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1. INTRODUCTION

It has become clear that the Itd integral for the Wiener
process is insufficient for applications as well as for mathe-
matical questions. A more general, semimartingale integral
has been developed, but there has been resistance to it because
of the large amount of technical knowledge required as a pre-
requisite. A recent result of K. Bichteler [1] and
C. Dellacherie [4], building on an approach of Kussmaul [7]
and Métivier and Pellaumail [10], however, has lead to the
possibility of a new pedagogic approach for stochastic
integration. This approach was suggested by P. A. Meyer [12]
and sketched by C. Dellacherie [4]. E. Lenglart [8] has
followed up on Dellacherie's work, and much of this article
follows Lenglart's approach.

We attempt here to develop a theory of stochastic inte-
gration with an absolute minimum of technical prerequisites.
Much of the deep theory is hidden in Theorem (10.1), the only
theorem stated without proof; this theorem is not necessary
for the first nine paragraphs. The approach is related to that
of Bichteler [1], Kussmaul [7], and Métivier and Pellaumail [10],
but it is not the same. Some of the theorems which are rather
difficult in a traditional approach (such as Métivier [9],
Dellacherie and Meyer [5], Meyer [1l1l], and to some extent
Schwartz [14]) are startlingly simple here (e.g., those of
paragraphs four and five). A more complete and leisurely
treatment, along with a theory of stochastic differential

equations, is given in [13].
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Part of this work was done while the author was visiting
the Université de Provence a Marseille. The author is grateful

for having had such an opportunity.

2. PRELIMINARIES

Throughout this article we will assume given and fixed a

complete probability space (Q,f,P) and a filtration G?t)

£>0
such that '?o contains all the P-null sets of ¥%; ?S c 9;
if s < t; and N 7; = ?;. A stopping time T will be a
u>t
nonnegative random variable T such that {T < t} € ¥, each

t

v

0. The stopping time o-algebra, for T a stopping time, is
?& = {A € ?;:vA n{r<tle 7., all t > 0}. A process X will
be said to be cadlag (respectively caglad) if its paths are right
(resp. left) continuous and have left (resp. right) limits.

(The acronym is from the French, as the English one would be

the horrific rcwll and lcwrl). Two processes X and Y are

indistinguishable if P({w: there exists t and Xt(w) # Yt(w)}) = 0.

If T 1is a stopping time and X 1is a process, then

xt if t < T(w)

X, 1if t > T(w).



If X 1is cadlag (or caglad) then

X if t < T{w)

e
e
H
ri-
v

> T(w) .

If S and T are two stopping times, then

Js,T = {(t,w): S(w) < t £ T(w)}. Then 145,17 s the (adapted)
process that is the indicator function of this "stochastic
interval".

We put a o-algebra on IR+ x @ as follows: the predictable

o-algebra P 1is the smallest o-algebra making all the left
continuous, adapted processes measurable.

Finally we say that a process X 1is a local martingale if

there exist stopping times Tk increasing to «® a.s. such

k
that X' 1

{T

X is a uniformly integrable martingale for each k.
>0}

The symbol L° will be used to denote finite-valued random
variables; D will denote adapted processes with cadlag paths;
and I. will denote adapted processes with left continuous paths.
‘A "b" in front of I, or 2%, will denote the bounded left
continuous adapted processes and the bounded predictably measurable

processes, respectively.

3. SEMIMARTINGALES

Let ) denote the space of simple predictable processes:

that is, H € )y if H has the representation



n
(3.1) H, =H1,., + ) H.
€7 Bty * L Hilyg oy

where 0 = TO < Tl < e < Tn < « are stopping times, and

Given a process X, we define the linear mapping

It } + L° as follows:

n
(3.2) I,(H) =HX + VY H, (X X)),
X °©0 qm1 Ty 7Ty

where H € ) has the representation (3.1).

(3.3) Definition: A process X 1s a total semimartingale if

X 1is cadlag, adapted, and Iy: Y+ 1% is continuous, with §
having uniform convergence, and L° having convergence in
probability.

A process X 1is a semimartingale if, for each ¢t € [0,x],

Xt is a total semimartingale.

4. PROPERTIES OF SEMIMARTINGALES

(4.1) Theorem. The set of (total) semimartingales is a vector

space.

Proof. This is immediate from the definition. 0

(4.2) Theoren. If Q << P, then every P (total) semimartingale

is a Q (total) semimartingale.

Proof. Convergence in P-probability implies convergence in

Q-probability and the result is immediate. 0



(4.3) Theorem. X a semimartingale. Suppose X 1is adapted

to (gt)tio’ a subfiltration of (?£)t;0' Then X is a
Y-semimartingale.

Proof. Since }(§) < }(F), this is immediate from the
definition. O

(4.4) Theorem. Let (Pk)k>l be a sequence of probabilities

such that X is a Pk—semimartingale for each k. Let

R= ) AP, where X >0, each k, and ) A, = 1. Then
k=1 Kk k = k=1 k

X is a semimartingale under R as well.

Proof. Suppose g" € z such that H" converges to H under

X with Ak > 0.

Therefore IX(Hn) converges to IX(H) in Pk—probability for

all such k as well. This then implies _IX(Hn) converges to

R. Then H" converges to H  for all P

IX(H) under R. a

(4.5) Theorem. Let X be a cadlag adapted process; let (Tn)

be a sequence of positive random variables increasing to « a.s.

Let (x") be a sequence of semimartingales such that for each n
T - nT_
x ' o= (xh "

Then X 1is a semimartingale.

Proof. We will show Xt is a total semimartingale for each

t > 0. Define Rn =T Then

1 + o1 .
n™ (T _<t) (T _>t)
P{lI, (] > ¢} g P{IIXn(H)I > C} + P{R_ < ®}. But
lim P{R < «} = lim P{T < t} = 0. Let H tend to O in N

n-—>-o n >



(uniform convergence). For € > 0, choose n such that

P(R < ®) < g/2, and then k such that P{|I n(Hk)I > Cl < g/2.
X

Thus for k large enough, P{|I t(Hk)[ > C} < e, 0
% Z

(4.6) Corollary. X a process. If there exist stopping times

T
n

(T,,) increasing to <« a.s. such that X is a semimartingale

for each n, then X is a semimartingale.

5. EXAMPLES OF SEMIMARTINGALES

(5.1) Theorem, ILet X be adapted, cadlag, with paths of finite

variation on compacts. Then X is a semimartingale.

t t
Proof. Note that [I  (H)| 2 [|H]| J {dx_|, where { |lax_|
= = u S S
X ) 0- ‘0=
denotes the total variation of the path on [0,t]. The result
then follows. O

(5.2) Theorem. Let X be cadlag and a square integrable

martingale. Then X is a semimartingale.

Proof. Without loss of generality assume X0 = 0. Let H € Z.

Then
| 2 7 ?
E{{I_H)|“} = B{( H. (X -X_ )}
X i=o * Tinn T4
o2 2
= E{ ) H; (X -X, )7}
i=o * Tier Ty
2 B 2
< HlGEL Y (x = Xp )7}
=0 % i Tivn Ty



2.0 5 2
= |[H]|E{ § (x =X5 )}
iz it Ty
< 2| ’exd),
and the result follows. 0

X is a locally square-integrable martingale if there exist

stopping times Tn increasing to a.s. such that

T
X nl{T >0} is a cadlag, square-integrable martingale for each n.
n

(5.3) Corollary. If X is a locally square-integrable martingale,

then X 1is a semimartingale.

(5.4) Corollary. A local martingale X with continuous paths

is a semimartingale.

Proof. Without loss of generality we assume X, = 0. Let
Rp = inf{t: IXt| > p}. It is easy to check that XRp is a
bounded (and hence square-integrable) martingale for each .
Clearly Rp_ increases to « a.s. with P. Thus X 1is a

locally square-integrable martingale, and hence a semimartingale. o

(5.5) Corollary. Let X be a cadlag process with a decomposition

X =M+A with M a locally square-integrable martingale and A

an adapted process with paths of finite variation on compacts;

then X 1is a semimartingale.

Proof. Since the space of semimartingales is a vector space,
this follows from (5.1) and (5.3). |
Note that Theorem (10.1) is a converse of (5.5); that is,

all semimartingales have such a decomposition.



(5.6) Theorem. Let X be a cadlag process with stationary

and independent increments. Then x is a semimartingale.

Proof. Let AXS = XS-XS_, the jump at time s, Let

J, = ) OAX 1 and set Y, =X -J . Then J is
t 0<s<t S {IAXSI;l}’ t t Yt

cadlag, adapted, and has paths of finite variation on compacts

as a consequence of X having cadlag paths. The Lévy theory
(cf, eg [2]) tells us that Y has stationary, independent

increments as well, and also a finite mean; the stationarity

implies the function t B E(Yt) is affine. Thus
X, = {Yt-E(Yt)} + {E(Yt)-th},

where Yt-E(Yt) is a locally bounded martingale and where
E(Yt)+Jt has paths of finite variation on compacts. Thus

X 1is a semimartingale by (5.5). 0

6. STOCHASTIC INTEGRALS

Let D represent all adapted processes with cadlag paths.

On DD we put the topology of uniform convergence on compacts

in probability, abbreviated ucp. That is, for a process

Y €D, let Y: = sup]Ysl. Then " converges to Y in ucp
- 8Lt

. n *

if (v -—Y)t

Note that this topology is metrizable, and the metric

converges to 0 in probability for every ¢,

[o0]

1 . *
d(y,z) = § = E{min(1, (Y - 2) *) }
n=1 2" n



makes D into a comple te metric space compatible with ucp.
We let I denote all adapted processes with left
continuous paths; WL denotes all processes in I with bounded

paths. We begin with a preliminary result.

(6.1) Theorem. The space ) is dense in L under the ucp

topology.

Proof. Let Y € L. Let Tn = inf{t: [Ytl > n}. Then

n

n_ YT l{T >0} are in HL and converge to Y in ucp. So
n

Y

b, is dense in 1I.. Henceforth, assume Y € WL Define g

by Z, = lim Yu' Then 2z € D is the cadlag modification of v,
u->t
u>t

For e > 0, define

Tn+l = inf{t: t > T and [Zt--ZT | > e},

n

Since Z is cadlag, the Ti are stopping times increasing to

® a.8. as n increases. Let 7€ = Yz

nT [[T T+l[[l

each € > 0. Then z° are bounded and converge uniformly to 7z

as € tends to 0. Let

€
U” = 2z,1 + Zz
0~ {0}
]]T Tn+l]]

and the pPreceding implies uf converges uniformly on compacts

to 72 =Y.



10.

Finally, define

n
= Y,1 + Yy 1
0-{0} L £ € €
i=1 Ti HTiAn,Ti+lAnH

y?r €

and this can be made arbitrarily close to Y ¢ bL by taking
€ small enough and then n large enough. O
Recall that a process H ¢ Z has a representation
n

.ElHilﬂTi,

(6.2) H = Hol{o} + .

Tyl

for H, € ?&i and 0 = Tg < Ty <--e< T, < * stopping times.

For a cadlag process X we define the linear mapping
Jg: L D by:
n T, T.

— i+l i
(6.3) Iy (H) = HoX, + ilei(x -X ),

for H with a representation of the form (6.2). We call JX(H)

the stochastic integral of H with respect to X. We will use

freely the notations
(6.4) JX(H) = IHSdXS = H-X.

(6.5) Theorem. Let X be a semimartingale. Then the mapping

is continuous.

J,: -+ D
X ucp ucp

Proof. denotes the space ) endowed with the ucp topology.

ucp
Since we are only dealing with convergence on compact sets,

without loss of generality we take X +to be a total semimartingale.
It suffices to show that if Hk converges to 0 (ucp), then

k
one can extract a subsequence kn such that JX(H n) converges
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to 0 ucp. First suppose Hk tends to 0 wuniformly, and is

uniformly bounded. Let

o* = inf{t: [(Hk-x)tl > 8},

k * _ k *
Then PL(HT-X)P > 6} =P{(m -x)* | > ¢}

B AT T
< P{(Hk-x)*k > 8} = P{]Hkl X2 8d
B T ~ [0,T"] B
= P{[IX(Hkl k)2 8}

[0,T7] -

which tends to 0 by the definition of total semimartingale.
Thus we have that for ¢ > 0, for t > 0, there exists a c¢
such that for H € ¥ with lall, < ¢ P(I (H)F > 8) < e/2.
We need only consider compact intervals of the form [0,t],

t > 0. PFor fixed t we can find kn such that if

n

T = inf{s: |HsAt

| > ¢},

then P(Tn < ) < g/2. Moreover, by the left continuity

| (g P 1 < ¢. Thus

k k
n * n * o
PL(H -X){ > 8} < P{(H -X)Tn > 8} + P{T_ < =}
L e/2+ /2 = ¢,
and the continuity is established. O

Since the integration operator JX has been seen to be

and ) dense in L. (6.1), we can
ucp

continuous on
iucp’

extend the integration from z to IL. by continuity. Thus

we have:
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(6.6) Definition: Let X be a semimartingale. The continuous

-+ 1D obtained as the extension of
ucp

Iy ) »D is called the stochastic integral.

linear mapping JX::Lucp

7. PROPERTIES OF THE STOCHASTIC INTEGRAL

Throughout this paragraph X will denote a semimartingale
and H will denote an element of I.. The stochastic integral

defined in paragraph 6 will also be denoted:

JX(H) = H-X = JHSdXS.

(7.1) Theorem. TLet T be a stopping time. Then

T _ X — 7. (T
(HX)" = HlHOITH X H-(X7).

(7.2) Theorem. The jump process A(H-X)S is indistinguishable

from HS(AXS).

Proofs: Both properties are clear when H ¢ 2, and hence they

follow when H ¢ bIL by passing to the limit under ucp. O

If Q 1is another probability, we denote HQ-X as the

stochastic integral computed under the law 0.

(7.3) Theorem. Let Q << P. Then HQ-X is Q-indistinguishable

from HP-X.

Proof. ©Note that by (4.2) X 1is known to be a Q-semimartingale.

The theorem is clear if H ¢ Y, and it follows for Hel by
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passage to the limit in the ucp topology, since convergence in

P-probability implies convergence in Q-probability. O

(7.4) Theorem. Let (ft) be another filtration such that

£>0
HeLE) NLF) and such that X is also a J-semimartingale.

Then %?-X = H?*X.

Proof. ILL(J) denotes left continuous processes adapted to the

filtration (gt) Since H e L (%) N L(f), we can find

£>0"
a" € Z(g) N 2(?} converging to H in ucp, and as the result
is clear for H" € Z, the full result follows by passing to

the limit. 0]

(7.5) Theorem. Let P be a sequence of probabilities such

k [e5}
that X is a P, -semimartingale for each k. Let R = kZlAkPk
where A, >0, each k, and JA_ = 1. Then Hp-X = HPk-X,
Pk a.s., all k such that Ak > 0.

Proof. 1If Ak > 0, then Pk << R, and this result is a
corollary of (7.3). Note that by (4.4) we know that X is an
R-semimartingale. O

(7.6) Theorem. If the semimartingale has paths of finite

variation on compacts, then H-X is indistinguishable from the

Lebesgue-Stieltjes integral, computed path by path.

Proof. The result is evident for ¢ z converging to H in

ucp. Then there exists a subsequence n, such that
n
lim (H k--H)fl‘__ = 0 a.s., and the result follows by interchanging
n, >
k
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limits, justified by the uniform a.s. convergence. O

(7.7) Theorem. Let X, X be two Semimartingales, and let

HHe L. Let A = {w: H.(0) = H.(w) and X.(w) = X.(w)}
and let B = {w: tp X, (w) 1is of finite variation on compacts}.

Then H-X = H:X on A, and H-X is equal to a path-by-path

- = — = = M)

Lebesgue—Stieltjes integral on B,

Proof. Note that if P(A) = 0 the first assertion is trivially
true. If Pp(a) > 0, define a probability ¢ by
Q(A) = p(A]n). Then under Q we have both H and

H, and X and X, are indistinguishable. Thus

HQ-X = ﬁb-i, and hence H-X = H.-X P-a.s. on A by (7.3),
since Q << p.

As for the second assertion, if B = the result is merely
Theorem (7.6). Defining R by R(A) = P(A|B) (assuming without
loss that P(B) > 0), then R << p and B =Q ga.s. dR,
hence HR-X equals the Stieltjes integral R-a.s.. The result

again follows by (7.3). 0

(7.8) Corollary. With the notations of Theorem (7.7), let § < T

be two stopping times. TLet

C = {w: H () = Ht(w);xt(w) = §£(w);s(w) <t < T(w}

D= {w: tp Xt(w) is of finite variation on

S(w) < t < T(w)}.
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Then H-X® - H-X° = H-X% - 5-X° on C, and HeXT - HexS

equals a path-by-path Lebesgue-Stieltjes integral on D.

— L] —_ . — - s
Proof. Let Yt = Xt XtAS' Then H°*'Y = H-X H-X", and Y
does not charge the set [[0,S]] , as is evident, or alternatively
is an easy consequence of (7.7). One can now apply (7.7) to
Y to obtain the result. O

i
fay
>
[
n

(7.9) Theorem. The stochastic integral process Y

a semimartingale, and for G € L we have

G'Y = G- (H*X) = (GH) -X.

Proof. Suppose first Y = H-X 1is a semimartingale. Then

GY = J,(G). If G, H are in ), then it is clear that
JY(G) = JX(GH). The associativity then extends to I by
continuity.

It remains to show that Y = H-X is a semimartingale. Let
(Hn) be in z converging in ucp to H. Then Ht.x converges

to H+X in ucp (6.5). Thus there exists a subsequence (n
n
such that H k-X converges a.s. to H-X.
n n n

Let G€ ), and let 2 ¥ =H XX, 7 = H-X. The z are

%)

semimartingales converging pointwise to the process Z. For
Gey, J,(G) is defined for any process Z; so we have

n

J_(G) = G'Z = lim g*z ¥
Z N o
X
n
= 1im G- (H ¥-x)

n, —+o°

k



le6.

n n

= lim (GH X)X = lim J (cH ¥)
n e n, >
= JX(GH) ’
since X 1is a semimartingale. Therefore JZ(G) = JX(GH) for

GE )

Let Gn converge to G in Zu. Then GnH converges to

GH in :Lucp’ and since X is a semimartingale

lim J_(G_) = lim J_(G_H) = J_(GH) = J,_(G). This implies 2°
Z n X' 'n X Z

n—)OO n-—)-OO

is a total semimartingale, and % H-X 1is a semimartingale. ]

(7.10) Theorem. Let X be a locally square integrable martingale,

and let H € I.. Then the stochastic integral H-X 1is also a

locally square integrable martingale.

Proof. We have seen (5.3) that a locally square integrable
martingale is a semimartingale, so we can formulate H-X. Without

loss of generality we may assume XO = 0. Also, if Tk + » a.s.

and (H-X)Tk is a locally square integrable martingale for each
k, it is simple to check that H-X itself is one. Thus without
loss we assume X 1is a square integrable martingale. By
stopping H, we may further assume H is bounded, by 2.

Let H" € 27 and H" converge to H in ucp. We can then
modify each Hn such that ﬁn is bounded by ¢, ﬁn € Z,

and H" converges uniformly to H in probability in [0,t].

Then
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kn T T
N 2, _ ~n i+l _ i, 2
E{(H -X){} = E{ ] H, (X, X))
i=1
kn
<’m Y k2 - x2)) < fed,
i=1 i+l i B

and hence (ﬁn-X)t are uniformly bounded in L2 and thus
uniformly integrable. Passing to the limit then shows both

that H'X 1is a martingale and that it is square integrable. [

The preceding property can be improved: a stochastic
integral with respect to a general local martingale is again
a local martingale (e.g., [8, p. 116]). However the proof is
more difficult unless one assumes Theorem (10.1), after which

it becomes an easy corollary.

(7.11) Definition: Let o denote a sequence (finite or infinite)

of stopping times: o: 0 = T0 < Tl < T2 < -ee < Ti

The sequence ¢ 1is called a random partition.

< aae,

A seqguence of random partitions

op: 0 =Ty < T) < +-+ < T] < --- 1is said to tend to the identity
if sup T£ < © a.,s., each n, and further
k
(i) 1lim sup TE = o a.,s.
n k
. _ n . .n
(ii) ”On“ = sll{lp(Tk+l T,) converges to 0 a.s..

Let Y be a process and let ¢ be a random partition. Then

YO

=Y, 1 + )y 1 .
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If X is a semimartingale and if H ¢ L, then
T Ti
T.(X -X ")

1 1

g - X = JHZdXs = H.X,+) H , as is easy to check.

0”0

The next result has appealing intuitive content.

. (7.12) Theorem. Let X be a semimartingale, and let Y be a

process with cadlag (or caglad) paths. Let (On) be a seguence

of random partitions tending to the identity. Then

9 T T3
Yy hex =v.X, + )Y (X -X ")
0°0 ol

1

tends to the stochastic

integral (Y_)-X in ucp as n tends to .

Proof. If Y is caglad, then Y_ = Y; if Y is cadlag, then
(Y_)S = lim Yo the left continuous version. (Here (Y_)0 = YO.)
u-+s
u<s

We give the proof for Y cadlag, as the caglad case is analogous.
Note that Y_ ¢ I, and we let Yk be in Z such that Yk

converges to Y_ in ucp. Then:

(7.13) (Y_—Yon) X o= (Y -¥%)ex+ (X5 - )0y x + (75 “n_y'my x,
The first termon the right in (7.13) equals JX(Y_-Yk); since
I is continuous on :Lucp’ we have tgat éY_-—Yk)-X tends to
0 in ucp. Analogously we have ((Yk) D_y ™.x tends to O
in ucp for fixed n as Kk tends to .
Consider then the middle term on the right side of (7.13).
For fixed k and uw, Yi(w)-—(Yk)Zn(w) converges to 0 uniformly

on compacts; moreover since Yk € )Y, we write explicitly the

stochastic integrals as finite sums. Since X 1is right continuous,
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o
(Yk-—(Yk) n)-X tends to 0 as n tends to « for fixed k

and . Thus one need only choose k so large that the first
and third terms on the right of (7.13) are small; then for

fixed k choose n so large that the middle term is small.

The result follows. O

8. THE QUADRATIC VARIATION PROCESS OF A SEMIMARTINGALE

Throughout this paragraph X will denote a semimartingale.

(8.1) Definition. The quadratic variation process of X,

denoted [X,X] = ([X’X]t)t>0’ is defined to be for t > 0:

[X,X], = X&-2(X_- %)

where (X_)O = 0.

(8.2) Theorem. The quadratic variation process of a semimartingale

X 1is an adapted process with cadlag, non-decreasing paths.

Moreover:
. 2 2

(i) [X,X]O = XO and A[X,X] = (AX)

(ii) if o,: 0 = Tg < T < s00 £ T? < +«-- 1is a sequence of
random partitions tending to the identity, then

o o
xg+2(x itl ¢ 14y2 5 ox,x
i
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Proof. Since X and the stochastic integral are both cadlag,

so also is [X,X]. Since A(X_-X) = X_AX by (7.2), we have
2 _ _ 2
(AXS) = (XS XS_)
= x2 - x? + 2X (X -X)
s - s=""g- s

_ 2
= A(X%) - 2X__ (X)),

from which (i) follows.

For part (ii), without loss assume XO = 0. Let
Rn = sup T?. Then Rn < © a.,s., and by telescoping series
2 Rnl 2 Tie1 2. T3 2
(X7) = J{(x%) ™ -(x%) '} converges in ucp to X°. Moreover
i n n
Tivr T
series )X L (X -X %) converges in ucp to (X_-+X) by (7.12).
imT
n n n n n
T, T, T, T, T,
Since X n(X'l+l--X l) = X l(X l+l--X l), using b2-a2-2a(b-a) = (b-—a.)2
T,
i

and combining the two preceding statements yields the result.

Note that (ii) reveals that [X,X] has nondecreasing paths:

if s < t the approximating sums in (ii) contain at least as many
(nonnegative) terms for t as for s. The cadlag nature of the
paths allows the elimination of the null sets dependence on s

and t. 0O

(8.3) Definition. Let X and Y be semimartingales. The

bracket precess of X and Y, [X,Y], 1is defined by:

[X,Y] = %—{ [X+Y,X+Y] - [X,X] -1Y,Yl}.

(8.4) Corollary. The bracket [X,Y] of two semimartingales has

cadlag paths of finite variation on compacts.
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Proof. By Theorem (8.2), [X,Y] is the difference of two

increasing, cadlag processes. : 0
(8.5) Theorem (Integration by Parts). Let X, Y be semimartingales.
Then

XY = X_+Y+Y_ -X+[X,Y].
Proof. By the definitions we have

[&Y]=%ux+w2—2m_+x)wx+w

—xz-Y2-+2x_ -X+2Y_ .Y},

and the result follows from the bilinearity of the stochastic

integral H-X in (H,X). O

The next theorem is analogous to Theorem (8.2) and has essentially

the same proof, so we simply state the theorem here.

(8.6) Theorem. Let X and Y be semimartingales.

. . _ mn n . n
(1) if o.: 0 =T, < T < < Ty

of random partitions tending to the identity, then

A

-++ 1is a sequence

Tn n Tn Tn
[X,¥] = XV, +lim J(x T ox ) (v It _yTdy
n i
in ucp;
(ii) [X,¥l; = X ¥, and A[X,Y] = AXAY.

The next theorem is a key result in our later extension of

the stochastic integral.
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(8.7) Theorem. Let X, Y be two semimartingales; let H, K

be in L. Then

t
[H°X,K-Y]t = JOHSst[X'Y]S

and, in particular,

t 2
[H-X,H~X]t IOHSd[X,X]S.
Proof. The integrals on the right can be equivalently interpreted
as semimartingale integrals or path by path Lebesgue-Stieltjes

integrals, by (7.6).

Note that to establish the theorem it will suffice to show

t
(8.8) [H-X,Y]t = JOHsd[X’Y]s7
one can then use the symmetry of the form [-,-] and iterate

(8.8) to obtain the theorem.
If H = l]]0 1] with T a stopping time, then (8.8) reduces
4

to showing [XT,Y] = [X,Y]T, which is a clear consequence of
Theorem (8.6).

If H = UH]S Ty ! where U is an ?é—measurable r.v. and
14

n
kA

T a.s. are stopping times, then

S

H-X = U(XT - x5)

and

[H-X,Y] = U([XT,¥] - [X°,¥])

uIx,Y17T - [%,Y]5)

JHsd[H,Y]S.
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We have the result then for H ¢ z by linearity.

For H € L, we let Hn € z and converge in ucp to H.

n n n

Let 727 =H .X, Z=H.X. Then 272, Z are semimartingales
and
 (8.9) [z%, vl = JHgd[X,Y]S.

Integration by parts yields:

1z", Y]

vz - (y) - 2" - (2 -y

vz - ((y_)EY - x - (2 - v.

By the definition of the stochastic integral we know 1lim g? = 7

. . . n .
in ucp; since 1lim H® = H in ucp as well, we conclude:

(8.10) 1im[z™, Y]

Y2 - ((Y_)H) « H- (Z_) - ¥

Yz -(Y_) -2-(2_) - Y
= [2,Y],
again by integration by parts. Since
. n _
l;m szd[X,Y]s = JHsd[X’Y]s’

combining (8.9) and (8.10) proves (8.8), and thus the theorem

is established. 0

(8.11) Theorem. Let X, Y be two semimartingales and let H

be cadlag, adapted. Let on: 0 = Tg < T? < - < Tn < eee

be a sequence of random partitions tending to the identity.

Then
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n n n n
T, T, T T
X H (X :|.+l__X l)(Y 1+l__Y 1)
: n
i T,
i
converges in ucp to JHS_d[X,Y]S (HO_ = HO).

Proof. The process [X,Y] 1is cadlag, adapted, and has paths
of finite variation on compacts (8.4), and hence is a semi-
martingale (5.1). The theorem follows as a corollary of

Theorem (7.12) and Theorem (8.6). 0

9. CHANGE OF VARIABLES FORMULA

Let (Vt)t;O

of finite variation on compacts. If f: R - R 1is gl, the

be an adapted, continuous process with paths

Riemann-Stieltjes change of variables formula, integrating path

by path, is well known to be:

t
—_ ]
(9.1) f(Vt) = f(VO) + Jof (Vs)st.
If (Vt)t>0 is as above but its paths are only right continuous,

it is less well known but easy to check that the path by path
Lebesgue-Stieltjes formula is:
t
= '
(9.2) f(Vt) f(Vo) + Jof (VS_)dVs

+ {£(v_ ) - £(Vv -f'(V__)AV_}.
o<zét S 5-) s= s

If X 1is a semimartingale, then X need not have paths
of finite variation on compacts (e.g., take the Wiener process,
a locally square integrable martingale), and one obtains a

different formula.



25.

(9.3) Theorem. Let X be a semimnartingale and let f: R + R

be 82. Then £(X) 1is a semimartingale and the following

formula holds:

t t
—_ 1 .]L "
(9.4) f(Xt) = f(xo)-+J0f (XS_)dXs-i-2 0f (XS_)d[X,X]S
T {E(XQ) - £(X__) - £'(X_ ) AX_ - 2£"(X__) (AX_)2)
0<s<t S s- s— s 2 s- ] '
Proof. By Taylor's theorem we know:
= I lcow 2 -
(9.5) f(y) = £(x) +f£ (x) (y=x) +5£"(x) (y-x) " + R(x,y)
where R(x,y) < r(]y-x[)(y—x)z, and where r: R, >R, is an
increasing function such that 1lim r(u) = 0.
u-+0

The Continuous Case: We first assume that X is a continuous

semimartingale. Fix a t > 0, and let

_.n n
Gn' 0 = TO i

A

A

T = t be a sequence of random

n
k
n
partitions of [0,t] tending to the identity. Then

k
n
zo{f(XTn ) - £(X )}
i+l i

(9.6) f(Xt)-—f(XO)

1

= g{f'(x DX -x )3

Ty Ty T4
1 .\ _ 2
+ 5 Z{f (xTn)(x n xTn) }
1 i i+l i
+ JR(X _,X )
i g pntl

i i
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The first sum on the right side of (9.6) converges to

t
J f'(XS)dXs by (7.12); the second sum converges to
0

t
% J f"(xs)d[X,X]S by (8.2). Both converge in probability.
0

The third term on the right side of (9.6) will tend to 0 if

1im sup r(|X -X _|) = 0. For each w, sb X_(w) is
, n n s

n-»o 1 T, T.

i+l i
uniformly continuous on [0,t], and since by hypothesis

n, _ : _
lim sup|Tl+l Ti| = 0, we have that lim ] R(X ,X =) =0
e A

as well. Thus we have established that (9.4) holds for each
t a.s. when X 1is continuous. The continuity of the paths

eliminates the dependence of the exceptional set on t.

The General Case: ‘Once again we have a representation as in

(9.6), but we need a closer analysis. Since, for t > 0,
Yy (AX )2 < [X,X]t < ©» a.s., we know that Y o(AX )2
o<s<t  ° T 0<s<t  °

converges. Given € > 0, let A be a subset of ZR+ X Q

such that ] (AX_ )2 < €2, and let B = {(s,0): (8x_)2 > 0,
SEA - S
(s,w) € A}. Then we can rewrite (9.6) as:
(9.7) £(X,) -£(X,) = Y{f' (X ) (X -X )}
t 0 i T e
i i+l 1
% Z £ (X n (X n X n)2}
1 Ty Tiyr T3
+ 31 n .n {£(X )-F(X )-£f'(X ) (X -X )
[ BT Ty 0400 Tyt Ty TP Tigl Ty
1, _ 2
-3 £ (XTn) (XTn XTn) }
i i+l i
+ )1 R(X _,X ) .
LB T, Ty =R 0T n
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As in the continuous case, the first two sums on the right side
t
of (9.7) converge respectively to J f‘(XS_)dXS and

0

t
% J f"(Xs_)d[X,X]S by (7.12) and (8.2). The third sum converges
0

to

1 _l " 2
(9.8) L TR =£(X ) -£' (X ) AX -5 £"(X__) (AX)“},

s€B
|ax_|>0
S

and it remains to consider the fourth sum on the right side of
n

(9.7). Since 1lim sup]Tl+l-T?| = 0, for large enough n we

n 1

have [x = -X

< 2¢ when B ﬂ]]T?,TP
m = i’'i

Tn| 4! = 8. But then
i+l i

R(x,y) £ r(ly—XI)(y—x)z; we can majorize

(9.9) 11 0 on R(X _,X )
2 . 2
by r(2e))(x -X )%; since J}(X -X )% converges to
; n n C n n
i T, T, 1 T, T.
i+l i i+l 1

[X,X]t <®, as n tends to « and as & tends to 0 we have
that 1r(2¢) tends to 0 and thus the sums (9.9) tend to 0.

Moreover the sums (9.8) clearly tend, as € tends to 0, to:

. 1 v 2
(9.10) y (E(xX) -F(X )-£' (X ) AX_ -5 £"(X_ ) (84X )7}

O<s<t
provided this series is absolutely convergent.
Let T, = inf{t > 0: [X
establishing (9.4) for X1

>k}, with X, = 0. By first

; (which is a semimartingale

¢l

o, T8

since it is the product of two semimartingales: cf (8.5)) it
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suffices to consider semimartingales taking their values in
intervals of the form [-k,k]. For f restricted to [-k,k]
we have |£(y) -£(x) - (y=x)£'(x)| < c(y-x)2. Then

F(X ) -£(X_ ) -£"(X_ )AX
0<25t| s s- s~ s|

kA

c 1 (sx)?
0<s<t

A

c[X,X]t < o
and

2 2
£"(x__) | (ax_)“<a (AX_)
o<§;;t| s-) 1 (8%)7 2 O<2;t S

< d[x,x]t < o a.s.

This implies the sum (9.10) is absolutely convergent. This

completes the proof. O

The change of variables formula is also referred to as
"Itd's Lemma” and is traditionally stated in a slightly different
way, which is more analogous to the Lebesgue-Stieltjes formula

(9.2). Dpefine [x,Xx1S = [x,x], - ) (4X)2, the path by path
t t 0<s<t S

continuous part of [X,X].

(9.11) Corollary. Let X be a semimartingale and let f: R + R

be 22, Then £(X) is a semimartingale and the folllwing

formula holds:
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t t
— [ ] l (1} C
f(Xt)—f(XO) = Jof (XS_)dXS-+§-JOf (XS_)d[X,X]S

+ {£(X )-£(X_)-f'"(X__)YAX_}.
0<zét S sS— sS— s

Proof. One need only observe that

AJf"(XS_)d[X,X]S £ (X_) ALX,X]

= £7(X) (A%) 2,
and the result follows from Theorem (9.3). 0

The stochastic integral calculus, as revealed by Theorem (9.3)
and Corollary (9.11), is different from the classical Lebesgue-
Stieltjes calculus. By restricting the class of integrands to
semimartingales made left continuous (instead of 1L), one can
define a stochastic integral that obeys the traditional rules

of Lebesgue-Stieltjes calculus.

(9.12) Definition. Let X, Y be semimartingales. Then the

Fisk-Stratonovich integral of Y with respect to X, denoted

t
J Y o dX _, 1is defined by:
o S s

t t 1 c
J Y _ oo dX_ = JOYS_de + SIY,X] .
Note that we have defined the Fisk-Stratonovich integral in

terms of the semimartingale integral. With some work one can

slightly enlarge the domain of the definition (cf [11, p. 360]).

(9.13) Theorem. Let X be a semimartingale and let f be

83, Then
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t
£(x,) - £(Xy) = Jof (X _) o dX_

+ {£(x_) - £(X__) - £"(X__)AX_}
0<z§t s s— s='""s

Proof. Note that f£' is 52, so that f'(X) is a semi-
martingale and in the domain of definition of the F-8

integral. By (9.11) and the definition, it will suffice to

t
show that Z[f'(x),x]° =% J £"(x__)d[X,X]S. However
0

I

f'(Xt)-f'(XO)

2
t

J £" (X _)dX,
0

1

2

t
J £33 x yarx,x1..
0 S— S

Thus

(9.14) [£'(x),x1€ = [£"(x) -X,x]1°

+ 3 (X_) - [%,%1,x1°.

The first term on the right side of (9.14) is

t
J f"(XS_)d[X,X]g by (8.7); the second term can easily be seen,
0

as a consequence of (8.2) and the fact that [X,X] has paths

of finite variation, to be ( 2 f(3)(xs_)(AXs)2)c; that is,
0<s<.

zero. The theorem is thus proved. O

Observe that if X 1is a semimartingale with continuous
paths, then Theorem (9.13) reduces to the classical Riemann-

Stieltjes formula:

t
f(Xt)-f(XO) = J f'(Xs)o dXs;

0

this is, of course, the main attraction of the Fisk-Stratonovich

stochastic integral.
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10. STOCHASTIC INTEGRATION WITH PREDICTABLE INTEGRANDS

Up to this point our treatment of stochastic integration
has been relatively non-technical. This has been achieved by
limiting the integrands to the space IL. This is, of course,
sufficient to prove a change of variables formula, and is also
sufficient in many applications, such as the study of stochastic
differential equations. To extend the integral to more general
integrands, however, requires some deep results. We have, never-
theless, managed to combine all of them in Theorem (10.1l) which
we state without proof. We refer the reader who would like to
see a proof, with the technical level of knowledge kept as low
as possible, to [13].

Recall that if X = Xo-+M-FA, with M0 = AO =0, M a
locally square integrable martingale and A an adapted, cadlag
process with paths of finite variation on compacts, then X 1is
a semimartingale (Corollary (5.5)). It will be convenient to

call the process A of locally integrable variation if there

exist stopping times Tk increasing to <« a.s. such that
T
k

E{J |das|} < «. We will denote the total variation process
0

t

alternatively as J |dAS| and |A]
0

converse to the above:

£ The next theorem is a

(10.1) Theorem. Let X be a cadlag, adapted process. The

following are equivalent:
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(1) X is a semimartingale (in the sense of (3.3));

(ii) X . has a decomposition X = Xg+tN+B, where N is

a local martingale and B has paths of finite

variation on compacts;

(iii) X has a decomposition X = Xy +*M+A, where M is

a local martingale with bounded jumps and A has

paths of finite variation on compacts;

Moreover;'ig X has a decomposition as in (ii) where B is

of locally integrable variation, then there exists a unique

decomposition X = X,+N+B, where B is a predictably

measurable process with paths of finite variation on compacts.

(10.2) Definition. If X is a semimartingale such that X has

a decomposition X = X0-+N-+B as in (10.1) {(ii) where B is

of locally integrable variation, X 1is said to be a special

semimartingale. The decomposition X = X.+N+B of Theorem (10.1)

0

is called the canonical decomposition of X.

Let X be a semimartingale with a decomposition

X = XO-+N-+B. Define

. . 1/2 ”
j,(N,B) = [[[N,N]7° + |x0|+J0|st|[| 5

L

If j2(N,B) < o for some decomposition, then X 1is clearly

special. This motivates:

(10.3) Definition. Let X be a special semimartingale with

canonical decomposition X = X04-ﬁ4-§. Then
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1/2

HXlljgz = || N, NI lle + HJ Idﬁsllle- The space of #°

semimartingales is the space of special semimartingales with

finite %2 (pseudo) norm.

(10.4) Theorem. The space of %2 semimartingales is a Banach

space.

Proof. The space is clearly a normed linear space. Since

[Nl 5 = ”[ﬁ,ﬁ]i/zﬂ it follows from Doob's maximal quadratic
L

14
L2
inequality that the space of square integrable martingales is
complete. As for B, let (B") be a sequence such that

=n . =n .
2B 5 < ®. Then the series ) B~ converges to a limit
n L n

B, and 1lim ) J |d§2| =0 in L' and is dominated in L2

m>e n>m ‘0
- =

by V J |d§2|, hence tends to 0 in L° as well. Thus y BY
0

converges to B in Lz(dP). Completeness then follows. O

For simplicity, we henceforth assume that all semimartingales

X have the property X0 = 0.

Let BL denote the bounded processes in L. For H € L

and X E.%Z, then H+X is also in 3%2. Moreover if X = N+ B,

then the canonical decomposition of H:X is H-N+H-.B, and

x| . = | [H-N,m-§) L2 la.B
(10.5) ||H X“%2 I [H-N,H-N] ||Lz + ”JOId(H B)S|[|L2

_ 2 = = (1/2 7 -
= I amm YA, ] Ingl1aEll .
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Since the integrals JHSd[ﬁ,ﬁ]s and JHSEES make sense as
Lebesgue~Stieltjes integrals path by path for any H € b?
(the bounded predictable processes), we use the property

(10.5) to extend our class of integrands.

(10.6) Definition. Given an.%z—semimartingale X with

canonical decomposition X = N+B, and processes H,J € b?,
2

1/2,

define d,(H,J) = ”(£3Hs"Js) d[N,N1) HL2'+HJO|HS-JS|lst|HL2-

(10.7) Theorem. HL is dense in bP under the "distance"

dX('l').

Proof. Let /4 = {H € bP: for any € > 0, there exists a

J € WL, such that dX(H,J) < g},

Then J contains HL and the constants. Moreover if H" € [
and increasing to H with H . bounded, then by the dominated
convergence theorem for n > N, dX(H,Hn) < §. since H" € [,
there exists a J" ¢ bL such that dX(Hn,Jn) < y. Therefore
for n > N, there exists a gt € KL: such that dX(H,Jn) < g
by appropriate choices of § and Y. An application of the

monotone class theorem yields the result. O

(10.8) Theorem. Given a semimartingale X in #% and

H” € HL such that H" is Cauchy under d then H -X is

Xl
Cauchy in %2.

Proof. We have [H".x-H" -Xugz = dX(Hn,Hm). 0
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(10.9) Theorem. Let X be a semimartingale in .%2 and let

He bp. If H' € HL and J" € HL such that lim dX(Hn,H)
n

= 1im dX(Jn,H)

0, then H"-X and J":H tend to the same
n _ - —

limit in %2,

Proof. Let Y 1im H® +X and let Z = lim g - X, in .%2.

Then

lv-z] , < |lv-8" x| ,+|8".x-3" x| ,+[3%-x-13|
#° gl #° %>
< 2e+|H" . x-J" -XII%2 (n 2 N_)
< 2€+dX(Hn,Jn)
n n
< 2e+d (H,H) +d, (8,37
< 4e, and the result follows. O

We can now make the:

(10.10) Definition. Let X be a semimartingale in %2 and let

H ¢ bP. Let H® € WL such that Llim dX(Hn,H) = 0. The

stochastic integral H - X is the (unique) semimartingale Y in

%2 given by 1lim H?' . X = Y = H.X, with convergence in %2.

(10.11) Theorem. Let X be a semimartingale in %£2. Then

2 2
E{ (sup |X,_|)°} < C||X .
£ t = ” ”%2

(o]
Proof. Let X® = sup |X

Doob's maximal gquadratic inequality,

|d§s|, and by

tl' Then XJ < ﬁ:-+J

0
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E((§%)2) < 4E(N?) = 4E([N,§]_) .

rOO

Thus E{(X:)z} < 2E{(ITI;)2}+2E{(J Id'B"S|)2}
0
— = 1/2,2 C o= 12
s sl MY 2%, - 2l B 02,
L 0 L
and the result follows. ' 0
(10.12) Corollary. If x" is a sequence of semimartingales
converging to X EE %2, then there exists a subsequence
n
n, such that lim (X k-—X):‘o =0 a.s..
nk+w'

Proof. Since (Xx"-X)* converges to 0 in 2 by (10.11),

there exists a subsequence converging a.s.. 0

We are now in a position to investigate some of the properties
of this more general stochastic integral. The bilinearity is

evident, and we state it without proof.

(10.13) Theorem. Let X, Y be %2 semimartingales and

H,K € k. Then (H+XK) -X =H.X+K X, and

He(X+Y) =H «X+H-.Y.

(10.14) Theorem. Let X be a square-integrable martingale and

let H € bP. Then H X is

|

square integrable martingale.

Proof. Clearly X is a semimartingale in %2. Let H" € HL
such that 1lim dX(Hn,H) = 0. Then H".X is a square integrable
n-—>o©

martingale by (7.10) for each n. The theorem follows by

2
L~ -convergence. 0



37.

(10.15) Theorem. Let X be ggﬁ%z—semimartingale with paths

of finite variation on compacts. Let H € hP. Then H-.X

agrees with a path by path Lebesgue-Stieltjes integral.

Proof. Let H" € HL such that 1lim dX(Hn,H) = 0. Then
' - X is a Lebesgue-Stieltjes integral for each n, and the

result follows by passing to the limit. 0

(10.16) Theorem. Let X Qg_QEA%z—semimartingale and H € bpP.

Then A(H-X) = H(AX).

Proof. Let H" € WL, such that 1lim dX(Hn,H) = 0. Then there
n->o nk .

exists a subsequence n, such that 1lim (H *X~-H-X)_ =0 a.s.,

N nk+oo

by (10.12). This implies A(H ¥.X) - A(H +X) outside of an
n

evanscent set. However since H k ¢ 1L, we know

n n A(H-X)
A(H k +X) = H k(AX). Therefore 1lim Hn(w) - —_ ¢t , oOn
t AX

n->o t

{AXt # 0}, hence the limit exists. If

A = {w: there exists t > 0 such that

. n
l;m Ht(w) # Ht(w) and AXt # 0},

and if P(A) > 0, then we would contradict that

lim d (H",H) = 0, since
n-o

. n . n 2 = ,2,1/2
l;m d (H",H) 2 l;m“lA(J(Hs'_Hs) a (AN ) ")

n —_—
+ lAJ|HS-—HS]d]ABS]”L2,
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and if AX  # 0, then [AN_|+ |AB_ | > 0. Thus P(A) = 0,

and we have

n

= 13 k -
A(H X)t = %:m H AXt = HtAXt. D
k

(10.17) Theorem. Let X be gg;%z—semimartingale, and let

H,K € bP. Then H=- (K-X) = (HK) - X.

Proof. This follows from the result for H,K € HL (7.9), and

then by taking limits. O

(10.18) Theorem. Let X, Y Qg,%z—semimartingales and let

H,K € . Then

t
[H'X,K'Y]t = JO HSKSd[X,Y]s

and, in particular,

t 5
J HIA[X,X] .

[H'X,H-X]t .

Proof. As in the proof of Theorem (8.7), it suffices to show

t
[H-X,Y], = J H d[X,Y] . Let " € WL, such that d (Hn,H) -+ 0.
t 0 [ s X

By stopping we can also assume Y_ € HL, and it is then easy

to check that dX(HnY_,HY_) also tends to 0. We have, by (8.7),
(10.19) [H"-X,Y] = JHnd[X,Y] > JHd[X,Y];
Let z% = g" - X, and by (10.12) we know there is a subsequence
n
n, such that 1im (Z k--Z): =0 a.s., where Z = H - X. Then
n, >

k
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n n ' n n

(2 5,v] =z X¢y-(v) -2z ¥-@5 v
n n n
= 32 kY-—(Y_H k) -x-—(z_k) Y,
by integration by parts and by (10.17). Taking limits we have
Py
lim [z ©*,Y] = 2Y-Y_ . (H*X) -Z_*Y
n —>-00 -
k
=ZY-Y_ - (2)-Z_-*%Y
= [z,Y] = [H-X,Y].
Combining this with (10.19) yields the result. 0O
Now let X be any semimartingale with X, = 0 for

0

simplicity. Let X = M+A be a decomposition where the local

martingale has bounded jumps. Define

T = inf{t > 0: |M_| > n or [ faa_| > n}.
n t 0
Then
Xt if Tn(w) < t
Tn—
X =
XT _ 1if Tn(w) > t,
n
Tn— Tn T -
and X =M+ - (aM_ )1 ; 1f ¢ 1is a bound for the
Tn [[Tnlm[[
Tn—
jumps of M, then |X " | < 2n+2c; that is, it is bounded.
Tn_ 72
Note that X is a semimartingale and is in #°. This allows

the extension of the stochastic integral to arbitrary semimartingales.
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(10.20) Definition. Let X be a semimartingale and H € BP .

Tn—

Let T be stopping times increasing to <« such that X
: T -
is in %2. Define H-X to be H-(X ™) on HO,TnE for

each n, and call H-X the stochastic integral.

Note that if Tm > Tn in Definition (10.20), then if

H' € WL converge to H € WP in d (-,+), then they

converge as well in d T - (*,), so the integral is well
(X

)
defined. We can further extend the class of integrands. A

process H € P 1is said to be locally bounded if there exist

stopping times Tk increasing to <« a.s. such that

Tk -
(H-—HO) is in 4’ for each k.

(10.21) Definition. Let X be a semimartingale and let

H € P be locally bounded. The stochastic integral H-X
k

is defined to be HOXO-i-(H--HO)T - X on HO,TkH .

It is now a simple matter to check that all the properties
(10.13) through (10.18) still hold for this mild extension.

These techniques can be carried further, but we do not do
so here. By developing the semimartingale topology, which is
closely tied to the %2 norm, one can extend the stochastic

integral to the space of predictable, integrable processes. We

refer the interested reader to [3] and [15].
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