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Abstract

The estimation probliem of normal tail probabilities is considered. The form
of generalized Bayes estimators is derived and the asymptotic behavior of the mean
square errors is studied. This study shows that the best unbiased estimator, a
sampie for which is giveﬁ;‘is-superior'to the maximum 1ikelihood estimator or to
a class of generalized Bayes procedures - for large parametric values, but can ' be

significantly improved for moderate values of the parameter.
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1. Introduction

Let XqseeesXy o N > 2, be a normal random sample with both parameters u and
o unknown. In many practical situations arising in reliability theory, quality
control, insurance problems, etc., it is important to estimate tail probability
5 = P(x] <a) = o((a-u)/c) where a is a given constant. By considering a shifted
sample Xy - a; i =1,...,n we may and will assume that a = 0. Two statistical
procedures are traditionally used to estimate e: the uniformly minimum variance
unbiased (UMVU) estimator GU and the maximum 1ikelihood (ML) estimator 5. The
former estimator has been given by Kolmogorov (1950), Bowker and Goode (1952)
and Lieberman and Resnikoff (1955) (see also Vajda (1955), Barton (1961), Basu
(1964)). Applying Rao-Blackwell theorem this estimator can be derived in the
following form:

n o N 9 v

Let X = % xj/n and S° = % (xj-X) . Then GU(X,S) = P(x1<0/X,S)-
P(X—x])/S>X/S). For n > 3 the latter probability has the form
GU(X’S) = Iw(n/2-1, n/2-1)

where Iw(p,q) denotes the incomplete beta:function

PV (-)9 at/B(p,a)s (1.1)

O

I,(p,q) =

and for 0 <w <1
’ 1

i

@=1/2 - n®X/[2(n-1)25S].

Also 5U(X,S) =0 ifw <0, and 50(X,S) =1 ifw>1. Thus g is not range-
preserving since it takes extremal values O and 1 with positive probability. How-
ever exactly this fact makes the UMVU estimator very efficient for Targe parametric

values.
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An alternative form of this estimator in terms of t-distribution function has
been obtained by Folks, Pierce and Stewart (1965).

Guenther (1971) discussed the relationship between these two forms and their
relative advantages for numerical evaluation of the UMVU estimator.

Frdm the mathematical point of view the equivalence of these forms is based

on the following easily verified identity. For any positive p and 0 <u <1

1 - 1 - Y 2\=p-% -;
I(]-“-U)E)Z’Z (p,p) = IU(P,z )/2 = ( _,1” ])% (1+t%) P dt/B(p,z) . (1.2)
Tl

For instance,

o v 2 "(r']'.l )/2 M Ty
8(X,8) = 1/2 - é (1+t°) at/Bln/2 - 1;1/27.
3 x/Ln-1)sE - naBI2, x1/S < [(n-1)/n]

Apparently it was unnoticed that because of (1.2) éu can be expressed in terms

ik

vV =

of elementary functions.

Indeed if n = 2m + 2 with a positive integer m

m-1
5,068) = 172 - 1 (DX k)™ uB s, 172). (1.3)
| =
with u = n%'X/[(n-lf%S], and if n = 2m+1
6U(X,S) = 1/2 - arctg v/n
~(2m-1)"" mi] (Zm-1) - (2m-2k*T) Y /B(n-1/2,1/2) (1.4)
k=1 25%(m=1)« -+ (m-k) (1+v5)""

Thus the UMVU estimator admits simple representations (1.3) and (1.4) which

facilitate its numerical evaluation for small sample sizes and also the evaluation



of its mean square error.
For instance, if n =5
5U(X,S) =1/2 - [v/(1+v2) + arctgv]/n
v = /5 X/[45% - 5X21%, |X|/S < 2/V5.
In the numerical example considered by Folks, Pierce and Stewart (1965) and

Guenther (1971), X = -4, S2

= 40, and the value of 6U = .90915 can easily be
obtained from the formula above without using any tables and interpolation.

The ML estimator § is obtained from the formula of the parametric function
by replacing the parameters by their ML estimatdrs,

3(X,5) = o(-nZ X/5).

The mean square errors of these two estimators haye been tabulated by Zacks
and Mitton (1971) and Brown and Rutemiller (1973). The latter authors show that
the UMVU estimator is better than the ML estimator for very large or very small
values of the ratio |u|/s. (Zacks and Milton erroneously claim that the ML
estimator is more efficient for small values of o). In this paper we give theore- .
tical explanation for these findings by the study of asymptotical behavior of the
risk functions for small and large parametrical values. To provide a larger class
of alternative estimators we also develop in Section 2 the form of generalized
Bayes rules for a family of prior densities. These rules have form similar to

(1.3) and (1.4) and some of them substantially improve upon UMVU estimator for

small values of the parameter.

2. Bayes Estimators

Let A(u,0) = A(u/o)o” " be a generalized prior density for parameters u and o.

The corresponding Bayes estimator GB(X,S) for quadratic loss has the form



| {m é o(-u/o) exp - [n(¥-u)? + s2]/209} ™" A (u/o)dudo
0p(XsS) = —— —
N exp{-[n(X-1)%+5%1/(262) 3o ™" (/0 ) dudo
[w é o(-n) exp {~[n(yz - )% + y%1/23 A(n)y""* 2dndy
[ ] exptInyz - 12+ y21723 a(n)y™ 2 dndy

where z = X/S.
If for some t

A(n) = exp {-n%/(2:%);

then with v2 = n’]

] exp {-n(yz - 0)é/2} A(n)dn

-00

W

1
= (2n)® v (22 +v2) Fexp (- y222/ (2 + VP,

and

[ o(-n) exp {-n{yz - n )2/2} A(n)dn

o]

-3 % 2 2, 2,2
= (2m)"2 [ [exp {- [(t +n)" + n(yz - 0)° + n°/171/2} dndt
lw 0
(w2 )R

L fexp (- [t2 + (yz/v)% - (¢ -y (1 + 22+ v T2t
0
Therefore for n = o > 1

éB(x,s)'= 65(2)

Bl

1
= (1:2 + \)2)2 [21T(\)2T2 + 'rz + \)2)]
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z Z'exp {- [y2(22?+ z3T2 + v?T2+ 2l jr2tyze +t2(T?+V2)J/Z(Y?TZfTZfQZ)}'jn%q-ZAYdt
Z exp {—y2[1+z2/(T2+v2)]/2}y”+“*2dy

= Z (142) (M) 24418 (140 -1) 2., 1/2) (2.2)

where ;

h= 2028 + %+ B) (22 4 &+ 9)]

Because of (1.2)

5p(2) = 1. 1 ((nta-1)/2, 1/2)/2
(1+h)

. ((n+a<1)72, (n+a-1)/2)

(1-(h/ (1+h)B) 2
so that g can be found from the tables of the incomplete beta function or from the
tables of t-distribution.

If nta is a positive integer, then the integral in (2.2) can be expressed in
terms of elementary functions as in (1.3) and (1.4).

If 3o, which corresponds to the uniform, non-informative prior for U, one

obtains

| SUNY

hshy = z(1w%)" %
Notice that h is an increasing function of T, and

ISB(X,S) - 1/2|

Bl 2 - (nha)/2
= [ (1+t%) dt / B((nta-1)/2, 1/2).
0

Thus the risk of Sg atu=0,0=1, i.e. g = 1/2, is an increasing function
of t. This formula also shows that for a fixed v this risk is an increasing function
of a.

For the generalized Bayes estimators Sp with © < » one has



GB(Z) - 6B(°°)
' -(n+a)/2

- i L (149 dt/B((n+a-1)/2, 1/2),
Tz(v2T2+T2+V2)

Rl

so that as n + »
| 2 2
En(GB -6) > 6B(°°)3 .
and the mean square error of estimator (2.2) does not vanish at infinity if
T < o,
Therefore we will assume 1 = = and in the next section we study the asymptotic

behavior of these estimators as well as this of GU and §.

3. Asymptotical formulae for risk functions
AT1 estimators s considered in previous sections are functions of z =-X/S
such that
s(-2) =1 2 s(2).
The quadratic risk of these estimators depends only on n = u/o and is symmetric:
R(ns8) = E (5(2) - 6) = R(-n,e). (3.1)
If
5(2) = 1/2 + y(n? 2)
then an easy calculation shows that
R(0.8) = [ 42(2)(1422) ™ 24/ (n-1)/2, 1/2).
An application of fhis formula for the estimators NTE § and Sg wWith 1 = »
gives the following asymptotical formulas:
R(0,6) = [2n(n-3)T7'1 - 5/(2n) + o(n™!)]
R(0,8) = [2n(n=3)T7'[1 - 1/n + o(n"T)]
R(0s55) = [20(n=3)171 + (a=1/2)/n + o(n"1)].
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It follows from these formulas that for sufficiently large n (n > 30)
R(0,8)/R(0,8,) = 1+ 3/(20) + 0(n™")
which agrees with the results of Brown and Rutemiller (1973).

Also for large n and 6 = 1/2 GB is better than § if o < 5/2, and if o <1,
§g 1s better than 8- If o < -1, then

|6y = 1/72] < l&y - 1/2]
and R(O,éB) < R(O,GU) for all sample sizes.

Asymptotical study of the risk functions (of Appendix) shows that the
efficiencies of these estimators are reversed if In| » =,

R(n,8;) <R(n,8) < R(n, &)

Thus if small values of u/o are anticipated in practical situation negative
@, o > -n+l, can be chosen for the prior density dudo/c®.  For large values of

p/c,ﬁJ is preferable.

4. Numerical Example

We have evaluated for n = 6 mean square errors and expectations of estimators
&> & and &, given by (2.2) with 1= = which correspond to values o = -3, -1
and 1 respectively. The corresponding characteristics for estimators GU and §
were taken from the Table of Zacks and Milton (1971).

Notice that P is the generalized Bayes estimator which corresponds to uniform
“non-informative" prior density dudo/c. The results of this calculation are given
in Tables 1 and 2.

It follows from Table 1 that s,

2
8, 6 > .05. As is to be expected, estimators 5o and 81 substantially improve upon

is slightly better than 8y for all values of

8, for moderate values of u/o, but 6U is the best estimator for large values of
this parameter. ' |
Table 2 shows that 8, is the least biased estimator, and 60 is the most biased

one.
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Appendix

In this section we investigate the asymptotic behavior of R(n,s) as |n| - .
Because of (3.1) we can assume n -+ + o,
1

We will use the notation ¢ = n¥®j and

¢ = 1/[(2n)E 2(0-3)/20(n_1)/2)1].

1. Let us start with maximum 1ikelihood estimator §. One has

=

¢ [ o(-x/S) exp {-[x - )% + s%1/23 sN7°

-0

dsdx

= C(2r)"*®
x [ ] [exp -Lu+ x/8)% + (x - €)% + 52121 $"2 dsdxdu
0 -« 0
=C[ ] [exp {-[52 + (g + uS)Z/(] + 32)]/2}5”'](] + 52)_%'d5du.
0 - 0

Because of Laplace's asymptotical formula for integrals (see for example

Erdelyi (1956) s2.4) as & » =

2.2

[ exp 1- (2eus +u®s?)/(2(1 + $%))} du
0

v (1+5%) 7 (gS)

and
a1
EnCD(-n2 z)
ot -2 i
v C f exp {_[52 + Ez/(m + 52)]/2} Sn (] + 52)2 ds/g
0
oo . .
- ¢ [y expl -g (u+uTy/2 + 1/2keu - DI Ry gt
g
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Since the minimum of the function u + u—] occurs when u = 1, the Laplace's |

method shows that

1 1

£ a(-n" 2) v C(2m)® £N=3)/2 oyp (g 4 172} .
Analogously
gnéz(—n2 z) = C(Zﬂ)-]
[ [ [ ] exp (-L(uy + x/9)° + (up + x/5)2 #x - £)2 + s21/238"2 dsdxdu;du,
0 0-= 0

1
= C(2m) %

é é é exp {-[(U% * ug +ef) - ((uy +uy)S - )2/(1 + 2/8%) + $°1/2)

1
x "2 (2 + s%) "% dsdu,du,

[ exp (-[s2 + 2¢62/(2 + s2)172y S"H(sP + 2)%Pas/e?
0

N CE-(n-4)/2 exp (=26 + 1) 2(n-3)/2

AST]"*OO

2,51 (000" -1
o v exp {-47/2}(20) 7% n

F 2 -3 -1
= n2 exp {-£°/(2n)}(2n) * &,
so that
R(n,8) ~ Ensz(z)
N Ci_(n—4)/2 exp {-2 £ - 1} 2(n-3)/2.

2. For UMVU estimator 6U
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and

E 62 = Cexp {-£°/2)

n U

1 -
[ 20 -2 h - B2 a [ exp tets - s2/23s" ds.
A

Let

W=

)
2

3(t) = s,(tln(1 - %))
(i.e. t= n% z/(1 +nz 5

)
It follows from (1.1) that for n > 3

, t]< 1).

$(6) « 0220 - 2)7 (1 - ntyn - )R 2 B2, (n-2)/2).
as t + (1 - n'])% , and

1
2

St) =0 ift> (1 -n)%.

Thus
1 .
Enaﬁ n C(2m)% (n - 2)'2nn'2 exp {-52/(2n)}/32(1/2;(hl2)/2)
(]-n_] 3
[ (- nt2/(n - 192 (1 - t2) (1732 ep rg?(e2 -1 4 n"'y/21dt
0 ,

v T(n/2)(2/m)% (n - 1)™%/Ir((n - 1)/2)82(1/2,(n-2)/2)] exp t-£2/(2n)3e™".

Forn = 2 it is easy to see that 8y has the form

GU(X]’XZ) = [I(_w’O)(X]) + I(_w’O)(XZ)]/Z’
so that in this case

E (5, - 8)% = o(1 - 8)/2

n' U
noexp (-2/(2n) 1/ (&(2n/n)

=

).
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3. For the generalized Bayes estimator 85 with 1 = =

y(2)  (1anz?) (M2 o 1y (=172, 1)71/B(1/2, (n40-1)/2)
as z - +o,
To obtain asymptotical formula for the risk functions of these estimators
observe that if
g(z) ~ 501 * nz®) P + o(z By, z >,
then

Eng(Z) v g C

exp (-[(x - )2 + 21/23s"2P2(s% 2)"P dsdx

o~— 8
11— 8

[
o«

" g c(2ﬂ)%‘£ exp {-s2/2sMtEP2(s% + £2)"Pds
N Grt(n + 2p - 1)/2)2P/[Pr((n - 1)/2)] .

Therefore

E 5 () (e 2 (g 1) e (n (0-2)/2) S (na-1)/2,r 0= 1) /2)B(1/2, (ha-1)/2]
n

and

E & o (1) () (1) 72 F((3n+2a-3)/2)12n+d_]/[£2(n+u'1)P((n-1)/2)32(1/2,(n*a-1)/2)].
n

Notice also that for n > 2
P 2
e™™ (1 + 2n°)/n < R(n,8y) < e(1 - 8)/n.
The first of these inequalities follows from Cramér-Rao inequality, the second

is a consequence of the comparison of the risks of UMVU estimator and unbiased

n
estimator % I(_oo 0)(Xj)/n'
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The formulas developed in this section incidentally show that for Targe values
of n the bias of estimators § and Sy is positive, which also contradicts to a

statement of Zacks and Milton (1971) p. 591.
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.05
.025

Table T Mean square errors of generalized Bayes
estimators 80, 8, and &, and estimators § and §

R(#,5)
.00971
.01138
.01621
.02333
.02998

.03007

.02698

for n

R(e,s])

.01982
.01932
.01795
.01595
.01301
.01026

.00777

_14-

=6

R(8,6,)
.02852
.02680
.02205
.01542
.00838
.00495
.00309

R(G,GU)
.02938
.02831
.02497
.01899
.01013
.00481

.00215
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Table 2 Expected values of generalized Bayes estimators
8p> 67 and &, and maximum 1ikelihood estimator § for n = 6

O

0 E 8, E 81 E s, E
.4 | .44266 .41783 .40137 .3900
.3 1.38420 .33603 .30507 .2834
.2 |.32259 .25416 21278 .1833

11 .25197 . 16881 . 12401 .0918
.05 }.20615 .11997 .07842 .0490

.025 {.17419 1 .08959 .05279 .0275



