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ABSTRACT

Let MyseessT be k normal populations with unknown means P ERPRPLIP
and a common unknown variance 02 > 0. Based on independent samples of sizes
Nyseesls the populations are to be partitioned into two sets, where the
first one contains all s with 05 2 945 and where the other one contains
the rest. At first it is assumed that A is known. Under an additive
"ai-bi" loss function a minimax procedure is derived which is of a simple
natural form. The proof of minimaxity makes use of the Bayes approach and
involves a sequence of nonsymmetric priors, which play a similar role as a
least favorable prior in simpler problems. Analogous results are presented

for the case that eo is not known. In this case, a control normal population

is assumed to exist from which an additional sample of size ng can be drawn.
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1. Introduction.
Let my o= N(e],cz),..., ™ = N(ek,oz) be k normal populations with unknown
means e],...,ek and a common unknown variance 02. A population s is

considered to be "good" if 6; > 8g and to be "bad" if 8; < 83s i=1,...,k.

The control value eo may either bé known or unknown, where in the latter

case a control population o = N(eo,oz) is assumed to be also available.

The purpose of this paper is to derive statistical procedures which partition
the k populations into "good" and "bad" ones, respectively, under the minimax
criterion.

Let X. = (X X: ) be a random sample from mes 1= T,k IF

.-I’---,_i .
1 n1

8y s unknown, Tlet Xy = (X01,...,X0n0) be an additional sample from the
control population Ty A11 samples are assumed to be mutually independent.

For notational convenience, let X = (54,...,§k) if eolis known, and let

X = (5015],...,5k) if 8y 1s unknown. In either case, a multiple decision rule
can be represented in the form § = (5],...,6k), where, after having observed

X =x, 61(5) denotes the probability of deciding that "ﬂi is good", i = 1,...,k.

Let © denote the class of all such rules which are Borel-measurable.
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loss ai(bi) occurs if . is "pad" ("good"), but Wrongly classified as
“good" ("bad"), and that no 1oss occurs if the classification is correct,
i=1,...,k. The overal] 10ss is then assumed to be the total sum of these

k losses. Formally, the loss function is thus of the form

k k .
(1) L(6,d) = Z a.I(_w’eo) (e;) + -51 by I
= =0

where 6 ¢ ]Rk+],_g e'{O,]}k, and d. = 0(1) stands for the decision that ms
is "bad" ("good"), § = Tooo. k.

For the case of o known, Tet s* be the following rule.
—————=2€ 07 6, known L2

(2) SF) = 0(1) iff nl.]/Z(Yi—eo)/S <(2) c,

where 52 is the usual unbiased pooled sample estimator of o2 and C; is the
lower ai(ai+bi)-] quantile of a t-distribution with n]+...+nk—k degrees of

freedom, i = T,...,k.
Ana]ogous]y, for the case of ¢ unknown, let &%= be given by
W —

(3) S¥*(X) = 0(1) iff (n6]+n;])-]/2(71--70)/5 <) e,

where §2 S now derived frop (}O,KJ,...,X ), and C; s the lower ai(ai+bi)_]
quantile of g t-distribution with n0+n]+...+nk-k-1 degrees of freedom,

1=1,...,k.



The main results to be proved below will confirm that these two
procedures are minimax for their associated cases.

The problem of comparing k normal populations with a control has been
considered by many authors. To mention a few of the earlier papers, Paulson
(1952), Dunnett (1955), Gupta and Sobel (1958), and Tong (1969) have proposed
and studied some natural procedures. ‘Lehmann (1961) and Spjgtvoll (1972)
have treated the problem with methods from the theory of testing hypotheses.
Randles and Hollander (1971) and Miescke (1981) have derived optimal procedures
under the r-minimax approach. An overview of this area of research can be
found in Gupta and Panchapakesan (1979).

In many of the papers dealing with multiple comparisons with a control,
the so-called indifference zones have been édopted, which means that wrong
decisions with respect to parameters sufficiently close to eo do not result
in any loss. Thereby, intervals around o9 have to be specified which, together
with certain other parameters to be chosen by the experimenter, make the
proposed procedures look somewhat complicated.

Our apprbach to the problem may be more appealing to the experimenter
because of its simplicity. There are only k pairs of losses to be chosen
to determine the respective minimax procedure: (a],b]),...,(ak,bk). These

losses have a quite natural interpretation which facilitates the experimenter's

choice of them. For each i 1,...,k, the ratio of a, and bi represents the
relative importance of avoiding the two types of possible errors in thé ith
component decision problem. After these k ratios are determined, each pair
may still be multiplied by ah individual factor. These k factors may then
be chosen in a way to reflect the relative importance of avoiding errors in

the k component decisions.



The method used in this paper to prove minimaxity of §* and §** for
their respective cases is an asymptotic extension of the standard method,
where a procedure is found to be minimax if it is Bayes rule with respect
to a least favorable prior. After two technical lemmas are proved in
Section 2, minimaxity of §* in the case of a known o9 will be proved in

Section 3, and the analogous result for §** will be derived in Section 4.

2. Two technical lemmas.

These are two main steps in the proof of minimaxity of &* which will
be used later. Since they are common for both cases, where h is known or
unknown, they are presented in this section to avoid repetitions. Also,
one may get a fairly clear idea about the proofs to come by just looking
at the two lemmas given below.

The first result holds in fact more generally for all k-deciéion
problems under additive loss. It has been proved in the T-minimax approach
in Miescke (1981). By allowing T to consist of all priors, it can be used
also in the minimax approach. For conveniénce, let us state it below in

a form suitable for the present context.

Lemma 1. A decision rule §M € 8 is minimax if there exists a sequence

of priors ﬁm(g,q), Q_EIRk, q-= 0'2 >0, m=1,2,... such that for every

i€ {1,...,k} the following holds true: For the ith component problem there

exist Bayes rules Gsm with respect to 5m’ m € N, such that

k

(a) s ((2,0), Mo e B q> 03

.. (i) ,- B
5_11£L;nf r (pm,aim),



where R(1) and r(1) denote the risk function and the Bayes risk, respectively,

for the ith component problem.

Lemma 1 can be used to reduce the k-decision problem under additive
loss to k individual 1-decision problems, the only common link being the
joint priors 6m’ me N. As can be anticipated, the second result will now
be with respect to a single component problem. Since it may prove to be
useful also in other situations, it is given below in a more general form
than actually needed in the present context.

Consider the following situation. Let Y be a sample from a parametric

family of probability distributions'{Pe} where we wish to test

e R
Hy: 6 < 8 versus H1: ) 3_66. Let the Toss function be L(e,1) = L]ée) >0
if 6 < 6y, L(8,0) = L,(8) > 0if 6 >0y, and L(-,-) = 0 otherwise. This

includes as a special case the 0-1 Toss function, where L] = L2 = 1.

Lemma 2. Let ; be a prior density w.r.t. a o-finite measure u defined on the

Borel sets of IR, such that the following constant c exists and is not zero:

6.-

0 . @ .

{ Ly(e) m(o)du(e) + é L,(e) m(e)du(e).
-0 O

(5)

(@]
n

Let n(e) = c'k](e);(_e) if 6 < g5, and n(e) = C”L'z(e)%(e) if 6 > 0,. Then

the Bayes rules under L(.,.) w.r.t. ; coincide with the Bayes rules under

the 0-1 loss function w.r.t. ﬁ, and the Bayes risks are related to each other

through

~

(6) rL(n) = c ro’](n).

where the subscript of r indicates which loss function is assumed.




Proof: Let ¢ be a decision rule and assume, without loss of generality,
that it is non-randomized. Under the loss function L, the Bayes risk of

8 with respect to a prior m, for which ¢ > 0 exists, is given by

(7) r (1,8) =
6o‘ ~ o _ N
=] L(0Pe(N)=11m(0)du(0) + [ 1,(0)PyTo(¥)=01m(0)du(®)
- 0
60_ -
=c |/ P ls(y)=1In(0)du(e) + g Po{8(Y) = 0}n(8)dn(®)
- 0

= c ro,](“,a),

from which the assertions follow immediately.

" The above lemma will be applied in Section 3 in the following way. Let
L](e) = a and Lz(e) = b, respectively. Consider é (normal) prior density ™
w.r.t. the Lebesgue measure, which is symmetric w.r.t. 90. Under 0-1 Toss,
its Bayes rule turns out to be very simple. It will be used later for

the 6? 's in (4). Under the loss function L, it is also Bayes rule w.r.t.

m
the prior density ™ given by 7(8) = 2b(a+b)'] m(0) if 6 < 90, and

m(8) = 2a(a+b)—] m(8) if 6 > © In this case we have c = 2ab(a+b)'1.

0

3.  Known Control 6

O'z
As a natural first step, let us derive the Bayes rules for the given

k-decision problem with respect to the standard family of conjugate priors.

Although they are interesting in their own, only the Bayes rule for the case



of a1=bi, i=1,...,k, will prove to be useful for the problem under concern.
Reconsidering this rule through Lemma 2 as a Bayes rule w.r.t. a non-symmetric
prior, it will be used in connection with Lemma 1 to prove minimaxity of §*.

Following DeGroot (1970), ch. 9.6, let q = -2

be the precision, and
let @],;.., @k'énd Q denote the random parameters in the Bayes approach,
which are assumed to have the following prior density w.r.t. the Lebesgue

measure:

=~

(8) o) = 1 ol (e.1a) gla), o eR¥, >0,
'l:

where P(i)(-lq) is a N(ui’(Tiq)—]) density with known u; € R and 7, > 0,

i=1,...,k, and where |

(9) a(q) = 6% r{a)” g1 e, q o0,

is the density of a I'-distribution with known parameters o > 0 and 8 > O.
Standard analysis leads to the following posterior distributions at
- . — N — _'I
X=x. GivenQ = q, @qs--+s @) Are independent N((Tiui+n1x1)(T1+ni) .
(q(Ti+ni))-])’ i=1,...,k, and marginally, Q follows a T-distribution

with parameters u+2_]n and 8', where n = n]+...nk and

n.

(10) gt = pep] If Zj(x %)% + ton, (tn) " N (xe-n) 2
‘ oy {5E ihlTtng) Uxg-w) e s

and where ?% denotes the sample mean of X i=T1,...5k.



For i € {1,...,k} fixed, by looking at the posterior joint density of
9; and Q, it can be seen that the posterior marginal density Of‘3i is a
t-distribution with p = n + 20 degrees of freedom, with location parameter
(Tipi+ni§€) (Ti+n1)'1, and scale parameter y, where yz = 2" (Ti+ni)—]p-].
The Bayes rule 6? for the ith component problem can be found by

minimizing the associated posterior expected loss. It is given by

(11) s3(x) = 1(0) TFf Play < 6glk = x} < (>) by(a+h,)™!

or, by using the results derived above,

Bruy = 1/nY s - -1
(12) 61(5) = 1(0) iff (riu1+n1x1)(ri+ni) - 9 > (<) v e
where e, is the Tower ai(a1+bi)'] quantile of a t-distribution with p
degrees of freedom. Obviously, §? is then the overall Bayes rule for the
original k-decision problem.

For the special case of Wy = 90’ a, = b, =1, 1=1,...,k, the Bayes

i
rule turns out to be of a very simple form gp, say, where

(13) s2(%) = 1(0) iFF X, - 6y > (<) 0, 1= T,k

This is our candidate for the Bayes rules used on the right hand side of (4).
Under the prior distribution given by (8) and (9), assume for a moment
that Q = q is fixed. From the results stated just after (9), it is easy to

see that 5? is Bayes rule for the ith component problem, and EP is overall



Bayes rule in this situation, if uy = eo, a; = bi =71, 1=1,...,k.

Therefore, in view of Lemma 2 and the remarks made at the end of Section 2,
it follows that for every i € {1,...,k}, 6?_15 also Bayes rule for the

ith component problem under the loss function (1) with respect to the prior

(14) plofa) = 1 2(a;th;)”" [b; I

i

('mseo)(ei)

= x
J—

"2 Tagee) (%] oo, la),

8¢ ka, q>0, uy =...= y = 65. And §9 is the overall Bayes rule for the
k-decision problem in this case. Since gp does not depend on q, the fu]es
are also Bayes rules under the loss function (1) with respect to the
unconditional prior

(15) p(e,q) = p(e]a) gla), € R, q> 0.

Now we are ready to prove the main result of this section.

Theorem 1. Under the loss function (1), the multiple decision rule &*,

as _given in (2), is minimax. The minimax-value of the problem is equal to
K -1
iz'l a1.b1.(a1.+b1.) .

Proof: Standard arguments show that for every i = 1,...,k, the left hand

side of (4) for 6? = &% is equal to

(16) su(R\ ) ((0,0), )]0 € B, g > 03 = ab, (a b)),
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B_ .0 - -
gm = §, and 1et,pm be equal to p

as given in (14) and (15) with Ty eee ST TMME N. Let ie {1,...,k}

On the right hand side of (4), let
be fixed for the rest of the proof. We will show below that

(17) Tim rEi) (ﬁm,a?) = ab.(a+b,)7,
Moo
which clearly completes the proof since under the loss function L given in
(1), 6? has been seen to be Bayes rule w.r.t. prior Bm,vfor every m € N.
Under the 0-1 loss function, 6? has also been seen to be Bayes rule
w.r.t. brior P> S3Ys which is equal to p as given in (8) and (9) with

=y = 9 and Ty S ST W, and this for every m¢ N. In this

0
i

|

setting, the Bayes risk of §; can be written as

i 0 i 0
(18) “(1)(pm’61) = rél%(pm,ailq)g(q)dq, say, where at q > 0,

o 8

éi%(pm’(g?lq)

r

%

= [ @((niq)]/z(ei-eo)) (mg) /2 ¢((mq)]/2(ei-eo)) do;

-0

+Z o((n;0)12(s5-6.)) (m)1/2 o((ma)/%(0;-07)) do,

0

0 ®

= [ al(ng/m) 72 w) plw) du + [ o(-(ns/m) /% w) (w) dw,

-0

where ¢ and ¢ denote the standard normal density and cumulative distribution

function, respectively. Clearly for every q > 0, the sum of the last two
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integrals tends to 1/2 as m tends to infinity. Since the value of this sum
is always between 0 and 1, uniform]y ing>0and me N, it follows by

Lebesgues dominated convergence theorem that

0

(1) -
(19) 1 (p_»85) = 1/2.
m rO,] pm i

Applying now Lemma 2, in the way described below of (13), we get

(20) D .60) = 2 ab;(a:+b.) 71 r§(p 60).

0, m

From this it follows that (17) holds, and therefore thé proof of the theorem
is completed.

It should be pointed out that Lehmann (1957) has shown that the
minimax-value of the ith component problem is equal to aibi(ai+bi)-]’
i=1,...,k. Therefore from (16) it follows that 6? is minimax for the ith
component problem, i = 1,...,k. It is a well known fact that student's t-test
is minimax at the suitably chosen level of significance. However, this fact
is of no use in the present context, since the overall minimax value may
be less than the sum of the k minimax values of the k component problems.

As a final remark, let us mention that &* remains minimax if 52, the
pooled sample estimator of 02, is based on a subcollection of observations
from X, and if CqseevsCy are properly adapted. However, such a modified
procedure would have a strictly larger risk, except at By =-..= 6 = 85.
This follows from the fact that for every i e'{lg...,k}, 6? is the uniformly

most powerful unbiased test at its level, whereas the modified procedures'
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ith decision rule would only be an unbiésed test at the same level of
bi(ai+b1)_]' The modified procedure would thus be inadmissible. Whether

or not &* is admissible remains an open question.

4. Unknown Control Oy

In this setting, an additional sample 50 from population WO==N(90,02)
is observed. The analogous results to Section 3 can be derived in a similar
way. Therefore the treatment of this case will be rather concise.

First, let us find the Bayes rules w.r.t. the standard family of conjugate

priors which is essentially the same as (8) and (9), but now with the

product in (8) defined over the range i = 0,1,...,k, since 9 is now

(0).

an additional random parameter. Of course, p q) is a N(uo,(TOq)'])
density with known o € R and TO > 0. From the results derived below of (9)
it can be seen that the posterior distribution at X = x has the following
properties. For every i =1,...,k, given Q = q, @i-'@ofhas, marginally, a
normal distribution with mean AiO = (Ti+ni)—](Tiui+n1§5) - (T0+n0)']
(T0u0+n0§b) and variance q']((Ti+ni)'] + (T0+n0)-]). The posterior
marginal distribution of Q is a I'-distribution with parameters o + 2'1(n0+n)
and 8", where g" is the analog to 8! given in (10), where the first sum is
now defined over the range i = 0,1,...,k.

For i € {1,...,k} fixed, by looking at the posterior joint density of
@i~ 9 and Q, it can be seen that the posterior marginal density of'@i—'@o
is a t-distribution with n0+n+2a degrees of freedom with location parameter
b;o and scale parameter v, where yg = 28" ((Ti+ni)_] + (r0+n0)']) (n0+n+2a)-].

For the ith component problem the Bayes rule can be found by minimizing

the associated posterior expected loss. It is given by



B . : -]
(21) 6;(x) = 1(0) iff Pla; <@glX = X} < (2) bi(a;+b,)
or, by using the results derived above,
(22) s3(x) = 1(0) 1FF 4.0 > (<)vg g

where e, is the lower ai(a1+b1)-] quantile of a t-distribution with
n0+n+2a degrees of freedom.

For the special case of Hi = ugs N = nyTgs 3 S bi’ i=1T1,...,k,
the Bayes rule turns out to be of the simple form §90

o'
, Say, where

(23) s20(x) = 100) if X, - Ky 2 () 0, 1= T,k

Instead of following along the lines below of (13), there is a shorter
way to prove minimaxity of §** in the present case. The main result of this

section is

Theorem 2. Under the loss function (1), the multiple decision rule §**,

as given in (3), is minimax. The minimax-value of the problem is equal to

K -1
121 aibi( 1.+bv1.) .

Proof. Again, standard arguments show that for every i = 1,...,k, the left

hand side of (4) for 6?=56$* is equal to

k+1

(24) Sup{RE”((g,q), s¥*)[e € R, q > 0} = aibi('ai+b1-)"],

where the dimension of the g-parameter space is now k+1.
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On the right hand side of (4), instead of chosing gg to be §90, let

rather gg = gp as before in the proof of Theorem 1. As to the priors of
9g° @1,..., @k,'and Q, assume that<30 = 9, be a fixed known constant éo,
say, and adopt the same priors fbr'@],Q.., O and Q as have been used in
the proof of Theorem 1. Then for every i = 1,...,k, (17) holds true and

5? is Bayes rule with respect to prior Em for all m € N. Therefore the

proof of Theorem 2 is essentially the same as the proof of Theorem 1.

Concluding Remarks:

The remarks given at the end of Section 3 hold in an analogous form for
the situation considered above. They are omitted for brevity.
For the proofs of the two theorems,.the proper choice of priors was crucial.
The relevant parameters @; were assumed to be independent, whenever the
nuisance parameter Q = q was fixed. In the unknown control case, an attempt
to use the principle of (location) invariance may not lead to the desired
results if one assumes that, apriori, @]-"@0,...,-@k'- 9, are independent.
This is due to the fact that at X = x, the posterior distribution of each
®4 - 9 would depend on all given observations. For the case of 02 known,

Randles and Hollander (1971) have given an instructive example.
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