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1. Introduction

The empirical Bayes approach in statistical decision theory is appropriate
when one is confronted repeatedly and independently with the same decision |
problem. In such instances, it is reasonable to formulate the component
problem in the sequence as a Bayes decision problem with respect to an unknown
prior distribution on the parameter space and then use the accumulated
observations to improve the decision rule at each stage. This approach is
due to Robbins (1956, 1964,.1983). Many such empirical Bayes rules have been
shown to be asymptotically optimal in the sense that the risk for the nth
decision problem converges to the optimal Bayes risk which would have been
obtained if the prior distribution was known and the Bayes rule with respect

to this prior distribution was used.

Empirical Bayes rules have been derived for multiple decision problems
by Deely (1965) for selecting a subset containing the best population.
Van Ryzin (1970), Huang (1975), Van Ryzin and Susarla (1977) and Singh (1977)
also studied other multiple decision problems by using the empirical Bayes
approach. Recently, Gupta and Hsiao (1983) and Gupta and Leu (1983) studied

empirical Bayes rules for selecting good populations with respect to a
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purpose of the United States Government.



standard or a control with the underlying populations being uniformly
distfibuted.

In this paper, we are concerned with the problem of selecting good
binomial populations with respect to a control through the empirical Bayes
approach. Two cases have been studied: one with the prior distribution
completely unknown and the other with the prior distribution symmetrical
about p = %3 but otherwise unknown. In each case, empirical Bayes rules

are derived and their rates of convergence are shown to be of order
O(exp(-cin)) for some ¢; >0, 1 =1,2. For the case of the symmetrical
prior distribution two smoothing methods are studied in order to imprové

the performance of the sequence of empirical Bayes rules.

2. Formulation of the Empirical Bayes Approach

Let Qs MyseessTy denote k + 1 populations and let Xi be a random
observation from mi+ Assume that X; B(Ni’pi)’ where p; € (0,1) and N, is
fixed and known. Let_'nO be the control population. For each i = 1,...,k,
population s is,said}to be good if P; > Py and bad if P <'po,»where
the control parameter Po is either known or unknown. Our goal is to derive
some empirical Bayes rules to select all the good populations and exclude

all the bad populations.

When the control parameter Po is known, the empirical Bayes framework
can be formulated as follows:

(1) Letgq = {B'E = (p],...,pk), P; e(0,1) for § = 1,2,...,k}. For each
pes2> define A(B) = {i[pi > pgls B(g) = {ilpi < ppl. That is, A(B)(B(Q))
is the set of indices of good (bad) populations.

(2) Let A = {ala ={1,2,...,k}} be the action space. When action a is
taken, it means that population s is selected as a good population if

fea, and excluded as a bad population if ifa.



(3) The loss function L(E,a) is defined as follows:

2.1 L(p,a) = (p;-py) (pn=Ps)
(2.1) L % 15;(3)-a Pi7Po’ 1eaZA(R) Po7Ps

where the first summation is the loss due to not selecting some good
populations and the second summation is the loss due. to selecting some
bad populations.
k

(4) Let dG(R) = 121 dGi(pi) be the prior distribution over the parameter
space o, where Gi(°) are unknown for all i = 1,2,...,k.

(5) For each i, let (Xij’Pij)’ j=1,2,..., be pairs of random variables
associated with population mis where X.j is observable but Pij is not

observable. Pij has distribution G,. Conditional on P = Py 1j]p1j

is binomially distributed with parameters Ni and Pij- For the case where

the prior distributions Gi's are completely unknown, some additional

) from each population =, i = 1,2,...,k,

observations Y.. = (Y j

iji>e--2 1Jn
are assumed to be at hand, where Y1Jm|P'j’ m=T,....n;, are i.i.d.,
independent of Xij|P" and follow B(1, ) distribution. Thus, in this case,
the jth stage observations are %j = ((X1j’m1j)";”(xkj’ xkj)i. For the
second case where Gi's are assumed to be symmetric about P = 55 NO

additional data are needed for the construction of our empirica1.Bayes rule.
(6) Let X = (X1,... X, ) be the present observation. Cond1t1ona1 on

R': (p]s---apk): X_Ilp_l)

e
= x
-—

has joint probability function f(élg) =

N.-X

where f.(x|p) = pX(1-p) ! for each i = 1,...,k.

'><2€><7T'

Finally, since we are interested in Bayes rule, we can restrict our

attention to the nonrandomized rules.



(7) Let D = {d|d : x + A, being measurable} be the set of nonrandomi zed

~

rﬁ]es, where y = 1 {0,1,...,N1}. For each deD, let r(G,d) denote the
i=1

associated Bayes risk. Then, r(G) = inf r(G,d) is the minimum Bayes risk.
deD

When the control parameter Po is unknown, for the related framework,
the indices in the associated notations should begin at 0 instead of at 1.
In the sequel, (0) will be used to show this additional fact.

We now consider empirical Bayes decision rule dn(%’ %]""’%n) whose
form depends on X and %j’ J=T1,...,n. Let r(G;dn) be the Bayes risk

assoctated with decision rule dn(é’ %1""’%n)' That is,

r(G,dn)

i

L BT LAy Zyaeeeay)) Fllp) dalp)

e

where the expectation E is taken with respect to (%1,...,%n). For simplicity,

dn(é’ %1""’%n) will be denoted by dn(é)'

Definition 2.1. A sequence of decision ru]es’{dn(é)}z=] is said to be
asymptotically optimal (a.o.) relative to the prior d{ééribution G if
r(G,dn) -~ r(G) as n » «.

For constructing a sequence of a.o. rules, we first need to find the
minimum Bayes risk and the associated Bayes rule, say dG’ From (2.1), the
Bayes risk associated with decision rule d is

k
(2.2) r(G,d) - égx ieg(é) Aie(é)jglfj(xj) +C,

it

where



Pofs (x;) = Wailx,) if py is known;

(2.3) bia(x) = n
wO(XO)fi(Xi) - wi(xi)fo(xo) if py is unknown;
1
f.(x) = Io f;(x]p) d6,(p);
1
Wi (x) = fO pfi(x]p)dGi(P);
and

k
C = ')\(JZ Z f (p‘l po ( 0,])(p1)f(,§lg)dG(R)'o

Hence, the Bayes rule dG can be obtained as follows:

(2.4) dG(%) = {ilAiG(%) < 0}.

Now, for each i = (0), 1,...,k, and for each n = 1,2,..., let

win(xi) = win(xi; (X i1° m1]), ”(X1n m1n)) be an estimator of W, (xi) and
fin(xi) = fin(xi; (X i1y 11), NG 1n,Xﬂ.n)) be an estimator of fi(xi)'
Define
(2.5) wOn(XO)fﬁn(Xi)- win(xi)fOn(XO) jf Po is unknown;
1n(5) -
pOfin(Xi) - win(xi) if p, is known;
and

(2.6) d (x) = {i]a, (x) < 0}.



p
If W_in(x) >

" B " means convergence in probability, then a

wi(x) and fin(x) R fi(x) for all x = O’]""’Ni where

1n(5) R AiG(é) for all xex.
Therefore, from Corollary 2 of Robbins (1964), it follows that r(G,dn) -+ r(G)
as n - ». So, the sequence of decision ru]es'{dn(%)} defined in (2.6) is
asymptotically optimal for our selection problem. Hence, in the following,
we have only to find sequences of estimators {win(x)} and {fin(x)} possessing

the above mentioned convergence property.

3. Case when the Prior Distribution is Completely Unknown

Robbins (1964) and Samuel (1963), respectively, pointed out that there

was no way of approximating wi(x) just by using the observations (xi],...,xin).

In order to remedy this deficiency, we take, at each stage, some more observa-

tions (Y.

1\].1,...,Y

ijn ) in our model where n. can be any positive integer.
;

For simplicity, let n; = 1 for all i = (0),1,...,k.

Estimation of wi(x) and fi(x)

A usual estimator of fi(x) can be given as follows:

n
Z I{x} (Xij) for x = 0,1,...,N..

(3.1) £, (x) =1 ] :

i

J

Then fin(x) is an unbjased estimator of fi(x), and by the strong law of

large numbers, fin(x) +'f1(x) with probability 1 for each x = 0,1,...,N,.

(x) R fi(x) for all x = 0,1,...,N..

Hence, f j

in
For the estimation of wi(x), we consider the following. Define

(3.2) Vi = Y5 Tg (K 5)-
Under the assumption (5) of Section 2, it is easy to see that E[Vij(x)] =

Wi(x). We then define

ne—-13

(3.3) Wyp(x) = %— Vi5(x).

j=1
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Since Vij(x)’ i=1,2,..., are i.i.d. and bounded, it is easy to show that

win(x)+w1(x) with probability one for all x = 0,1,....N;.

and dn(%)'be defined as in (2.5) and (2.6), respectively. From the discussion

Now, let Ain(é)

 of Section 2 and the construction of the sequence of decision rules
{dn}i=] through (2.5), (2.6), (3.1) and (3.3), we get the following result.
Theorem 3.1. For our decision problem, the sequence of decision rules

{dn}:=1 is asymptotically optimal relative to the prior distribution G.

Rate of Convergence of Empirical Bayes Rules {dn}

Let {dn}:=1 be a sequence of empirical Bayes rules relative to the
prior distribution G. Since the Bayes rule dG achieves the minimum Bayes
risk r(G) relative to G, r(G,dn)-r(G) > 0 for all n = 1,2,... . Thus, the
nonnegative difference r(G,dn) - r(G) is used as a measure of the optimality

of the sequence of empirical Bayes rules {dn}:=1’

Definition 3.1. The sequence of empirical Bayes rules {dn}:=1 is said to

be asymptotically optimal at least of order an relative to G if

r(G,d_) - r(G) < 0(a,) as n +~ = where lim a_ = 0.
n - n n
N>

For each i = 1,...,k, define S, = {5€XIA16(%) <0}, Ty = {xex|a;5(x) > 0}

Let e = min ('AiG(%))’ €y = min (AiG(%)) and € = min(e],sz). Since

xeS. xeT.
N A

1<i<k 1<i<k
x is a finite space, therefore ¢ > 0. Now, by the fact that 0 < fj(xj) < 1 and

|a;6(x)| < 1, with straightforward calculations, one can obtain
0 < r(G,d)) - r(6)

(3.4) K |
I T Pl () > 0y T Pag () < 0

i=] %gsi éeTi

| A

From (3.4), it suffices to consider the behavior of

P{Ain(é) > 0} when xeS; and that of P{Ain(é) < 0} when xeT. as n > « for

each 1 = 1,2,...,k.



Note that for each X € Si’
P{A'ln(’)\(J) > 0} = P{aA, (%J) = A1G(">\(J) > = A'IG('%)}

< P{a, (x) - AiG(é) > g},

in'\a

Then, by (2.3), (2.5) and the fact that 0 f_Wi(Xi), fi(xi)’ win(xi)’ fin(xi)-5.1
and Py € (0,1), one can obtain the following inequalities:

€4, |
(3.5) P{Ain(é) > 0} f-P{fin(Xi) - fi(xi) >‘§&+7P{W1n(x1) - wi(xi) < - %

when Po is known; and

€ €

(3.6) PLain(x) > 03 < Pl (xg) - Wg(xg) > 23 + PUF, (%)) = F(x,) > 7

PO (xg) = W (xy

€
1) <-ght P{fOn(xo) - fO(xo) <

when Py is unknown.

(3.5) and (3.6) show that it suffices to chsider the behavior of

P{lfin(xi) - fi(xi)l > 8} and P{Iwin(xi) - wi(xi)|'> 8} for some & > 0.

n
From (3.2) and (3.3), win(x)-wi(x) = jZ] Aij(x)/" where Aij(x) =
( i ..(Xx)s J =1,...,n, are
YijI{x}(Xij)'wi(X)' It is easy to see that A1J(x) hj n

i.i.d. with mean 0 and finite variance, say Bi(x), since IAij(x)I < 1.

Therefore, for m > 2,
: 29 . 1
ELA5 (01 < ELJA; ;00 M < ELIAL5(x)1%] = 8;(x) < & g;(x)mt,

Let Bn(x) = nsi(x). Thus, by Bernstein's inequality (see Ibragimov

and Linnik (1971), page 169), for any s > 0,



PLIW; (%) = Wi (x)] > 83

(3.7)

fa

(x) min(3 0% 063 % (x), 3062 (x)))

S

‘ n
<P L A0 > 28
< 2 expl- § min(s%671(x), 8, (x))}.

Similarly, from (3.1), f, (x) - f.(x) =

ne~1s

Cij(x)/n where Cij(X) =

Jj=1

L (ig) = F(x). Also, ¢, o

|Cij(x)| < 1 and hence with finite variance, say ai(x). Applying Bernstein's

x)s 3 =1,...,n, are i.i.d. with mean 0 and
inequality again, we obtain

(3.8) LT = £ (0] > 61 < 2 et Dmin(e? (0, a ()

Thus, we take § = %— if pg is unknown or take s = %—if Po is known. Then,

from (3.5) through (3.8), for each XeSs»

P{a;n(x) > 0} < O(expt- g-min(éza;](xi), a;(x:))1)

(3.9)
+ 0expt- 7 min(s% 1 (x.), g, (x,))1)
4 i R :
Following an argument analogous to the above, we also get the conclusion

given below:

For each xeT., i 1,...,k,
N7

P{a;n(x) < 0} < O(exp{- %min(azaﬂ(xi), a3 (x:))1)

|A

- (3.10)
+ 0(exp{- 2—m1n(62651(x1), B;(x;))1).
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qu]etﬁ =%mﬂﬂm,%)wmweb]= min [mﬂn(é%ﬂ(ﬂ,a#xn],

m<i<k |O<x<N

<X

b2 = min min (52371(x), 8:(x))|s here m = 1 if Pg is known and
meick [ O<x<N, ! !

m=0if p, is unknown. It is clear that ¢y > 0 since Bi(x) > 0,
“i(x) > 0 and x is finite. Thus, we have the following theorem:
Theorem 3.2. Let‘{dn}:=] be the sequence of asymptotically optimal rules

described in Theorem 3.1. Then, r(G,dn)-r(G) §_O(exp{-c]n})f0r some c; > 0.

An Alternative Empirical Bayes Rule

With the same framework as aboVe, define

(3.11) Tij = Xij + Yij'

N. N.-x
Then, T1j|p1j " B(Ni+1, pij)' With fi(xlp) = (X1)px(1-p) T, writing from
(2.3),

1
1060 = [F;(x]p)de(p)

; fi(x’Ni)'

Then, from (2.3), following Robbins (1956), we see that

W (x) = X5 £L(ck1, M),

i N1+1
Hence, Tet
(3.12) W0 () =2 (T
’ in\ X/ = Ni+1 jz] (x+13Y 437
and define
0 ' . .
pOfin(xi)'win(xi) if py is known,
0 -
(3.13) Ain(é) =
0 0 . . .
Won (o) Fin(x3)-Ws, (x.)F (xg) i py s unknown;

and



1

(3.14) a2(x) = tilad (x) < 0.

Note that W?n(x) is also an unbiased consistent estimator of wi(x).

Therefore, following an argument analogous to that of (3.7), we can conclude

thatr(G,dg)-r(G) f_O(exp(-czn)) for some c, > 0.

4. Case when Gi(-) are Symmetrical about p = 1/2

In this section, we suppose that there is sufficient information to
tell us that Gi(') are symmetrical about p = 1/2 for all i = (0), 1,...,k.

Further, we also assume that Ni are even integers for all i = (0), 1,...,k.

Estimation of wi(x) and fi(x)

Under the above assumptions, fi(x) = fi(Ni - x) for all x = 0’1""’N1'

Therefore, it is reasonable to use

7

N.

1 L i
(4.1) L Toonaty) forxdgs
£l () = £} (No-x) =
m T in i ﬁ 1 n N.
= _1
Lﬁ J.Z1 Ly (X450 for x =3

to estimate fi(x).

For wi(x), X = 0,1,...,N1 we will construct a sequence of consistent
estimators {W}n(x)}, in terms of f}n(y), y=0,1,...50:, by using the
ije j=1,...,n) only. The following lemma is very helpful
for the above purpose.

observations (X

Lemma 4.1.. Suppose that the prior distribution Gi(') is symmetric about

p=1/2. Then



1i1

[V I S VN =
. , e

(a) W(x) = Xf; W, (N, -x=1). for each x = 0,1;...,N;<1.

-+

(b) wi(x) wi(Ni'x) = fi(x) = fi(Ni-x) for each x = 0,1,...,N..

N. N.
. . . i) 1 ( 1)
(c) Furthermore, if Ni 1s.an even integer, then, wi <7?>— E'fi -5/ -
Proof: Direct computation.
Theorem 4.1. Suppose that Gi(') is symmetric about p = 1/2 and Ni is
an even integer. Then, for each x = O,],...,Ni, Wi(x) can be represented

as a linear function of fi(y), y = 0’]"”’Ni'

Proof: It follows from Lemma 4.1 that for each x = 0,1,...,N1-1 and

=
—la
A
N' =

. No+2-2z (N,
"2)T Wz Tiz t 2t

N +2-22 N, )
T NF Wi\z -z+1).

Then, by (4.2), Lemma 4.1 (b), (c) and by induction, the result follows.

By Theorem 4.1, for each x = 0,1,...,N1,

N,
;
(4.3) W (x) = yZO B(N;sxsy) fi(y),

where the coefficients B(Ni,x,y) depend on Ni’ X and y. Also, the
values of B(Ni,x,y) can be obtained from Lemma 4.7 (c) and the iterative

relation (4.2).
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We then define

N.

T yo 5 1
(4.4) Wy (x) = yZO B(N;»x5y) f. (y)

where f}n(y) is defined in (4.1).

Now, define

1

1 1 1 . .
wOn(XO)fin(xi) - win(xi)fOn(XO) if Py is unknown,
1 /0y =
(4.5) ol (o) =
pof}n(xi) - w}n(xi) if Po is known,

and

1 PPN
(4.6) dn(é) = {1IAin(5) < 0}.
From (4.1), it is clear that f}n(x) > fi(x) with probability 1 as

n + « for each x=0,1,...,N. Therefore, from (4.3) and (4.4),

i
w}n(x) -> wi(x) with probability 1 as n » « for each x= O,],...,Ni. Thus
we have the following theorem:

Theorem 4.2. Suppose that the prior distributions Gi(') are symmetrical
about p = 1/2 and Ni are even integers for all i = (0),1,...,k. Then, the
sequence of decision rules {dl}:=] is asymptotically optimal relative to

the prior distribution G.

Rate of Convergence of Empirical Bayes Ru]es'{qll

We now consider the rate of convergence of the empirical Bayes rules

{dl}. Following the same discussion as given in (3.4) through (3.6), and
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using the fact that f}n(x) -> fi(x) with probability 1, it suffices to consider
the behavior of P{w}n(x) - wi(x) > 8§} and P{w}n(x) - Wi(x) < -8}as n -+ o

for some § > 0, for each x = 0,],...,N1, i=1(0), 1,...,k.

From (4.3) and (4.4), for each x = O,],...,Ni,

N.
1
POIL(X) = Wy(x) > 63 = PIT BN x.y) [F] (1), (1)1 > o
| Ly
Ni
< ) PEeVxey) [F] (n)-F4(0)] > 87}
y=0
where 6] = NT%Tu If B(Ni,x,y) = 0 for some O <y f_Ni, then

i
P{B(Ni,x,y)[f}n(y) - fi(y)] > 6]} = 0. S0, we assume B(Ni,x,y) # 0. When

B(Ni,x,y) > 0, then
1 el

P{B(N1’X’Y)[f1n(y)_f1(y)] > 5"} = P{f.ln(.V) = f'l(‘y) > 61/B(N.isx:y)}-
When B(Ni,x,y) < 0, then

; 1

P{B(Ni,x,y)[f}n(y) - T30 1> 833 = PUFL (y) - Fi(y) < 8y/8(Nuxy)d -
In either case, the problem can be reduced to considering the convergence
rate of P{If}n(y) - fi(y)l > 62} as n +« for some 6, > 0. Similarly,

for the convergence rate of P{W}n(x) - wi(x) < -§} where X='O’]""’Ni‘ and

§ >0, we get a similar result. Therefore, by applying Bernstein's
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inequality and fo]]owihg an argument similar to that of (3.7), we conclude
the following theorem:

Theorem 4.3. Let {dl}:;1 be the sequence of decision rules defined in (4.6).
Then, {dl}:=1 js asymptotically optimal at least of order exp{-c3n} relative
to the prior distribution G for some C3 > 0.

5. Smoothed Empirical Bayes Rules

In this section, we again assume that Gi(°) are symmetrical about
p = 1/2 and N; are even integers for all i = (0), 1,...,k. In Section 4,
the marginal frequency functions fi(x), x¥=0,1,...,N1, i=1(0), 1,...,k, are
estimated in terms of the empirical frequency functions f}n(x), regardless
of the properties associated with the marginal function fi(x). In this

section, by considering some properties related to fi(x) and wi(x), two

methods for obtaining smooth estimators of fi(x) and wi(x) are studied.

We first state the following lemma (without proof), which can be

verified by direct computations.

Lemma 5.1. Suppose that Gi(') is symmetrical about p = 1/2 and Ni is an

even integer. Then,

N, -1 N, -1
(@) f,00() < fNEH  for 0<y<x<Ny/2.

A

N, - .
(b) w_i(x)(x1) < W (N for 0 <y <x<N;/2andNi/2<x<y<N,.

~y) for 0 <y < N./2.

Procedure 1. Smoothing Based on f}n(x)

For each 0 <y §_N1/2, let
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. N, . =1

(5.1) f,) = (") max  min 0 £l )( ) /(x-z#N)1,

y y<x<N /2 0<z<x a=z
and let fin(Ni'y) = fin(y)' Then, Tlet

N
(5.2) W.n(y) = ZZO B(Nsy,z)fs (z) fory =0,1,....N,.
Define

pofin(xi)'win(xi) if py is known,

(5.3) B =

wOn(XO)fin(xi)'win(xi)fOn(Xo) if p, is unknown.

Finally, define the selection rule an as follows:

(5.4) dn(ﬁ) {1|A1n é)
Asymptotic Optimality of {anl
- N1 -1
Note that fin(Y)(y ) y =0, 1,...,N1 are the isotonic estimators of

N, ~1 -1

fi(Y)(y1) based on f ( )( 1) » x = 0,1, 0N, with equal weights. Since .

f}n(x) is a strongly consistent estimator of fi(x) for all x = 0,1,...,N;, then,

by Theorem 2.2 of Barlow etal (1972), Lemma 4.1(b), (4.3) and the definition of

~

win(Y)’ it is not hard to see that %1n(y) and ﬁin(y) are strongly consistent

estimators of fi(y) and wi(y), respectively.

Next, we consider the rate of convergence of the difference r(G,dn)—r(G).

For each 0 <y j_Ni and 8§ > 0, by Theorem 2.1 of Barlow, et al (1972), we can
obtain the following inequality.
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PUF () - £ > &)
(5.5)

i . Ny Ny -1 1
PO O=F00 ] > (I s(Ng+1) 720

o~ =

h

x=0

Then, with a discussion similar to that given in Section 4, we can

conclude that r(G,an) - r(G) < O(exp{-cqn}) for some Cy > 0.

It is easy to see that the new estimators %1n(y), 0 <y f_Ni, always
satisfy the constraint of Lemma 5.1(a). However, one would also like to
see whether the estimators ﬁin(y), 0<y §_N1, satisfy the corresponding

constraint or not. The following Temma is useful for this purpose.

Lemma 5.2. Let U(x), h(x) be nonnegative functions defined on {0,1,...,N},

where N is an even positive integer, which satisfy

1l

(a) U(x) ﬁ;% U(N-x-1) for all x = 0,1,...,N-1.

(b) U(x) + U(N-x) = h(x) = h(N-x) for all x = 0,1,...,N and

(¢) U(x) < U(N-x) for all x = 0,1,...,N/2.

| A

Then
(d) (x+1)h(x+1) 5_(N-x)h(x) for all x = 0,1,...,N/2-1.

We note that (a), (b) and (d) of Lemma 5.2 do not imply (c), and
the estimators W 1.n(y), 0 <y <N, do not always satisfy the required

constraint. Lemma 5.2 suggests resmoothing based on ﬁin(y).

Procedure 2. Resmoothing Based on wi (y)

First, let Qin(Ni) = win(Ni) and for each N1/2 <y 5_N1-1, let

) N, . N,
(5.6) Q) = D (DT il 04y-1 Gy )7 2.
1

y
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Step 1. For each N1/2 <y 5_N1, let

z
(5.7) Q?n(y) = max min { ) Qin(a)/(z—x+1)}.
N./2<x<y x<z<N, a=x

= * -
Step 2. Let N?n(Ni) Qin(Ni) and for each Ni/2 <y 5-Ni 1, let

N. N.
wr(v) = Q5 (0)(1) and wg (NG-y=1) = Q5 (0 _yq)-

Al
Then, let
(5.8) : fﬁn(Y) = Wﬁn(y) + W?n(Ni'y) for y =0,1,...,N; and define
P, (x5 )-WE (%) if py s known,
(5.9)  a¥ (x) =
WBn(XO)fﬁn(Xi)-Nﬁn(xi)an(xO) if py is unknown.

Finally, define the selection rule d; as follows:

(5.10) d*(x) = {i]s% (x) < 0}

*
n

Remark. By Step 1 and Step 2 of Procedure 2, the estimators qu(y), 0 <y f_Ni,
always satisfy the constraint of Lemma 5.1(b) and (c). Then, by Lemma 5.2,

the estimators f?n(y), 0<y §_N1,a1so satisfy the corresponding constraint.

Asymptotic Optimality of {d:}

By Theorem 2.2 of Barlow et al. (1972) and the fact that win(y), O<ys<N,, are
strongly consistent estimators of wi(y), 0<y j_Ni, we conclude that w¢n(y),
0 <y=<Ny, are strongly consistent estimators of Wi(y), 0<y=<N;. Then, by
Lemma 4.1(b) and (5.8), f?n(y), 0<y f_Ni, are also consistent estimators of
f.(y), 0 <y < N;. Therefore, the sequence of empirical Bayes selection rules

i
{d;} is asymptotically optimal.
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By Theorem 2.1 of Barlow, et al. {(1972) and-(5.8), we obtain, for s > O,
PUIFE () - Fily)] > 8}
< PLIWE (y)-W (y)] > 8723 + PLIWE (Ny=y)=U.(N;-y)| > 8/2)

N.

i N
LT W 00

. . N.
1)-]_w1(x)(x1)-1|2 S (y1)-262/4}

| A

X

(5.11) N | . |
1 . . _—
+ P I OGN 006D - G L)t

X= i

SN P Niv-12 . Niy2,2

<2 2L [0 TGP (P
i I 3

<2 ) PLW (-0, 0 > () 7) T8 (N+1) 75723

Then by (4.3), (5.2) and (5.5), with a discussion similar to that given

in Theorem 4.3, we conclude that r(G,dﬁ)—r(G) §_O(exp{—c5n}) for some cg > 0.
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