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ABSTRACT

The estimation of the function exp(a£+b02) of normal parameters & and
02 on the basis of a random sample X]""’Xn is considered. This function
corresponds to the mean, the median and all moments of lognormal distribution.
We show that the minimum variance unbiased estimator suggested by Finney
in 1941 can be substantially improved in terms of mean square error. Similar
result 1is established for the maximum 1ikelihood estimator. We suggest

for practical use the following generalized Bayes estimator
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Here X = ) Xj/n, Y2 = Y (Xj-X)Z, and constants g8 and y are determined by
1 1
2 _ 2

- 2b + 2a2/n, Yy = 1.5(b-3a2/(2n)). This estimator is shown

to be locally optimal for both small and large values of 02.

formulas R
The results of

numerical study of the quadratic risk show the superiority of this estimator

over the mentioned traditional procedures.

Key words: Lognormal distribution, generalized Bayes estimators, minimum
variance unbiased estimators, maximum 1ikelihood estimators, indamissibility,

quadratic risk.



1. INTRODUCTION

Let random variable Z be normally distributed with mean £ and variance
02, so that the distribution of exp(Z) is lognormal. The mean of this
distribution, the median, the mode and all moments have the form 6 = exp(ag + boz)
for some constants a and b_, For instance in the case of mean a-= 1, b = 1/2;
for the median a = 1, b = 0, etc.
| In this paper, we consider the estimation problem for quadratic loss
of the parametric function 6, as above, on the basis of normal random sample
X1’°"’Xn’ n>2, In ofher terms we are interested in estimating the mean
(or any other moment) of lognormal distribution. This problem presents
practical interest since lognormal distribution is a commonly accepted model
in many applications, e.g. in economics, psychological studies, reliability etc.
Also Togarithmic transformation of variables, which is supposed to have
normalizing effect, is widely used,so that it is of interest to find the
mean of the original sample. _

The esfimation problem of 6 has a Tong history. Finney (1941) has
derived the best (minimum variance) unbiased estimator of 6 whose properties
were studied later by Bradu and Mundlak (1970) and Evans and Shaban (1974, 1976)
(see also Aitchison and Brown; 1966; Ebbeler 1973; Dhrymes 1962 ;. Laurent 1963 ;;
Thoni . 1969 Shaban 1981), Confidence intervals for 6 have been obtained in
Land (1971, 1973).

In Section 2 we demonstraté that substantial improvements upon Finney's estimator
and maximum.Tikelihood estimator are possible. In Section 3 .a class of generalized

Bayesiesimators is obtained. Within this.class we determineithe procedure which



is locally optimal at zero and at infinity. Numerical study of the risk

of these procedures is reported in Section 4.

2. INADMISSIBILITY RESULTS

n

n _
Let X = ¥ Ky/n, V2 = ) (Xj-X)2 be a version of the complete sufficient
1 1

statistic for (¢,0). Notice that

E exp(aX) = exp(az + azoz/(Zn))

and

EY2K = 6ZKr (ki (n-1)/2) 2X/0((n-1)/2).

Therefore

V) = rl172) T () Tty 20249,

2

ro = 2(b—a2/2n), s the unbiased estimator, More conveniently

ifb > a2/(2n),

SW0LY) = eMr(n1)/2) 1, 0 () (rr72)" (3072 L @y (2.1)

where I(n—3)/2 is the modified Bessel function of the first kind.



Bradu and Mundlak (1970) and Evans and Shaban (1974) have studied
the variance (or the quadratic risk) of 8, In somewhat different notation

they showed that

2 2

2(r¥) = & 9 h(r252). (2.2)

Eh

Thus

E(5,(X,Y) - 0)% = 02(h(r22) exp(ae?/n) - 1).

An undesirable feature of estimator (2.1) in the case when b < az/(2n)
is that it takes negative values with positive probability (see Teekens
‘and Koerts (1972)). Thus 8y 1s not admissible in this case; for instance,
the procedure max(O,au) s better. We show that in the case b 3_a2/(2n)
estimator (2.1) and a related-estimator (2.5) are also inadmissible and substantial
improvements over them for small samples are pbssib]e.

To this end we consider estimators of the form
s(X.Y) = e®g(y) (2.3)

where g is a positive function with finite second moment,

The mean square error of procedures (2.3) has the form

Eezaxgz(Y)—ZeEean(Y) + o2 ;
ez[exp{-Z(b—az/n) 02} E(g(Y)-EXp(CGZ))Z (2.4)
S exp(-azoz/n)],

E(a-e)2



where ¢ = b—3a2/(2n). Thus for estimators (2.3) the estimation problem of ©

reduces to that of eXp(CGZ).

From (2.4) it is clear that 6, can have excessively large risk. Indeed

(2.4) suggests that the choice of g(Y) being unbiased estimator of eXp(COZ)
(and not exp(rzoz)) is more appropriate.

The resulting estimator
5, (X,¥) = e¥n((2c)/2y)

(2.5)

where h is defined by (2.1) is uniformly better than §,- Indeed

(h(qY) - )2
= expiq”?} [n(q%? )-1]
+ (EXP(COZ) - exp{q2q2/2})2.
For c > 0, let q =qy = (ZC)]/Z;.then
E(h(ag)-" )2 < E(n(ay) - )2

for any q > qq- Because of (2.4) and the monotonicity of the function

et[h(t) - 1] this shows the inadmissibility of 8,



Estimator (2.5) has been suggested by Evans and Shaban (1976). who tabulated
its quadrati¢ risk. Howéver this estiimator is alse inadmissible.

To explain it notice that if for small Y
g(¥Y) ~ 1 + g¥?
then for small o
E(g(Y) - exp(co®))? ~ o™[g%(n?-1)-2c(n-1)+c2].
Therefore for small o the optimal choice of the coefficient g is
g =9y = c/(n+1). (2.6)
This fact explains the local optimality of the estimator
63(X,Y) = exp{aX+cY2/(n+1)} (2.7)
the risk of which has been evaluated by Evans and Shaban (1976). It also shows
that both estimators 8, and 84 can be improved for small o. For instance, the
estimator 62 with

9,(Y) = h([2c(n-1)/(n+1)1"/?y) (2.8)

is locally better than these estimators.



The following estimator &, with

0

[os)

go(1) = T (e¥¥)¥ p(ke(n-1)72)/kIr(2k+(n-1)/2)2K] (2.9)

is also locally optimal. The motivation for this estimator is the following:
2k k
Y='r(k+(n-1)/2)/[r(2k+(n-1)/2)2"]

is the best estimator under quadratic loss of oZk among all estimators

2k

proportional to Y Thus each term of the sum in (2.9) is the best estimator

of the corresponding term in the Taylor expansion of EXp(COZ).
To complement the asymptotical study of the risk we consider also large

values of ¢. It can be shown that if as Y-

g(Y) ~ cedY yV

with some constants C, v (v > -n+2),and d, then for estimator (2.3)

2 ¢)-2(b-a%/(2n)). (2.10)

(202)'1 1og[E(6-e)2/E(60-e)2] - max(d
Since

h(Y) ~ ce'y~(n-2)/2

it follows that 85 and 8y are better than 51 and 8, for large values of o.



In section 3 we obtain a generalized Bayes estimator GB which improves upon

6] (and therefore upon au).

This fact will be derived from the following.

1/2y

Theorem 1. Let g(Y) = g1(¥)}—2f(¥)?where,gT(Y)'=3h((Zc) Y), and f is a:

nonnegative function such that

(a) 1"(Y)Y_2 is nondecreasing

(b) h((2c)]/2Y) - f(Y) is increasing
2 4 2

(c) EYSF(Y) < 2co exp(cs”).

Then for all o

E(g(Y) - exp(ca?))? < E(gy(1)/2Y) - exp(cs®))?.
Proof.

E(gq(Y) - exp(co?))? - E(g(Y) - exp(co?))?
= 4EF(Y)(g,(Y) - F(Y) - exp(ca®)).

According to condition (b) for any fixed o the function g](Y)-f(Y)—exp(ccz)
changes sign from negative to positive at most once. Because of (a) our
Theorem will be proven if we show that

2 2
EY“(g1(Y) - £(Y) - exp(co®)) > 0. (2.11)

By differentiating in o the identity

Egq(¥) = exp(co”)



one obtains}

EY79,(Y) = (n-142c0?) oexp(co?).
Thus (2.11) means that

EY2f(Y) 5_2cU4 EXP(CGZ)

which is exactly assumption (c) of Theorem 1.
This Theorem can be used to show that 8o is better than 8y Also an
analogue of Theorem 1 can be proven for the maximum likelihood est1mator

(X Y) = exp{aX+bY /n}, the quadratic risk of which is infinite of N n/(4b).

We formulate these results as

Theorem 2. The minimum variance unbiased eatimator 8> the estimator 84
defined by (2.5) and the maximum 1likelihood estimator § of 6 = exp{ag + boz}
are inadmissible for quadratic loss. Estimator (2.8) improves upon Gu and 84
for positive ¢ = b-3a2/(2n).

3. BAYES ESTIMATORS OF s.
Let A(g,0) be (generalized) prior density. Then Bayes estimator GB(X,Y)

for the Toss function (6/9-1)2 has the form

sptY) = Lo expi-a-ho® “[n(x-£)" ]/(202)}A(£ o)deds
ffc exp{-2az-2bo -[n(X o) +Y ]/(20 Y (g, o)dgdo

Notice that the generalized Bayes estimator with respect to traditional non-

-1

informative prior, A(£,0) = ¢~ ', does not exist. If AME&,0) = (o), i.e., the

prior is "uniform" in &, then



2X fo M -0 (b-a /2n) Y /(20 Y1(o) do (3.1)

(X,Y) =
fc n+-Iexp{-Z(b-av/n) -Y /(20 YIr (o) do

Xg(v).

Thus the generalized Bayes procedures in this case have the form
(2.3) The Bayesian estimation problem has been considered by Zellner (1971)
who derived the form of posterior density and performed a comparison between
Bayesian and non-Bayesian results.

We consider prior densities of the form
A(o) = o"2V M 2expi-o2[y2/2-2(b-a%/n) 13, 72 > Mb-a’/n).  (3.2)

To evaluate sy we need the following formula (see Erdelyi (1954) p. 313,
(17))

T 2 N expr-nu?/2-8/ (2u?) yau = (A7B)™ % ((aB)'/%) (3.3)
0

where Kv is modified Bessel function of the third kind.

Because of (3.3) one obtains with 82 = y2—2c

g(Y) = (8/v)" K (BY)/K (¥Y). (3.4)

If v =m+ 1/2 where m is a positive integer then

(2m-k) k

m
o) = ew(r-e0) T (T (2sn" /z () ok,
(3.5)



Known asymptotical formulas for Bessel functions show that for v > 1

and small Y,

(8/x) VK, (8Y) /K (vY)

v ol o+ cYZ/[Z(v-1)].

Therefore for positive c the best choice (for small o) v = Vo is such

that

vyl = (n#1)/2

Thus if n is an even number,g has form (3.5). Since for large Y
9(Y) ~ exp{(v-8)¥} (g/y)" 12,
formula (2.10) -suggests the optimal choice of v, for Targe o:
v - (y2-2c)V/2 = (1/2
We denote by GB the corresponding Bayes estimator, and study its mean

squarederror in Section 4. One can check that all conditions of Theorem 1

1 and ¢ .
u
We formulate our results here as

are met, so that SB improves upon &

Theorem 3. The generalized Bayes estimator GB of 6 for prior density
Ag,0) = a(o) has form (3.1). If A(o) is given by (3.2) then g has form
(3.4). The choice of the parameters vy and v in (3.2) for positive c

which minimize the risk function for small and large values of ¢ are

vo = (n+3)/2 (3.6)

10



11

and

Yo = 3?2 . (3.7)

4. NUMERICAL RESULTS

The relative mean square errors E(a-e)z/e2 were evaluated for estimators
Sy> 815 8p» 835 8 and 8g which are defined by formulae (2.1), (2.5),
(2.8), (2.7), (2.9) and (3.5), (3.6), (3.7). In these calculations we put
n=4, 6, 8 and 10, and a=1, b=1/2, which corresponds to the lognormal mean
estimation.

For all sample sizes considered SB clearly exhibits the best behavior.
Notice that for larger values of o the competing estimators 8, and 63 will

have considerably larger risk than s Also notice that in all cases

B
considered 8o is preferable to 8, 6] and 63; The UMVU estimator 8, exhibits
a poor performance and cannot be recommended in practice. Its relative
quadratic risk is even worse for smaller vaiues of a.

Mehran (1973) had shown that the variance of 8, is numerically close

n
to the variance of unbiased (inadmissible) estimator n~! % exp(Xj). The

latter procedure is a particular case of a consistent nonparametric estimator
(so-called smearing estimate, see Duan (1983)), and this fact can be
interpreted as another argument against UMVU estimator in this problem. Notjce

however that the bias of all other estimators in this study is negative, so



that our conclusions are valid only if underestimation of 6 is not more
heavily penalized than is suggested by the quadratic loss choice.
Comparing risks of Gu and smearing estimate with the Cramer-Rao

bound gives a useful inequality for the function h in (2.1):

2
02(1+52/2)/n < h((n—])oz/n)e0 /n_]
(4.1)

2
<(e° -1)/n.

Inequality (4.1) gives useful bounds for quadratic risks of -
estimators 6] and 62. To evaluate these risks for small values of
o{o<1) we used the power series, for larger values of ¢ the recurrent

formulae for modified Bessel functions provide accurate numerical results.



Table 1

Mean Square Errors of Estimators 6u, 6], 62, 63, 80 and SB

n=4

n=6

1l
oo

n

.00063
.00251
.01612
.07091
.40783
07714

.00042
.00168
.01075
.04717
.26546
17172

.00031
.00126
.00806
.03536
.19645
.68503

.00025
.00101
.00645
.02801
.15582
.94102

.00062
.00250
.01552
.06099
.22513
.67023

.00042
.00167 -
.07042
.04192
.16831
.62874

.00031
.00125
.00783
.03217
.14032
.60994

.00025
.00100
.00630
.02750
. 12095
.55367

.00062
.00250
.01552
.06083
.22479
.65937

.00042
.00167
.01039
.04182
.16693
.60456

.00031
.00125
.00783
.03201
.13449
.56314

.00025
.00100
.00630
.02614
.11021
.54097

.00062
.00250
.01554
.06108
.22725
.66647

.00042
.00167
.01047
.04247
.17394
.60578

.00031
.00125
.00794
.03310
.14638
.56896

.00025
.00100
.00641
.02741
.12904
.54286

.00062
.00250
.01552
.06904
.22513
.66009

.00042
.00165
.01042
.04184
.16788
.61156

.00031
.00125
.00789
.03209
.14021
.57750

.00025
.00100
.00630
.02679
.11107
.55262

13

Sg

.00060
.00248
.01551
.06087
.22553
.65764

.00041
.00763
.01038
.04182
.16667
.57481

.00031
.00125
.00780
.03202
.13408
.51950

.00025
.00100
.00630
.02603
.11278
47715
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