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ON AN EXTREMAL PROBLEM OF FEJER
T. S. Lau* and W. J. Studden*

The aim of this paper is to give new proofs to some theorems in Karlin and
Studden's book (1966) and Balazs's paper (1979). We also obtained some new
results of a similar nature.

The general problem is as follows. Let -~ <a <b <« and let® .4
denote the class of n+l tuples (xl,...,xn+1) with a < x;< ..o < X9 <b

(x1 and x ., are finite). Let w(x) be a nonnegative function on [a,b]. Define

+

) -
r. (x) =
i W (x) P21, 2,..., ntl
where

: Lo, (x) n+1

1 b
L. (x) = ?+ and L ,.(x) = 1" (x-x.)
! L () Oeoxy) n+l i=1 i

are the Lagrange interpolating polynomials. The extremal problem is to
determine the value

(1) N = inf sup w(x) '{r2 (x) +...+ r2 (x)}
P, ,a<x<b 1 n+l
ntl ——

= inf N (Xl""’ X

P n+1)
n+l

and the set of points'{xii?Z% which minimizes N for a fixed w (x).
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Fejer (1932) showed that for the case w(x) = 1-and [a,b] = [-1,1]; the
quantity N is minimized if {xi}?i} are the roots of the equation (1-x2)P$(x) =0
where Ph(x) is the derivative of the n-th Legendre polynomial and that the mini-
mum value N = 1. The cases that will be treated in this paper are listed in the

following:

(1) w(x) =1
(1) w(x) = (T-x)*"T(14x)B*1 (@ > -1, 8 > 1)
(i11) w(x) = (1-x)**! (@ > -1)
(iv) w(x) = (14x)F*] (8 > -1)
(V) w(x) = (1-x5)% x|y (0 3 =T,y > 0, n is odd)
(vi) w(x) = |x]" (y > 0, n is odd)
B. [a,b] = [0,=)
(1) w(x) = e
(1) wix) = 1 (o > -1)
C. [a,b] = (-x,=) )
(1) w(x) =™
(i1) w(x) = |x|Y e7* (y > 0, n is odd)

KarTin and Studden (1966) gave proofs for cases A, (i), (ii); B, (i), (ii),
and C, (i). Balazs (1979) considered in addition the cases A, (iii), (iv) and
C, (ii). The cases A (v), (vi) are new and were suggested by Askey (1). The

solutions to the above cases are listed in Theorem 1 below. The following



notations, which are mainly from Szego (1975), will be used:
P;(X) denotes the derivative of the n-th Legendre polynomial
Pn(a’s)(x) denotes the n-th Jacobi polynomial
Rga’Y)(x) denotes the n-th orthogonal polynomial with respect to
(1-x2)a |x]Y.

L (x

n

Lz(x

) denotes the n-th Laguerre polynomial

) denotes the n-th Generalized Laguerre polynomial
(x) denotes the n-th Hermite polynomial

)

HY(x denotes the n-th Sonin-Markov polynomial (generalized Hermite

polynomial) orthogonal with respect of Ix|Ye™ .

Theorem 1. The solutions for the cases A, B, and C are the zeros of the following

polynomials:

A. [a,b] = [-1,1].
(i) (1-x

n
{v) RﬁifY)(X) (n is odd)
(vi) (1-xARETY) () (n s odd)
B. [a,b] = [0,«)
(1) xL,(x)



(1) H';(x) (n is odd)

1.

it

The value of N in each case is N

In this paper we give a new proof using the coefficients in certain continued
fraction expansions of Stieltjes transforms or equivalently, the coefficients in
the three-term recursion formula for arbitrary orthogonal polynomials with leading
coefficient one. Part of the proofs is modeled after the results in Karlin and
Studden (1966) which use a theorem of Kiefer and Wolfowitz (1960) from statistical
design theory. The problem of identifying the points'{xi}?:} minimizing N in (1)
is turned into one of identifying the polynomial coefficients maximizing certain
determinants. The determinants in each case can be simply written down in terms
of the coefficients from the continued fraction expansion and the maximization
trivially carried out. The resulting coefficients are then identified with the
solutions in Theorem 1. The solutions are greatly unified and all the cases for
a given interval type [-1,1], [0,») or (-w=,o) can be handled at the same time.

In the following we outline the proof in a number of steps. The details for
the various steps are given later.

Step 1. Let ¢ denote a probability measure with mass 1/(n+1) on each point
Xis 151, 2,000, Write £5(x) = (1, x,...,x") and M(g) = [F(x) F5(x) w(x) dg(x).

Then
LA -
(2) (n+1) W(X)_Z1 ry(x) = wlx) £7(x) M () f(x)
G
= V(x;g)
and hence
(3) N = inf sup Vv(x;&)

3 X



The infinum in (3) is over ¢ with equal masses on n+l points. It turns out in
our situation that the same value is obtained for N if £ is allowed to be an
arbitrary probability measure.

Step 2. Let ¢ be an arbitrary probability measure.

Theorem 2 (Kiefer-Wolfowitz): The conditions

(i) &* minimizes sup V{x;&)

(i1) «&* maximi;es [M(g)| = det M(g)

(iii) sup v(x;&*) = n+l
X
are equivalent. The set B consisting of all g* fulfilling (i), (i1), (iii) is

convex and closed and the matrix M(g*) is the same for all g* in B.
Step 3. If g* maximizes |[M(g)|, where w(x) is any one of the cases in A, B, or

and g*(xi) = 1/(n+1). For

* . .
C, then &* is supported on n#l points x],xz,...xn+]

£ supported on n+l points

n+1l

(4) [M(e)] = M (2)] Tl
1=

)

i
Here MO(S) denotes the matrix M(g) corresponding to w(x)=1. Note that the weights
for £ in (4) will still be thought of as arbitrary. If w(x) is defined on (-w=,=)
or [-1,1] and is symmetric about o, then £* may be assumed symmetric also.
Symmetry arguments are used only for Case C. Any symmetric situations in Case A
result directly in a symmetric solution without a separate argument.

For the next step we introduce some parameters to characterize g£. We then
write down (4) in terms of these parameters, perform the maximization and identify
the solutions in Theorem 1.

The following theorem gives us a set of parameters to characterize a

probability measure on the various intervals.



Theorem 3 (A) The Stieltjes transform of every probability measure on

[-1,1] with n+1 support points has the continued fraction expansion

5) [0l o1 | bepe) | Aoy
11 ZX |Z+]-2C-l |Z+]—2;2-2§3 ]Z+.|—2(;3-2§4
4Con-1%2n |

|z+]—2;2n-2c2n+]

or equivalently

(sa) (18800 o 1| Fap o Zpp o Zon) Zann)
1y 27X | z+1 1T | z+] N P N

where T1Pys 5795 1Py for i >2,0<p; <1 fori<2n 0<p, < 1 for i=2n,
2n+l, qi=1-pi for all i.

(B) Every probability measure & on [0,») with n+1 support points has a Stieltjes

transform expansion

d d d
o dg(x) _ 1] _ 1] 2
8) Jg 7o - |z T

2n | d

2n+1 |
|z

B

where d. > 0 for i < 2n and d, ., > 0.

(C) Every probability measure & on (-w,~) with n+l support points satisfies

SN 1 N N B B B2t R S
’LozX |z-b, |z-b, |z-b, |2-b 4

where a, > 0 for 1 < nand -= < b, <« for 1 < n+l. For symmetry £ the b, are

all zero.



Proof: For part A, see Wall (1948) or (1940). The form given in (5) is a
contraction of 5(a). Parts B and (C) follow from Shohat and Tamarkin (1943)
pages 47 and 32 respectively.
In order to calculate the determinant [M(g)| in (4) we need both the
n+1

determinant |M_(£)| and the product T w(x.).
0 i8] i

Step 4. The determinants |M0(5)| for the three cases are given by

_ n-i+1
(A) lMO(E)I - 121 (CZi-]CZi)
(B) M ()] = 1 (d) d )i+
0 i+ 2i-1721
n .
n-i+]
(€)M (e)] = 1 a;
i=1
n+1 ‘
Step 5. The products T W(Xi) for the three cases are as follows:
i=1

(A) In this case let us write w(x) = (1-x)OL+](1+x)8+1(x)vY with the understanding

that v > 0 iff a = 8. We have

2ntl \ atlf n g+1 Y

H”W(Xi) = const 1£]q1 120 C21+] P2q4p6q8...q2n_2 p2n



ntl  atl n+1
(B) 1 w(xi) = I X exp{ -} X
i=1 i=1
n a+] 2n§1
n d,, exp| - d.
j=g 21*1 j=p

(C) Here we note that ¥ > 0 iff n is odd.

n+1 v n+l 9
T w(x;) = Rl |x1|“ exp TZ X;
i=1 i=1
y n
= (a1 ag an) exp [ -2 Z a

Step 6 If we now multiply the corresponding expressions for [M(£0)| and nw(xi)
from Steps 4 and 5 in each case, the resulting value for |M(g)[ canb@nnakimized

using simple calculus. The resulting parameters in each case are given by

_  Btn-i+l )
(A) Poyu atg+2(n-1+T1) O<1<nm
Pss = ytn-i+l
2 atgry+2(n-i+1)+] ! odd, T <1 <n
p - o ieven, 1 <1<n
21 atB+Hy+2 (n-i+1)+1 » P22
(B) doisy = atn-i+l 0<ix<n
dBi = nin 1<i<n



K ).
‘ Ly . -1 :
_ n-2i+Y 0<qi <Xt
€)= T - ¢
f nodd, y > 0
_ n-2i+l n-1
T S =tz |
p,
. h-idl
3 2 1<1<n vy 70

Step 7. Identify the parameters in Step 6 to obtain the results in Theorem 1.

Proofs of Steps 1-7

Step 1: Equation (2) follows by noting that v(x;g) is invariant under basis
change for the powers 1, x, x2, cees x" and we convert to the lagrange form _

G(x), ees £ (x).

Step 2: This is the Kiefer-Wolfowitz "equivalence theorem" from statistical
design theory. The proof is actually fairly simple and uses the fact that
Tn|M(g)| is strictly concave in M. Thus a local maximum is a global maximum
and the maximizing &£* have the same M value. Let E," (]-a)E*+€x, 0<acx<l
where EX denotes the point mass at x. Let g(a) = 1n|M(ga)l. Then £* is a
Tocal maximum iff g'(0) < 0 which is equivalent to v(x,£*) < n+l.

Step 3: The proof uses the fact that v(x;g) = w(x)S, (x) where SZn(X) is a

Zn(
polynomial of degree 2n and w(x)52n(x) < n+1 and touching on the support of g*
forces the support of &£* to be n+l points.

If £* is supported by n+1 points then |M(£*)| can be written as

IM(g*)| = I w(x;) m &g*(x,) F
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where F(Xl’ cees X is the Vandermonde determinant involving Xys +ons X

n+]) n+l°

The maximization over the weights E*(Xi) can be done separately and they must
be all equal. For later purposes we leave the II w(xi) as it is and recombine
the T 5*(xi) with F2(xi,...,xn+])1t0 give the expression in equation (4).

The Tast sentence in Step 3‘fo1]ows by considering the map x » -x. The
resulting measure &, then satisfies |[M(g)]| = |M(g])| and the conclusion follow
by considering (£]+g)/2 and the concavity of In|M(g)].

Step 4. The values given by the determinants are taken from Theorem 51-1 in
Wall (1948).
Step 5. The right-hand sides of (5a), (6), are (7) are rational functions in

z and it is easy to see that the support of £ in each case is given by the roots

of the polynomial in the denominator. Let

We can write down the denomiantors Dn+](z) in each case.
-2t 205 «v. =2
N 1 2 2n+1]
(A) Dpyq(2) = K <z+1 ] 241 ... 1)
K 'd1 'd2 e 'd2n+1
z 1 Z ... 1

-a -a ... -2
() Dn+1(z) =K <z ! z ‘ z. " z >

(8) D4(2)



By expanding the above determinants for cases (B) and (C), we obtain

2n+1
(B) zn+] -< z d1> N+ (_])n+1 d.d, ... d
'l:

1 173 2n+1

o .
(B) SN -< y a1> ML, n is even
=]

n

M ) a. 2" (-1) @,8,...4 n is odd.
jop 173 n

\\

n+l
The term 1. w(xi) can be expressed in terms of dj's and ai's for cases B and
i=1

C respectively. More explicitly, we have

n%l 2§+1
3 Y di
=1 XM e at]
(B) e 121 X = e d]d3 . d2n+1
(" n+l 2 n
A 2k
(C) e il |x1.[Y =e - (a]az,...an)Y n is odd and vy > 0.
{ 1:] . .
n+l 2 n
-y X, -2) a, n arbitrary y = 0.
o T .
i=1 - 1=]
e =e .
.
n+1
To compute 1 w(x,) for case A, we first show by induction,
i=1
n+1 2n+1
Dn+](1) = 1 (]'Xi) = const I g,
i=1 i=1
n+1 n
D (1) = I (1xy) = const T zp44g

i=1 i=0
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Next, it can be seen that 1—2;1 =0 and 1-2c2k-2;2k+1 =0 for k > 1 if g is
symmetric about 0. This is the case iff P, = % for all i. (This is the same as
bi = 0 in the expression (7)). Thus, in case ¢ is symmetric about 0 and n is
odd, we have

n+1

Dn+1(0) = 151 X, = const. p2q

P

4P -9on-2P2y-

Writing w(x) = (1-x)d+](1+x)8+]|x|a with the understanding that o # 0 iff

a = B. We have

n+1 2n+1

W(Xi) = const ( T )“+](

) (p )Y

i=1 ~ i

[ ==]

9 229+ 294Pg9g "+ +92n-2P2n

1 i=0
Step 6. This step is straight forward. We multiply the values for T w(x;) and
|M(EO)[, for cases A, B, and C separately, to give |M(£)|. The maximization in
each case is relatively easy.

Step 7. The identification of the appropriate roots in Theorem 1 from the
parameters in Step 6 revolves around an interesting symmetry property of the
parameters defined generally in Theorem 3. This property is stated in the
following Theorem. The proof uses an induction argument and will be omitted.
Full details can be found in Lau (1983).

Theorem 4 If 0 « p; < 1 fori=1,2, ..., m then

(a) the probability measures corresponding to the sequences (p],pz,...,pm,o)

and (p .,p],O) have the same support. Further the probability measures

m* P17

corresponding to (py,p,,...,p »1) and (q_q

, m_],...,q],l) have the same support.
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Similarly in cases (B) and (C), if di > 0, a; > 0 for i=1,...,m then
(b) (4,

(c) (a1,...,am,0) and (am,...,ai,o) have the same support.

,...,dm,O) and (dm,...,d],O) have the same support and

With the aid of Theorem 4 the results given in Theorem 1 are more or less
immediate. The required Stieltjes expansions for the identification for case A,
B and C are taken from Van Rossum (1953). Case A on pages 51 and 56, Case B on
page 41 and Case C on page 45. Some of these are also given in Wall (1948)
formulas (89.16) and (92.4).

To identify parts (i) -(iv) in Case A we make use of the fact that the
Stieltjes Transform of the Jacobi weight function (1-x)“+](1+x)8+] has an

infinite expansion as in Case A in Theorem 3 with parameters given by

_ k
Pok = Grp+2k+3 k21

(8)
_ BHk#2
Pok+1 7 o+g+2k+d 2

Special cases of interest correspond to a=g=-% and d=s=—]. The situation
a=B=-§ is associated with the Chebychev polynomials of the Ist kind and we have
p; = %, for all i. For the 'ebesque or uniform measure with a=g=-1 the re-
suiting parameters are p; = % for i odd and Poi = i/(2i+1).

Consider part (i) of Case A. The parameters P maximizing [M(g)| are given

from Step 6 as

Poiy] = 2 i=0,1,...,n-1
| _ neit] =1, 2,...,n-1
(9) Poi = 2m=ir )

p2n

On comparing this sequence with the sequence for the uniform measure we note
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they both have P; = % for i odd. The even indexed parameters for the uniform
measure are 1/3, 2/5, 3/7,..., etc. while the even parameters, maximizing |M(g)]|
are given, in reverse order, by 2/3, 3/5, 4/7,....

Part (a) of Theorem 4 implies that the measure maximizing [M(g)| for part
(i), Case A has the same support as the sequence

-1 s
p2-i+'|"2 1=0,1,...,n-1

(10)

I
—_.
~
—
~No
-y
+
—
~—
—_
1]
—
»
(3]
-
»
=
1
—_—

P2j =
Pon = 1

This sequence is obtained by "truncating" the sequence from the uniform measure
by setting Pop = 1. The resulting support in this case is on #1 and the zeros
of the (n-])St polynomial orthogonal with respect to (1—x2)dx which is precisely
the polynomial Ph(x) given in part (i) Case A of Theorem 1.

It is interesting to note that the finitely supported measure corresponding
to (10) is associated with a classical Gauss-type quadrature formula using the
end points *1. The reversed sequence in (1) has precisely the same support and
uniform weights.

The same phenomenon occurs in all the other cases including Cases B and C.

To illustrate further, consider part (ii) of Case A. Here the maximizing

sequence from Step 6 is given by

_ BHntl-i 0<ic<n
Poi+1 = oFp+on-2i+2

o ntl-j 1
() Poi = Greran-21+3

| A
T
| A
=

Pon+2 = 0
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If we take the sequence from (8) with the weight (1-x)“(1+x)5, truncate the
sequence with p,. ., = 0 and reverse the lst 2n+] parameters we obtain (11).
Using part (a) of Theorem 4 the support is on the zeros of Jacobi polynomial as

stated in Theorem 1.

The remaining cases are similarly and are omitted.



10.

11.

12.
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