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ABSTRACT:

Let k populations s be given with continuous cumulative distribution
function Fi(x), i=1, 2,...,k. Also let X1, XZ""’Xk be a set of mutually
independent observations from respective populations mys Tos..-sTy- A rank

vector R = (R], R2,...,Rk) is defined for these observations as follows:

Ri = s if Xi is the s-th smallest of the variabies X], XZ""’Xk'

The purpose of this paper is to give the mean, variance and covariance

of rank vector R under the population model stated above. Applications to
the slippage configuration of distributions and the normal distribution are

also given.

*Dokkyo University and Purdue University



1. INTRODUCTION

.(i=1, 2,...,k), whose cumulative

Suppose there exist k populations ir

distribution functions (c.d.f.'s) are continuous in x and have the form Fi(x),
(i =1, 2,...,k). (In later sectfons, we sometimes denote Fi(x) by F; briefly).
Let the corresponding random variables be X], X2""’Xk and let R = (R], R2,...Rk)

be their respective ranks defined as follows:
Ri =s if Xi is the s-th smallest of the variables X1, X2""’Xk'

Let n independent observations of the rank vector R be (Bq, 32,...,3n).

R..

A rank sum vector T is defined by T = R;
1

J

It ~1x

Tests of hypotheses or ranking and selection procedures based on this
statistic are considered elsewhere, see for example Lehmann [8], Gupta and
Panchapakesan [5] and Dudewicz and Koo [2]. Among those works which treat
this statistic, several authors, Gupta and McDonald [4], McDonald [10], Matsui
[9], Lee and Dudewicz [7] pay attention to the moments of this statistic and
use them under the slippage configuration defined below.

The purpose of this paper is to give, exactly, the mean, variance and
covariance of the rank statistic R under the population model. The results
will be useful for clarifying the relations between ranks and populations (or
distributions) and for checking numerically the behavior of ranks.

In order to apply the results to the ranking and selection problems, it
is often necessary to investigate them under a special parametric configuration,

j.e., the slippage configuration.



So, the results obtained here are also applied to the slippage configuration

of distributions, which is defined as follows.

DEFINITION
For given c.d.f.'s F](x), F2(x),...,Fk(x), a slippage configuration of

distributions is defined by
Filx) = oo = Fro(x) (5Fp(x)) 2 Fp _pyq(x) = ooo = F(x)(=F(x)) (1.1)

for all x, where t is any given integer such that 1T <t < k-1.
In Section 2, mean, variance and covariance of the rank vector are given.
The results are also applied to the slippage configuration of distributions.

Applications to the normal distributions are given in Section 3.

2. MOMENTS OF THE RANK VECTOR
In this section we give mean, variance and covariance of the rank vector

defined in previous section.

2.1. Means
Let us first consider the expectations of a rank Rl' A probability
Pr(R] = s) is given by
Pr(R] =s) =) Pr(X, <...<X, <X;< X; <ovo< Xi ) (2.1)

where {iy,...,1 45 14 q5--.51 ) 1s the permutation of {2,3,...,k}, and

summation ) is taken over all (k-1)! permutations of'{i],...,is_], is+]""’ik}'
S .

Thus we have



K
ERy) = [ ] 1 s Fy (x)eeeF,  (x){1-F, (x)}---{l—Fik(x)} dF,(x)

s=1§ " s-1 s+1
k-1 m+]
= -s+1 e
= fmzo gm 521 s G (- Fa](x) Fam(x) dF 4 (x) (2.2)

where {a], dps--.5a.} s a combination of size m (<k-1) from the set {2,3,....k}

and the summation ) is taken over all k-1Cy combinations {a), a5,...,a,} out

Am

of {2,3,...,k}. Since

m+1 0 m> 2,

-s+]
L-)™STs o= (2.3)
s=1 m"s-1 1

we have

k
E(Ry) = f1+ jgz FL(x)} dFq(x) | (2.4)

In a similar manner, we have the following result in general.

THEOREM 2.1.
k
E(R;) = [ {1 + jZ] F5(x)} dF;(x)
J#i
1, K .
=727 j§1'f Fi(x) dF;(x)s (1 = 1,2,....k) (2.5)

For the slippage configuration of distributions defined in (2.1), we have

the following.



COROLLARY 2.1.

A

(k+t+1)/2-thO(x)dF(x), for 1T <i < k-t
E(R,) = (2.6)
(t+1)/2+(k—t)fF0(x)dF(x), for k-t+1 <

A

-
flA

~

Note that by using the thoerem 2.1, we have the following property of

ranks.

THEOREM 2.2.

F., (i,3=1,2,...,k).

E(R;) i=E(Rj) if and only if F; < F,

A

This theorem may support the relationship between ranks and (location or scale)

parameters of the distribution to which ranked data are originated.

2.2 Variances

In the same way as in the preceding section, we have

2 k-1 m+1 5

/) = [ ] gm Ls S Dl Fa, (X)°+F, (x)dF () (2.7)
Since
R 0, ifmsx3,
m . _
SZ](-l)m'S+] £ Coq " 2: ;: 2 - f: (2.8)
1, ifm=0,



we have, for A] = {a]}, all k-1 values out of {2,3,...,k} and for A2 = {a],az},

all , C, combinations out of {2,3,...,k},

E(Rf) = f{1+3g] Fa1(X) + 2 % Fa](x)FaZ(x)} dF (x)
2

Thus we have the following general form of variance.

THEOREM 2.3.

k k
V(Ri) = [{1+3 jZ] Fj(x) + j’§=] Fj(x) Fr(x)} dFi(x)
J#i J.r#i
' Jj#r

K

SO+ VR0 dF ()18, (= 1,2,..00K)

=1 ‘
J#i

This can also be rewritten as

k k
V(R,) = 2 jZ1 fFj dF; - 2 521 fFiFj dF, -

k k 5 1
+ 2_ fFJ.Fr dF. - (.2 ij dFi) - T7
j.r=1 j=1 ;

Under the slippage configuration (2.1), we have the following.

(2.9)

(2.10)

(2.11)



COROLLARY 2.2.

(((k-£)2-11/12 + t(ket-2) [FdF - 2t(t-1) [F FaF

- t(k-t-1) JFOdF - t2([FdF)?,  for 1 <1 < k-t,

V(R,) = < ) (2.12)
(t=-1)/12 - (k-t)(t—2)fF0dF + 2(k-t)(t—1)fFOFdF

|+ (kt) (kt=T) JFOdF = (k-t)2(fFgdF)?,  for k-t+1 < i <k

2.3 Covariances

For given integers s and t such that 1 <s <t < k, we have

Pr(Ry=s, R,=t) = J PriX, <eeo<X. <Xq<X, <eee<X, <X, <X. <eoe<X }.
L A Tsa1 1 s g1 72 e K

(2.13)

Pr(R]=t, R2=s) =y Pr{Xi <eee<ky <X2<X1 <o e <Xy <X]<X1 <eee<K T

s+1 t-1 t+1

Here, (11,...,15_], is+1""’1t—1’ it+1""’ik) is a permutation of (3,4,...,k)
and the summation ) , } are taken overall (k-2)! permutations of (i],...,is_],
S, S
1 2

LTRSS 1t+1""’1k)' Then we have



E(RRy) = [ [ ]} stFi (x)---F,

(F;  (x)=F.  (x)}e--
x<y s<t S1 1 s-1

s+1 Ts+1

- o {F, ](Y)'Fit_](x)}{]'Fi

t+](y)}---{1-F1k(y)}{dF1(x)sz(y)+dF2(x)dF](Y)}

=[] 3 st C c m-s-t+1
£<y r,m>0 % (s,t)ekE r's=1 mt-r-s (-1)
rimzk-2 "™ rm

Fa (07++Fy (XFy (9)+<Fy (V)1GF) (R)0Fp0)40Fp(x)AFy )} (2.15)

where (a],...,ar, b],...,bm) is a combination of size (r+m), (r+m<k-2) from the

set (3,4,...,k), and the summation }  is taken over all K ob gy COMbinations
i -27r+m

rm
{a],...,ar, b],...,bm} out of {3,4,....k} and E = {(s,t); s<t, O<r-s+i<t-s-1,

O<m-t+r+2<k-t}. The coefficient of Fa (x)---Fa (x)Fb (y)---Fb (y) in expression
1 r 1 m

(2.15) 1is given by

mtr+2  r+l

m-s-t+1

(]
1

rm

r+]

m-t+1 -s
(-1) nltor-2 SZ] (=17 s Cs

m+r+2

(2.16)
t=r+2

By using (2.3), we find that the summation in Crm vanishes except for r, m=0 and 1,

and



1, if (r,m) = (1,1),
1 if (r,m) = (0,1),
Copy = ﬁ - (2.17)
3, if (r,m) = (1,0),
L 2, if (r,m) = (0,0).
We have thus
( ) kF()F() ; ()3k ()2)
E(R,R,) = . . + F. + F +
172 _£<§ 1,§=3 A I 123 i 123 i S
i#J
{dF](x)sz(y) + sz(x)dF](y)}.
Since it is shown that
k
f f Z F.i(x)Fj(.V){dF-l(x)sz(.V) + sz(X)dF] (y)}
X<y 1,J=
i#J
k
= 1,§=3 JF;(x)dFy (x)[F 5 (y)dFo(y)
i#]
we have finally
k k
E(R1R2) = 1’§=3 fFi(x)dF](x)fFj(x)sz(x) + 3 123 fFi(x)dF](x)
i#J
k
+3 ) [F(x)dF,(x) - 2 Z fF x)Fo(x)dF;(x) - 2 Z fF JF;(x)dFy(x) + 2
i=3

(2.18)



Generalizing the result thus obtained, we have the following theorem.
THEQREM 2.4.

Covariance of the ranks Rm and Rs is given by

k
Cov(Rm,Rs) = Z fF x)dF )fFj(x)dFs(x)+3 iZ]{IFi(X)dFm(X)+fFi(X)dFs(x)}

i,3=1
i,j#m,s i#m,s
1#3
-2 Z {fF x)dF(x) + fF (x)F (x)dF_(x)}
1#m S
- f{1+ Z F.(x)3dF_(x) [{1+ Z F(x)}dF(x) + (2.19)
i=1
1#m i#s

(1<m,s<k, m#s).
This can also be rewritten as
k k
Cov(Rm,Rs) = (Z-IFSdFm)iz1fFidFs+(2—medFs)i§]fFidFm

k
- 1Z]IF (dF_[F.dF iZ](IFiFmdFS + JF.FdF )

+ [FdF, fF dF - 2fF FdF - 2fF FdF_ + 1 (2.20)

The following corollary is for the slippage configuration (2.1).
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COROLLARY 2.3.

-

- (k=t+1)/12-t [F dF+2t [FGdF-t( [F 4aF)

for 1<m, s<k-t,

©_4(k-t) [FoFdF,

Cov(Rm,Rs) = & -(t+1)/12+3(k-t) [FodF-(k-t) ([FdF)
for k-t+1zm,s<k,

(-2t+1)fFOdF+(k-1)(fFOdF)2+(-k+t+1)ngdF+2(t-1)fF0FdF,

y

for 1<m<k-t, k-t+l<s<k. (2.21)

3. APPLICATIONS TO THE NORMAL DISTRIBUTION

Let us apply the results of previous section to the normal distribution.
First, we give some prerequisites.

Let the p.d.f. and c.d.f. of the standard normal distribution N(0,1) be

2
o~ X /2

@ (x) = : a(x) = [X ¢ (x)dx, (3.1)

1
Von
respectively. Also let the upper probability of the bivariate normal be

———1—7—-(x2-2pxy+y2)} dxdy (3.2)

L(k,hsp) = f: f: ———l——:; exp {- 207
-0

2mvl-p

L-function has the following properties (see Johnson and Kotz [6]).

L(h,k;p) = L(k,h;p),

L(-h,k;p) = 1- a(k) - L{(h,k;-p). (3.3)
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Now, by the transformation of variables, we have the following relations

(David [1], Gupta [3]).

LEMMA 3.1.

For any real a; and w, (i=1, 2,...,k-1), k-fold integral

k

—
1]

NIy

,‘]cp (x;)dx, (3.4)
1:

where D
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{Oij}’

943 aiaj (i, =1, 2,...,k=1, i#j).

By letting k=2 and 3 in the above lemma, we have the following.
12 = @(C]) (3-6)
I, = L('C]s-CZ;p) (307)

where C; = wi//1+a$, i=1,2and p = a]az//1+a$ ¢1+a§. Also we have the following

relations for any real ays a5 2 0.

o a]X 1 -1

[ ] e (X) ¢ (y)dydx = 5= sin”" o, (3.8)
00 . 2n 1

® 35X a7X 1 -1

I x) @ (y) e (z) dzdydx = 77 sin oy, (3.9)

00
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where Py = ]// 1+a > Py = 2// ]+a ¢;+a

3.1. Location Parameter Case

Now, let us consider the location parameter case of k normal populations.

Let Fi be normal distribution with ITcoation parameter 0. and common
variance 02, i.e., Fi(x) = @((x—ei)/c), i=1,2,...,k. From (3.6) and (3.7),

we have the following integral relations.

fFj(x)dFi(x) = Q(Gij)’

JF()F(x)dF; (x) = L(-8 1/2)

ij? 1r’

where Gij = (ei-ej)//ﬁb.
Thus, by applying these to theorems 2.1, 2.3 and 2.4, we have the following

relations to the ranks from normal distributions.

THEOREM 3.1.

k
E(R1.) = 1/2 + J_Z] @(51.J.), i=1, 2,...,k.
k
W(Ry) =2 ] ofs, 5)-2 Z L(8:,051/2)- Z L(65:565331/2)
J=1 - J=1
k k 2 .
+ r’§=]L(5ji,5ri;1/2)-3jz]¢(51j)§ - 112, i=1, 2,...,k.

(3.10)

(3.11)

(3.12)

(3.13)
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_ k _ k
Cov(Rm,Rs) = {2-@(6ms)}jzlé(asj)+{2-®(dsm) jzlé(dmj)
k k
- -z1®(6mi)¢(asi)'2jz1{L 557 8ms3 17204 (8556 31/2))
+ @(sms)¢(5 ) - 2L(0, 1/2) L(0 ,ams;l/z) +1, (3.14)

(1<m, s<k, m#s)

where 61j = (e -9, )//_6
The s11ppage configuration (2.1) is equivalent to the following slippage

configuration of location parameters. For ¢ > 0, we have

Oppaq=" " "=0) = O (3.15)

In this case, above relations reduce to the following.

COROLLARY 3.1.

Under the slippage configuration of parameters (3.15), we have

(k+t+1)/2-te(s%), for 1<i<k-t,
E(R,) = (3.16)
(t+1)/2+(k-t)o(s*), for k-t+l<i<k.
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[(k-t)2-11/12+t (k+t-5)a (%) -2t (£-1)L(0,-6%31/2)

t(k-t-1)L(-6%,-5%;1/2)-t%(0(s%)}2,  for l<isk-t.
V(R;) =3 (3.17)
(£2-1)/12-(k-t) (£-2) 2 (%) +2(k-t) (£-1)L(0,-5%31/2)

| (ket) (kot-1)L(-6%,-5%31/2) = (k-t) 20 (6%)}2, for k-t+l<izk,
( (k=t+1)/12-to (6%)+2tL(~6% ,-5%31/2)-t{a(s%)1%,

for 1<m, s<k-t,
~(t41)/12+3(k=t) o (6%) - (k-t) {0 (6%) }2-4(k-t)L(=6%,031/2),
Cov(Rm,Rs) = %

for k-t+l<m, szk,

(-2t+1)¢(6*)+(k-1){@(5*)}2+(-k+t+1)L(-a*,—s*;1/2)+2(t-1)L(—s*,0;1/2),

L for l<m<k-t, k-t+l<szk. (3.18)

where §* = §/V2.

3.2 Scale Parameter Case
Suppose Fi(x) follows normal distribution with scale parameter 0 and
common location parameter (without loss of generality) zero, i.e., Fi(x) = @(x/ei).
In case of scale parameter, ranking process should be carried out according
to the absolute values of each observation (X], X2,...,Xk). So, rank vector B_defined‘

in section 1 is given for ([X;], Xolsees X 1)
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By applying the relations (3.8) and (3.9), we have the following integral

evaluations.
_ . -1
ij(Z)dHi(Z) = (2/7)sin 043 (3.19)
) -
er(z)Hj(z)dHi(z) = (2/w)sin P§3Pir (3.20)
where Hi(x) denotes the c.d.f. of the random variable Zi = [Xil, Xi follows

2 o / 7
normal N(0,05), i =1, 2,...,k and Pet (es/et)/ .1+(es/et) .

1’
Thus by using the relations (3.19), (3.20), Theorems 2.1, 2.3 and 2.4, we

have the following expressions of the moments of ranks for normal distribution.

THEOREM 3.2.
K
E(R;) = 172+ (2/n) §_sin"lpyis 121, 250000k (3.21)
3=1 !
K K o k .12
V(Ri) = (4/7) ) sin pi"(4/“) sin” p../vV2 = (2/w) ) sin p%.
i=1 J 3=1 H 3=1 M
(3.22)
+ (2/n) E sin”! - {(2/7) § sin"lo. .32 - 1/12, 1 = 1,2,....k
B g S
oLk ]
Cov(Rm,Rs) = (4/w){1-(1/n)sin pms}jZ]STH psj+(4/ﬂ){1_(1/ﬁ)s1n o}
k4
jZ1S1n pmj
-(4/ 2) E s1'n'1 sin”! -(4/n) E (sin'] +sin'] )
R ®mnj s+ " 351 Psi®sm °mj®ms
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+(4/n2)sin—]pmssin_]psm-(4/ﬂ)sin_1pms//§ - (4/w)sin-]psm//? ¥ 1,

(1<m, s<k, mgs). (3.23)

where Pij = (ei/ej)//]+(ei/ej)2.

As a special case, let us consider the slippage configuration of distributions.
Under the assumption of normality and parametric proposition given above, the

configuration (2.1) is equivalent to
8 =ere=0y 4 = 0/ps O _pyqT 00T T 05 0 2] (3.24)

In this case, moments given in Theorem 3.2 reduces to the following

respective forms.

COROLLARY 3.2.

Under the slippage configuration of parameter (3.24), we have

(k+t+1)/2 - (2t/n)sin lo*, for 1<izk-t,

ER,) = (3.25)
(t+1)/2 + {2(k-t)/m}sin"p*, for k-t+l<i<k.
( 2 -1, -1
{(k=t)“-1}/12 + {2t(k+t-2)/n}sin  p* - {4t(t-1)/m}sin™ p*/V2
12t (k=-t=1)/n}sin" p*2 - t2((2/n)sin" 1 p*}2,
V(Ri) = for 1<i<k-t

(£2-1)/12-12(k=t) (£-2) /r}sin™ o*+{4(Kk-4) (t-1)/n}sin™ | p*/VZ
#{2(k-t) (k=t-1)/m}sin 1 o*2=(k-t) 2{(2/7)sin" 1 p*}2,

L for k-t+1<izk. (3.26)
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(o (ket+1)/12=(2t/7)sin” Vo*+(4t/m)sin™ o*P=t{(2/n)sin™ Lp*)2

for 1<m, szk-t

-(t+1)/12+{6(k-t)/n}5'in-]p*-(k-t){(Z/N)Sin_]p*}2

Cov(Rm,Rs) = <
_{8(k-t)/n}sin  \o*/vZ, for k-t+l<m, szk,

1 42

(2(-2t+1)/m¥sinTo* + (k=1){(2/n)sin™'o*}2 +{2(k-t+1)/n}sin™ %

. + 14(t-1)/msin"\o*/vVZ,  for l<mek-t, k-t+l<s<k. (3.27)

where p* = p/V1+p2.
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