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OPTIMUM REPLACEMENT OF A SYSTEM SUBJECT
TO SHOCKS AND A MATHEMATICAL LEMMA

By .

Prem S. Puri and Harshinder Singh
- Purdue University, Indiana, and
Panjab University, Chandigarh, India.

ABSTRACT  Let a system be subject to shocks which occur randomly over time.
Let N(t) denote the number of shocks occurring in [0,t]. It is assumed that
the system needs replacement after it has functioned for a random Tength 'of time t,
a mOment-qua major failure, which_is a stopping.time with respect: to the pracess
{IN(t),, t > 0}. The costs we consider are due to shocks, maintenance and
replacement. Again it may be economical to replace the system at time min (t,t)
- prior to its failure; for some fixed .but 'optimally chosen t. Based on-cost - -
considerations we introduce an optimality criterion which we then use to find
“an optimal time to; In the process, we prove a general mathematical lemma
which helps in arriving at the optimal time, for general classes of processes
{N(t)}, stopping times t and the cost structures involved. A discrete time

version of the Temma is also given.

The present work was inspired by two recent pieces of work involving ‘shock
models' by Boland and Proschan [1982, 1983]. However for previous other similar
work, the reader may also refer to Taylor [1975], A-Hameed £1977], A-Hameed
and Shimi [1978], Zuckerman [1978, 19807, Feldman (1976, 1977a, 1977b], Baoland
[1982], Tilquin and Cleroux [1975] and Nakagawa [198]].

Subject classification: 570 Stopping times, 723 point processes, 730 maintenance/
replacement costs.



A typical optimization problem that appears in most of these papers involves
minimization of a ratio of two known functions (see (1.5)) with respect to their

common argument. In section 2, we prove a basic mathematical lemma (iemma 2.1)

which solves this problem subject to certain conditions on the two functions.

Our lemma is fairly general and coVers many cases solved in the literature. In
particular it applies to the models considered by the above authors. For con-
venience of presentation we shall consider, in some detail, a generalized shocks-
based model involving a stopping time t, as described below.

Suppose a new system is subject to shocks which occur randomly over time.
Let N(t) denote the number of shocks occurring in [0,t]. The random process
{N(t), t > 0} is assumed to be a separable point process with N(0) = 0, N(t) < =,
for all t > 0 a.s. and right continuous sample paths with unit steps at
0 <ty <19 <..., with g = 0. As a rule, it is assumed that the system needs
replacement after it has functioned for a random length of time <, a stopping
time with respect to the process {N(t), t > 0}. In many situations, shocks may
be interpreted as small, reparable breakdowns of the system and ¢ is the time
when it undergoes a major irreparable breakdown neediné a kep]acement. When
the costs that are involved are due to shocks, maintenance and replacement
etc., it may be economical to replace the system at time min (r,t) for some fixed
but optimally chosen t. ~One of the objectives of the present work is to define
an appropriate optimality criterion which is then used to arrive at an optimal
time, tO'

Generally the stopping time ¢ is beyond our control. For instance, when
the arrivals of shocks are interpreted as occurrences of small reparable break-
downs of the system, the risk of having a major breakdown needing replacement
may depend upon the number N(t) of the reparable damageé. For eXamp]e; when
the system cannot stand more than k small breakdowns after which it then has to

be replaced, v = 1,. Another example is a system consisting of k components
k )



running in parallel. The system is considered to have failed only when all the
k components stop functioning. If we interpret jth shock as the failure of the
jth component, j = 1,2,..., k, then ¢ = Ty Other examples are situations where
each shock may cause a random damage to the system and ¢ is the time the cumula-
tive damage caused by the shocks exceeds a fixed (or a random) threshold.

In the above examples ¢ is dependent upon the process N(t). However, in
some situations ¢ could be considered 1hdependent of the process N(t). For
instance, consider a system which is functioning with the help of electric power.
Shocks may be interpreted as minor reparable breakdowns due to wear and tear.

The system may get totally destroyed after it receives a rather high power surge.
Here t, the time of such an eventuality may be approximately independent of
the process N(t). Finally, in the event no such risk that we have represented

by t exists, we take v = =,

1. PRELIMINARIES

We begin by defining the various costs involved as follows:
Ci.= Cost incurred due to occurrence of ith shock (a minor breakdown which is
assumed to be reparable instantaneous]y), i= 1,2,...‘.
f(i,t) = Cost per unit time of maintenance of the system at time ?E [Ti,Ti+]),
i=1,2,....

Cost of replacement of the system when it is replaced at time t = min (t,t)

Ry
(i.e. when it is replaced before a major failure).

R, = Cost of replacement of the system at time T with v = min (t,t) (i.e. when
it is replaced at a major failure).

C(t) = Total cost incurred during [0,t].



Here it is assumed that for every fixed t, P(r = t) = 0. Furthermore the costs
{Ci’ i=1,2,...} may be random and also for each i > 0, (f(i,t), t > 0} may
be assumed to be a stochastic process.

In this paper we deal with the problem of obtaining the optimal value of

t which minimizes
_ E(C(tan)) (1)

where E denotes the expectation sign and tAr = min (t,r). Under the stationary
conditions of various costs etc., the measure T(t) could be interpreted as the
lTong run average cost per replacement per unit time.

The model considéred here is fairly general in the sense that the process
N(t), stopping time t, costs Cy, f(i,t) etc. are all left openvwith the hope
that it will serve as an approximation to many practical situations. Several
special cases are considered here as illustrations of the general theory.

Some special cases of the above model are conSidered more recently by
Boland and Proschan [1982, 1983]. In their second paper they assume Cj =0
for all j, f(j,t) = ¥ + 8j, where y and & are fixed constants, t = « and
{N(t), t >0} is a Poisson process. Instead in their first paper they take
f=0, = w, Cj = o + gj, where o and 8 are fixed conétants, while the process
(N(t), t > 0} is as before assumed to be a Poisson process. These two cases
follow immediately ffom our general model (see section 3.1). Moreover an
alternative EXpressibn for C(t) is given here which becomes much simpler for

the two cases of Boland and Proschan eliminating much of the algebra.



1.1 EXPRESSION FOR C(t).

For convenience let C0 = (0, Also let IA denote the indicator function of

the event A,

N(t-) = Tim N(u) (2)
ust
and
N(t) |, T >t
N*(tA7) = (3)
N(t-) T<t. o

Then it is easily seen that -

_ N*(tAr) t '
C({tAg) = R]I{T . t) + R2 I{T <t} + iZO Ci + éf(N(u), u)I{T S u}du, (4)

Here the first two terms in the above expression represent costs due to replace-
menf at time min (7,t) according as t < r or t > ¢; the third term is the total
cost due to shocks (or due to repairs of minor failures) and the last term is

the total maintenace cost incurred during the time [0,tAc]. Thus an expression’

for C(t) of (1) 1is given by

— R] + y(t)
C(t) = e (5)
where
N*(tAc) t
WE) = (Ry = ROPlc <€) + EC T €) + [ECFN(w) W, Jdu,  (6)

1=0 0

and



t
s(t) = E(tAq) ='£ P(r > u)du. (7)

Qur objective is to determine to which minimizes C(t). For this purpose a
simple mathematical lemma given in the next section provides sufficient condi-
tions in terms of y(t), ¢(t) and R] for the existence of a finite tO' A method
‘for finding such a t0 is also given in the Temma.

Again for the special case considered by Boland and Proschan [1983], where
T = o, Ci =0 for i=1,2,..., f(i,t) =y + i8 for i = 0,1,2,..., t > 0, with
y and g being some constants, and the process {N(t), t > 03} is Poisson with

t
mean function E(N(t)) = o(t) = 6A(u)du,, the expression (5) reduces to

t
T(t) =y + (Ry + sgﬂ(U)dU)t'] , (8)

which is same as obtained by Boland and Proschan [1983] after their Theorem 1.2.
Similarly for the special case considered by Boland and Proschan [1982], where
T =w, f=0, C; =a t ig, for i = 1,2,... , and N(t) is a Poisson process with

mean function q(t), the expression (5) reduces, after some simplification, to
T(t) = [R) +(a + 8 )alt) + Ba(£)1/t . | (9)

Finally Lemma 2.1 of the next section can be used for obtaining sufficient condi-

tions on q(t), d, B,‘Ys»&gand.R1 in order that an optimaT'tbfex%stsyfn‘e%chfof the

above two cases. The same lemma can also be used for obtaining this tO'

2. A USEFUL LEMMA

In this section we present a simple mathematical lemma, which can be helpful in



minimizing (or maximizing) a ratio of two functions such as (10) with respect
to their common argument. Our lemma can be useful for optimization problems
of this nature arising in several areas of operation research. The lemma itself
has two cases, the continuous time case (Lemma 2.1) and its discrete time analog

(Lemma 2.2) given below.

LEMMA 2.1. Let

c(e) = B v 0, (10)

where R > 0, ¢(0) = ¢(0) = 0, ¢(t) and y(t) are continuously differentiable

functions on [0,») with strictly positive derivatives ¢'(t) and y'(t) for all.

t > 0. Also let D(t) be nondecreasing (nonincreasing) over [0,»), where

D(t) = p'(t)/e' (L) . (11)

Then we have

(i) D(t)e¢(t) - p(t) is nondecreasing (nonincreasing) over [0,).

(ii) In the case D(t) is nondecreasing and

Tim (D(t)e(t) - w(t)) > R, (12)

tro0

there exists at least one (finite) point ty of global minimum of C(t).

Such points are the only solutions of the equation.

D(t)o(t) - w(t) =R . (13)



‘The minimum value of C(t) subject to (12) is given by
C(to)_: D(.to) s (]4)

with t, being any solution of (13). The giobal point of minima (and hence the

solution of the equation (13)) is unique if D(t) is strictly increasing.

(iii) In case D(t) is nondecreasing and

Tim (D(t)¢(t) - w(t)) =R, (15)

T

C(t) is a nondecreasing function of t so that a minimum of C(t) occurs

at t = «», However C(t) may assume the minimum value at all points

te [uo,w) for some finite Ug-

(iv) For the remaining cases, such as if the 1imit in (12) is less than R or

if D(t) is nonincreasing over [0,«), C(t) is a nonincreasing function of

t and the minimum of C(t) occurs only at t = =,

PROOF. For O g_t] < t2 , we have

[D(ty) (t,) - W(t,)] = [D(t;)8(ty) - ¥(ty)]

= [D(t,) - D(t)Je(ty) + [D(tp)e(ty) - w(ty)1 - [D(t,)e(ty) - wlt)]

o ' t
= [D(t,) - D(t;)Ie(t;) + {ztngtz)v- D(s)16' (s)ds (16)
1

which is nonnegative or nonpositive according as D(t) is nondecreasing or non-

increasing, thereby proving (i). Again dC(t)/dt = 0 yields

D(t)e(t) - w(t) = R. (17)



Also if D(t) is nondecreasing so will be D(t)¢(t) - w(t), as shown above. Thus
if (12) holds, it follows that equation (13) must have at least one finite solu-
tion, say to. In the event D(t) is strictly increasing so will be D(t)¢(t) - y(t)
and the solution t0 will be unique in that case. We now show that t0 is a point

of global minimum of C(t). For 0 < t < ty, we have

- [R(p(tg) - o(t)) - ultpe(t) + y(t)e(ty)]

C(t) - Clty) = T ‘ (18)

Substituting R = D(t0)¢(t0) - w(to) in (18) we have

D) (a(tg) = 4(t)) - (4(tg) - w(t))

C(t) - C(to) , ‘¢(t)

.
= [o(t)1™ {°(D<to) - D(s))¢' (s)ds , (19)

which is nonnegative since D(t) is nondecreasing. Similarly for t > to, we have

t
C(8) - Cltg) = Lolt)]™) [ (D(s) = Dleg))e'(s) s (20)
0

which again, being nonnegative, establishes' that t, is a paint:-of global minimum

0
of C(t).
The proofs of (iii1) and (iv) are similar and hence omitted. -

In the following lemma we give the discrete time version of Lemma 2.1.

LEMMA 2.2. Let for i = 0,1,2,...

i) - Rmi) . D(i) =$§}’+’H iglg : (21)
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where ¢(0) = ¢(0) = 0, ¢(i+1) > ¢(i), w(i+1) > ¢(i), and R > 0. Let D(i) be a

(1)  D(i)¢(i) - ¥(i) is a nondecreasing (nonincreasing) function of 1.

(ii) 1In the case D(i) is a nondecreasing and

Tim (D(i)e(i) - v(i)) > R , (22)

o0

the quantity m, defined by

max{i: D(i)¢(i) - v(i) <R} = my (23)

is finite and a minimum of C(i) occurs at my or mytl. "In the event D(i)

is strictly increasing, then

(a) minimum of C(i) is attained only at m, + 1 if

0
D(my)é¢(my) - v(my) < R. (24)

.......

D(m0)¢(m0) = lp(mo) = R. (25)

(iii) Again if D(i) is nondecreasing and

tim (D(i)e(i) - w(i)) = R, (26)

B

“then C(i) is nonincreasing and a minimum of C(i) occurs at i = . However
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minimum of C(i) may also occur at all i Z_io'for some positive integer

-iO.
(iv) In the remaining cases ¢(i) is a nonincreasing function of i and a

minimum occurs only at i = .

PROOF. The proof follows along lines similar to those of Lemma 2.1 and the

fact that

[D(i+1)g(i+1) - w(i+1)] - [D(1)e(1) - w(i)]
= [D(i+1) - D(i)le(i+1) . (27)

REMARK. For situations where instead the point of maximum of o(t)/[R + p(t)]

is required, the above lemmas can still be used since maximizing o(t)/[R + p(t)]
is equivalent to minimizing [R + u(t)1/e(t). By absorbing the constant R in
the function y, this becomes essentially equivalent to interchanging the roles

of the functions y and ¢ in the lemmas.

3. SOME SPECIAL CASES

_ For the general model considered in section 1, it has been seen in (5)
that T(t) coincides with (10) with p(t) and ¢(t) given by (6) and (7). Assuming
R] < Ry which is generally true, we observe that p(t) and ¢(t) are nonnegative
functions with ¢(0) = ¢(0) = 0. If <, Cy, f, Rys Ry and the process N(t)
are such that the functions p(t) and ¢(t) also satisfy the other conditions
of Lemma 2.1, then it can be seen by applying the Temma whether a finite optimum
tO exists or t0 = », In case a finite t0 exists, then it can be determined by
solving the equation (13).

In the following subsections we discuss a few particular cases as illus-

trations of the above procedure.
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3.1. CASE WITH ¢ = o,

From (5) the expression for CT(t) with { = » reduces to

- : N(t) t
C(t) = & [Ry + B C) + [ECF(N(u) )] (28)

Furthermore if Ci = (0 for all i, we have

t
[R; + éE(f(N(u),u))du]. (29)

e+ —

C(t) =

In case E(f(N(t),t)) is a continuous and strictly increasing function of t and

t
Tim [EE(F(N(E),t)) - JE(F(N(u),u))dul > R, , (30)
T 0
it follows from Lemma 2.1 that a unique finitelto exists which is the solution

of the equation.
t
tE(F(N(t),t)) - éE(f(N(u),u))du= Ry - (31)
Again in (28) if

C; = a+ig, i=1,2, ...
(32)
f(i,t) = v(t) +1i8(t), i = 0,1,2, ...,

where o and 8 may be nonnegative random variables; Tikewise if {y(t)} and
{s(t)} may be nonnegative random processes for t > 0, all together with the

process {N(t)} assumed to be mutually independent, then (28) reduces to
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Ce) = L IRy + (E(a) +  E@DEM(E) + 3 EREN (D)

t t
+ éE(Y(U))dU + éE(a(u))E(N(u))du]. (33)

We observe that in this case C(t) depends on the process N(t) only through its
first and second moments. Again with a.8, v(t) = v, 8(t) =6 all nonrandom

constants the expression (33) becomes
t
Tt = v+ LRy + (o + HENE)) + §EOE(R) + sfEM)Idu]. (34)

Along with (34) we consider below in some detail the case where N(t) is
a mixed Poisson process with mixing distribution given by the random variable 2
with distribution function F, i.e. given 1, the distribution of N(t) is
Poisson with mean AA(t), where A(t) is a continuously differentiable function
of t with A'(t) > 0. In this case N(t) is a pure birth process with state-

dependent birth rates

Txk+]exp(¥xA(t))dF(x)

A (8) = AY(E) 3 (35)

oo

[xexp(-3A(t))dF(3)
0

k=0,1,2, ... , t >0 (see Feigen [1981] and Puri [1982] for these and other

details about mixed Poisson processes.), and we have
E(N(t)) = E(0)A(L) (36)

and



E(N(t)) = EQA() + EGD)AZ(E) . (37)
Substituting these in (34) we have
T(t) =y + £ [Ry + (a*g)EQA(E) + 8 EGAAZ() + 5E(A)EA(U)dU]- (38)
Consider the special case with A(t) = t so that
Tt) = v+ IRy + (arp)E)E + § EGD)E? + § E(UEAD, (39)

By applying Lemma 2.1 or directly it is seen that CKt)'is minimized at the

point tO given by

W=

to = [2R,/(8E(x%) + 6E(2))1% . (40)

In particular if F(.) is degenerate at point Ag» SO that N(t) is a homogeneous
Poisson process with parameter s We have

2
z

ty = [2R1/(BA§ + 8xg)1% - (41)

The solutions of example 1.4 in Boland and Proschan [1983] and example
2.5(a) in Boland and Proschan [1982] can be obtained as particular cases of
thié case,

Again still with A(t) = t if » has an exponential distribution with para-
meter yu, then N(t) is a Polya process with Ak(t) = (k+1)/(u+t). Here while

the intensity of shocks increases with the number of shocks, it decreases with
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the age of the system. This may be the case where the system weakens with the
shocks, but the person who handles the system gets experienced and maturity

with time. Here the optimum replacement time to is given by
ty = ul2R;/(25 + us)12 (42)

On the other hand if A(t) = (exp(pt) - 1) with o > 0 and ) has an exponential
distribution with unit mean, the process N(t) is a birth process with birth
rates j = (k+1)p, k = 0,1,2, ... . In this case with Cj =0, j=1,2,...

(i.e. o = g = 0) we have from (38)>
— ] t :
C(t) = v + f-[R] + Gé (exp(pu) - 1)dul. (43)

By applying Lemma 2.1, it is seen that there exists a unique finite minimum

ty of C(t) which is given by the equation
(ot - 1) exp(ety) = [Rp/8] - 1. (44)

Finally let A be degenerate at one so that the process N(t) is a non-

homogeneous Poisson process with mean A(t). For this case from (38) we have
- 1 B 2 [
T(t) = v + ¢ [Ry + (a#8)A(t) + 5 A°(t) + 8/A(u)du]. (45)
0

The results of Boland and Proschan [1982, 1983] for infinite horizon time can

now be obtained from (45) by applying Lemma 2.1. For instance taking A(t) = At2

in (45) it is easily seen using the lemma that CT(t) has a unique finite minima
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t0 given by the solution of the equation

2.4

98A%tY + asatS

+ 6(atp)Ate = 6R; . (46)

3.2, CASE WITH t = Ti» WHERE kIS A POSITIVE INTEGER.

In this case the system fails completely at the arrival of the kth . . -

shock, so that we may define

f(j,t) = Cj =0, forj>k. : (47)

Consequently the expression (5) for T(t) takes the form

_ N§t)
C(t) = [R1 + RZ-R])P(Tk <t)+ E(_ 0 Ci)
1=0 .

(
t t r |
+ gE(f(N(u),u))du] (ép(rk > u)du)™' | (48)

An imbortant special case is when k = 1, so that © = T denotes the length of
Tife of the system. Let G(t) denote the distribution function of g with
probability density g(t) and r(t) = g(t)/[1-G(t)]1, the failure rate of .
Then 1in view of (48) the C(t) of (5) corresponds to the case with

. t o t
w(t) = (szRi)G<t)~+éffo,u)(l—e(u)>du;»¢(t) = é(l-e(u)>du - (49)
Also

D(t) = (Ry-Ry)r(t) + £(0,t). (50)

In the event D(t) is a decreasing function of t, then by Lemma 2.1 the minimum
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of C(t) occurs at «, so that the optimal policy is never to replace the system
prior to its natural ultimate failure. If on the other hand D(t) is an
increasing function of t with

T

Tim (D(t)e(t) - y(t)) > R, (51)

which can be shown to be equivalent to

o0

E(T])]Cim [(Ry-Rp)r(t) + F(O,t)] - gf(O,u)(l-G(U))du >Ry (52)

then T(t) has a global minimum at a finite point which can be determined with
the help of Lemma 2.1.

Finally if f(0,t) = fy» @ constant, it follows from above that in case
r(t) is decreasing, the optimal policy is never to replace the system until a3
is reached. However if r(t) is increasing then the qptimum tg will be finite

if and only if
E(ry)r(=) > Ry(Ry=R}) ™!, (53)
and the optimum to is the solution of the equation

(54)

to _ -1
r(to)£ (1-G(u))du - G(to) = R](RZ-R1) .

REMARK  From the above discussion it follows that there may be a system with
increasing (nonconstant) failure rate for which the optimum policy is never to

replace the system before its failure time Ty - On the other hand there may a]éo
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be situations where although the system has a decreasing failure rate yet the

optimal t, may be finite.
0

3.3. CASE WHERE THE STOPPING TIME ¢ IS INDEPENDENT OF THE PROCESS N(t).

We consider the special case where Ci's and f(i,t) satisfy (32) and «, 8,
and the processes y(t), s(t) and N(t) are all mutually independent. The

expression (5) for this case is given by

T(t) = [R; + (Ry-Ry)P(x < t) + E(a)E(N*(tAc))

t
+ 5 E(B)(EIN*(tAc) (N¥(tac) + 1)1} + [EG )P > wau
t t
* [EDENW)P(c > wau] ([P(x > wdu)! . (55)
Also for m = 1,2,
t .
E(IN*(tAt)]™) = EIN"(£)IP(x > t) + [EINT(u)IdF_(u) , (56)

0 T

where FT(-) is the distribution function of t. After substituting expressions
(56) in (55) help of Lemma 2.1 can be taken in minimizing C(t) whenever the
conditions of the lemma are satisfied. For example let o = g = y(t) = 0 and
§(t) = s, where § is a positive constant. Also let N(t) be a Poisson process
with mean At and T be exponentially distributed with parameter y. Then from

(55) C(t) of (5) corresponds to the case with

t
w(t) = (Ry-Ry)(1 - exp(-ut)) + Aagu exp(-yu)du

(57)
¢(t) ).

il
!
——
w—
1
D
-
o
Pl
[
=
o+
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Again here D(t) = ist + u(Rz-R]) is a strictly increasing function of t. More-

over

Tim [D(t)¢(t) - 9(t)] = » . (58)

too :

Consequently by Lemma 2.1 there exists a unique finite point t0 which minimizes

C(t) and which satisfies the equation
Asuty - a8(1 - exp(—pto)) = R]uz . (59)

4. CONCLUDING REMARKS

It is often the case that the "expected" cost T(t) is expressed in the form
[R + y(t)]/¢(t). In the cases where the conditions of our Lemma 2.1 are met,
the Temma can be applied to find the optimal to, as exhibited through many cases
considered above. However if the conditions of our lemma are not met, for
example if y'(t)/¢'(t) is not monotone, our lemma fails to say anything about
theloptimum tO. Some other teéhnique needs to be applied for such situations.
Again in the event the assumptions of Lemma 2.1 for the existence of a
unique finite optimum tO are satisfied, then it is giveﬁ by the solution of the
equation (13). However often it may be difficult to solve this equation directly.
Any of the standard techniques (such as the one due to Newton-Raphson) well
known in numerical analysis area (see Scarborough [1966], Chapter 10; Gerald
[1978], Chapter 1), depending upon their suitability to the situation at hand,
may be used in such cases. As an illustration the values of optimum to for the
equation (59) were obtained for different values of R] by Newton-Raphson method

for the case with A = y =1, § = 1/2 and are given below.
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R | 1 2 3 4

t I 2.950  4.990  6.999 - 9.000
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