("1)

1/(n+1) :
If ga > (K/2) , then (3.7) is less than p(x)/2 and (p * qB)(Z) is less than

p(x). This implies that (3.6) is everywhere positive for

B > max {a-], a_](K/Z)]/(n+])

}, and we are done. O
Remark 3.8 Lemma 3.2 also holds if (3.3) is replaced by

(3.9) {1 - b(t)} exp (-8]]t|]),



N

since this is just a change of scale. ok

Definition 3.9 Let B(x,r) be the closed ball in R" with center x and radius r.

Lemma 3.10s“Let fd: R"=>.C be a ch.f. with support.inside B(0,r).~ Let g: R'> ¢

be a C°ch.f. with no zeroes inside B(0,r). Then for all sufficiently large 8,

(3.11) fo(t) exp B[ |t]13/9(2)

is a ch.f.
Proof Let ¢ > O be small enough so that g has no zeroes in B(0,r+c). Let
h: R"5 R be a spherically symmetric C° "hat function" which equais 1 inside

B(0,r) and equals 0 outside B(0,r+c). Write (3.11) as

(3.02)  fy (O - A - 9(v)™1] exp -] tl]}

and apply Remark 3.8 to the last two factors of (3.12). O

Remark 3.13 Let X = (X], X2,...,Xn)' be a random vector in R" whose coordinates
Xi are iid from a distribution on R Whose characteristic function has compact
support. Then the ch.f. of X will have compact support in R". If in addition

M is a random nxn orthogonal matrix whose distribution is the Haar measure on the
group, and if M is independent of X, then the ch.f. of Y =: MX will be spherically

symmetric with compact support.

Lemma 3.14 Let W be a random vector -with all moments: Then there exists an inde-

pendent random vector V such That the sum W + V is spherically symmetric.

Proof Denote the ch.f. of Wby g, which is C” since W has all moments. Let

o be a spherically symmetric ch.f. with support inside a ball B{0,r) not containing
any zeroes of g. Choose a sufficiently large g, and let V be a random vector,

independent of W, with ch.f. (3.11). Then W + V has the spherically symmetric
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ch.f. folt) exp {-g|[t]]}. O o
Lemma 3.15 Any mean 0, two-point distribution H on R" is in één).

Proof We may assume without Toss of generality that H puts all mass on the first
coordinate axis. By Lemma 2.7, there exist random vectors U,.and U, which are

uniformly distributed on a symmetric subinterval of the first coordinate axis and
for which U, + U,
is spherically symmetric. Then Y =: U

U+

- V is also spherically symmetric, since

~ H. Let V, independent of (Qq, U,), be such that X =: U

Y,
Z(Y) = £(X). But

X+Y=U +U,~H,
so that Héééfn) X O

Lemma 3.16 Any mean 0 distribution H on R" which puts all probability on a finite

set of points {X;,X,,...,%} is in één) )

Proof by induction on k. Suppose (3.16) is true for distributions putting mass on
k or fewer points, k > 2. Let H be a distribution for which H{X;,...,x. 4} = 1,

and let.Z ~ H. Let
X =: E(Z|Z # x9).

Let G be the mean 0, two-point distribution on {54,2}: Let F be the distribution
£ (Z - |2 # Xy). By the induction hypothesis, there exist spherically symmetric

Wy, Wy, Yy, and ¥, such that
Wy + W, G and Vy + ¥V, o F.

We may assume without loss of generality that (W;, W,) is independent of (V;,V,),
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—1

*
Define y2 by

and that V, and v, are jdentically distributed (c.f. Remark 2.12.)

| -V if Wy Wy = X

P

*
Then y2 has distribution i?(yz) and is independent of (Wq’ HZ), since the condi-

*
tional distribution of ¥, given (Ua’ W,) is either £ (-V

_]) or :ﬁ(!z), and

2(-¥y) = £ (V) = £(¥,). Set

*
+ V

X =: W +V and Y =: v,

A=W+l "y

Then X + Y ~ H, and X and Y are spherically symmetric since they are sums of

independent, spherically symmetric random vectors. G

Lemma 3.17 If H is balanced on Rn;.then H is a mixture of mean 0 distributions

with support on at most n+1 points.

Proof Lemma 3.17 for mean O H is a special case of Theorem 7 of Mulholland and
Rogers (1958). To finish the proof, it will suffice to show that any balanced
H is a countable mixture of mean O distributions. Inductively define an increasing
sequence {gi}?=0 of "mean 0 subdensity functions with respect to H" as follows.
Let go(gj = 6. GfVéh éié let Qi+1 bé the set of measurable functions given by

L -

q-|+'| =:{95]Rn’*[0,]]|9(_>_(_) 191(5) 'FOY‘ a]] _)_(_,

g has compact support, and R

[ 900HIE) > 1 - 27Ty .
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Let Wzi+ be the set of "means" of functions in Qj+]:

1

= n =
(41 T Z €RT|Z =

42h x g(x)H(dx) for some g€ G .} .

We wish to choose 9 to be an element of QH+] with mean 0. _This is obviously

+1
possible precisely when 0 € ”31+1' Since Qi+] is closed under the taking of convex

Tinear combinations, it follows that is a convex set in R". If 0s ¢ Msg o

i+]
then the separating hyperplane theorem implies that there exists a nonzero vector
t such that t'Z > 0 for all Z/ € 7, ;. Since the subdistribution with density

1 - 95 with respect to H is itself balanced, it is easy to show that the existence

of such a t is impossible if 0: ¢ % Thus, we can define the entire sequence

+1°
{91}1=O‘ Let fi =1 g5 - 95 7» and let 45 =t ffidH. Then H can be written

as the countable mixture

-1

where Fi is the probability distribution with density (ai) fi with respect to

H. O

Combining Lemmas 3.16 and 3.17 completes the proof of Theorem 3.1.

Readers who share the authors' preference for probabilistic methods over
characteristic function methods may wonder whether there is a more probabilistic
proof of Theorem 3.1. The answer seems to be no, as the following argument
indicates. Fix n 3_2, and let G be the mean 0, two-point distribution putting
probability 1/2 at each of 2@4 and -294, where e is the unit Vézfor in. the first

coordinate direction. Let XO and XO be spherically symmetric random vectors with
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. 10 + XO ~ G. Define (X, Y) to be a random choice of (50, XO)’_(X . 50),
(_

-XO) and (-Y —50); with each choice having probabi]ity 1/4 and with the

X‘O’ _03
choice being independent of'(zo; XO). Then X and Y are also spherically sym-
metric, and X + Y v G. In addition, the randomization implies that
(1) £ (%, Y) = 2 (Y, X), and (1) £ (X, ¥) = £ (=X, -Y). Llet W=: (X+¥)/2,

so that (iii) X - W=W-Y,

Proposition 3.18 If X, Y, and W are as above, then X - W is independent of W,

and the common ch.f. f of X and Y has support inside B(O,n/2).

Proof. Let A be a Borel subset of R" . Then

PIX - W €A, W

n

il
o
—
=
1
=<
m
T
™
=
1
(D
(W)

by (1)

1]
av)
-~

—
|
| =
1
P}
1
><
N
m
=
"A

1

=
e

= e} by (i1)

= PIX - WEEA, W = -eq}.

It follows that the conditional distribution of X - W, given W, does not depend
- on W, so that X - W.and W are independent.
The ch.f. of W is cos(t;), where ty is the first coordinate of t. If g is

the ch.f. of X = W, then the ch.f. f of X satisfies

f(t) = g(t) cos(tq), , -
by the independence of X-W and W. But cos(tl) equals zero on the (n-1)-dimensional
hyperplane t] = 1/2, and f is a spherically symmetric function, since X is a
spherically symmetric random vector. The second part of the proposition

follows. a
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If we had wanted to prbVé Lemma 3.15 only for a symmetric two-point distri-
bution G, we could have simplified the proof slightly by starting with a random
vector W satisfying 2W ~ G and then using Lemma 3.10 to assure the existence of
an independent V such that X=:W+Vand Y =: W - V would be spherically symmetric.
Proposition 3.18 shows that this is essentially the only way of obtaining
spherically symmetric X and Y with X + Y ~ G, and that distributions whose
characteristic functions have compact support are necessarily involved in
any such construction. This leads the authors to suspect that any proof of
Theorem 3.1 will involve something at least as probabilistically mysterious
as the division of a characteristic function with compact support by another

characteristic function.

We now generalize Corollary 2.11 of the previous section.

Corollary 3.19 égn) = 8 (R") .

Proof It follows from both Theorem 3.1 and from the generalization of the Chen-
Shepp example in Section 4 that there exist spherically symmetric random vectors

50, XO’ and zO such that

Xo +

n .
Choose F€ 8 (R"), and let W~ F be independent of KO"XO’ and ;0.

random nxn matrix, also. independent of Xgs Yy, and Zy> whose first column is W

Let M::.be a

and for which llyjl']M is an orthogonal matrix when W # 0. When W=20, set M

equal to the nxn matrix of all 0's. If”{gq; €r,...,8,} are the coordinate unit vectors

. . "~ -1
in R",a suitable M matrix may be constructed by taking the columas_of, [[W[[_M |
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to be the orthonormal basis of R" obtained by applying the Gram-Schmidt procedure
to the spanning sequence W, 81:805--458, .
Then

X =: MX

Xgs Y =0 MY

Vs and Z =: MZ

=1 -
are spherically symmetric random vectors, and

X+Y+Z=WnF, O

4. Sums of Symmetric Cauchy Random Vectors

As a final curiosity, we show that the Ferguson-Chen-Shepp argument can be

generalized to higher dimensions.

Theorem 4.1 For any positive integer n, there exist n-dimensional Cauchy random

- vectors X and Y, spherically symmetric about the origin, such that the sum X + Y

has an n-dimensional Cauchy distribution which is spherically symmetric about the

point (1,0,...,0) .

Proof In this proof, ﬁ} s and x will be points inkﬂf‘ with first coordinates

t], S1s and X -

Let A(x) =: I <13 ° and for each «€ [-1,1], define ¢{-,a) on R" by

i(t'x) u
-‘}lﬂf:(EsOL) =: f — e (1 +0L'»Sgn(X'|))d£.
R' x| ™

For each o, ¢ (-,0) is the Togarithm of the characteristic function (hereafter
abbreviated log ch.F.) of an infinitely divisible distribution. Indeed, for each
X, the integrand is the Tog ch.f. of a shifted Poisson random vector with "jumps"
of size and direction X, jumping intensity |[§J|'(n+])(1 + sgn(xT)), and

deterministic shift -A(x) ||§J|'(n+l)(1 +asgn(x;))x. Thus, @ is the Tog
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ch.f. of a shifted compound Poisson random vector.

Define ¢(+) on R" by

If c € R, straightforward calculation shows that

¢ (ct,a) = |c| & (t,0) + cayp(t)- it ky ac Tog |c

and that

¢ (Eso) = "k2i£| [}

for some positive constants k] and k2. The last formula implies that ¢ (-,0)
is the log ch.f. of an n-dimensional Cauchy distribution centered at the origin.
Let U be a random vector in R" with log ch.f. ¢ (+,a). For each s€ [0,2r),

define the n-dimensional random vectors

ye =: (cos 8)U and ye =: (sin o)U.

Then (ye, ye) is an infinitely divisible 2n-dimensional random vector with log ch.f.
% (t,s,0,a) =: Tog E[exp {i(;fye) + (s’ we)}] = ¢ (t cos-8 +.5 sin 6,a ).

Let A(.) be a measurable function from [0,2rx) to [-1,1]. Taking a "con-
tinuous convolution" of the infinitely divisible distributions associated with

the ¢l-,-, ,A(6))'s produces the Tog ch.f.
2T
z{t,s,1) =: é ¢ (t,s,0,1(8)) do.

Let X and Y be n-dimensional random vectors such that the 2n-dimensional random

vector (X,Y) has Tog ch.f. z(-,+,x). Then X by itself has log ch.f.
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21
Tog E[ exp {i(t'X)3] = ¢(t,0,)) = é @ (t cos o,x {5)) do

S 4

2
= 5 |cos o] (£,0) +(cos o) a(e) w(t) - 1 tykyale)(cos o) Tog [cos o|d 6,
and Y has Tog ch.f.

2
Tog E[ exp {i(s'y)}] = z(g,s.2) = 6 ¢ (s sin 6,1 (8)) do

2
= éﬁ Isin o] ¢ (s,0) +(sin ) a(e) w(s) - i 511 A(e)(sin o) log |sin 6| d e.

The sum X + Y has Tog ch.f.
: 2w
Tog E[exp {i(t'(X + Y))}]1 = ¢(t,t,a) = 6 ¢ (t(cos o + sin o), r(e)) de

27
= g |cos 6 + sin g|¢ (t,0) + (cos 8 + sin 8)r (o) w(t)

- 1tk ale)(cos o + sin g) Tog lcos o + sin g] d 6.

If A(.) is chosen to be orthogonal in L2[0,2w) to sin ¢, cos 6,
(sin ¢)log|sin g|, and (cos g)log|cos g|, but not to

(cos 6 + sin 8) Tog |cos 6 + sin 6], then

Y
—

|t
-

O
)
@@
~

n

kslt],  2(0,5,8) = -kg|s| ,

and

'
—
|t
-
|t
ur
>
~—
|

= -Kglt] +1 tykg,

where k3 > 0, k4 > 0, and k5 # 0 are constants.’

Thus, X and Y satisfy the conditions in the theorem, except thafvx_+ Y is symmetric

1

about (k5,0,...,0). The random vectors kg X and kg1 Y are as desired. O
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Remark 4.2. Calculation of the log ch.f. of aX + bX_shows-th;t-any

such linear combination has an n-dimensional Cauchy distribution which

is spherically symmetric about some point on the first coordinate axis.
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