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1. Introduction

The problem of comparing the precisions of several instruments
(or methods of measurement) arises frequently in scientific and
technological contexts. For example, Miller (1980) compares two methods
for measuring Kanamycin levels in premature babies, while Barnett (1969)
compares four instrument-operator combinations for measuring human lung
function. Grubbs (1973) discusses comparison of three velocity chronographs.
Numerous other examples can be found in the literatureof the social,
environmental, agricultural and physical sciences (see Thompson, 1963;
Cochran, 1968; Jansen, 1980).

Here, precision refers to the repeatability of measurements (how close they
tend to be to each other), as opposed to accuracy, which refers to how
close the measurements are to the true value measured (lack of bias). In
the experimental model adopted in this paper (see (1.1) below), bias can
potentially be eliminated by a Tinear transformation (calibration) of the
instrument reading; the precision of an instrument is then defined to be
the inverse of the measurement error variance of the calibrated instrument.

Of the p instruments to be compared, we assign to one (instrument 0)
the special role of the standard (or control) instrument. In many applications,
the standard instrument is the one currently in use, and the other p-1
instruments are studied in the hope of finding a better (more precise)
instrument (Jansen, 1980). Because the standard instrument has been used
previously, information may be available concerning its properties.

1.1 _The Model and Design.

To compare the p instruments, the following experimental design and

accompanying model is frequently adopted (Cochran, 1968; Barnett, 1969;



Theobald and Mallison, 1978). It is assumed that n experimental units
(persons, physical objects, etc.) are randomly selected from a population
of such units. Let uj be the true value of the quantitative characteristic
to be measured for the jth unit. Each unit is measured once by all p
instruments. (Note: If measurement is destructive, it is assumed that
each unit can be divided into p homogeneous parts, each having true value
uj.) Let yij be the reading on the ith instrument for the Jth unit. We
assume that the mean of yij is Tinearly related to the true value uj; that
is, instrument i measures uj, but not necessarily in the cdrrect scale.

Thus, our model is

yij = ¥ B uj + eij’ i=0,1,...,p-1, 3 =1,...,n. (1.1)

The errors of measurement eij are assumed to be mutually statistically

independent, and also independent of the (random) true values u],...,u

Further, for each i, the random variables ei]""’ein are assumed to have

n’

a common normal distribution with mean 0 and variance o?, i=0,1,...,p-1.
Finally, we assume that Uy Ups...,u are a random sample (i.i.d.) from
a normal distribution with mean u and variance 05.

Model (1.1) is recognizable as a linear structural errors-in-variables
model (Kendall and Stuart, 1979, Chapter 29), and also (Theobald and
Mallinson, 1978) as a congeneric single factor model. It is easily seen
that the parameters of this model are not identifiable. Indeed, the model
(1.1) retains the same form if o is replaced by oy - Bid’ B; by CBi’ and
uj by c'](uj+d), 1=0,...,p-1, j = 1,...,n, Where c, d # 0. Consequently,

restrictions must be placed on the parameters to identify them.



Theobald and Mallinson (1978) adopt the usual factor analytic
constraints y = 0, 05 = 1. Using such constraints is equivalent to
changing the definition of the quantity to be measured from uj to the
standardized value u§ = o;](uj-u).

Alternatively, recall our earlier discussion about the standard
instrument (instrument Q). If enough experience has been obtained
with use of this instrument to calibrate it, then we can assume that

E(ij) = Uy all j, and hence that

ag = 0, BO = 1. (1.2)

Note that even when assumption (1.2) is not appropriate, adopting it
simply means that uj is redefined to be E(yOJ)'

The restraints u = 0, 05 =1 and the restraints (1.2) define two of
a large class of equivalent identifiable parameterizations for the model
(1.1). For purposes of comparing precisions, either parameterization
yields the same conc]usionT It is worth noting that the slopes BO’
B]""’Bp—l in Theobald and Mallinson's factor analysis parametrization
correspond to o, ouB],...,cqu_] in the model (1;1) under:the restraints
glsz),used in this paper.

1.2 Definition of Precision

If we know the parameters o and B> then the observations yij’

J=T,...,n, on instrument i can potentially be calibrated (rescaled)

to provide readings
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which are unbiased for uj, J=1,...,n. The measurement errors e?i
of y?j have variance (of/sf). Since after calibration all instruments
measure uj without bias, a natural definition for the precision of
instrument i is
2
S N T -1 (1.3)
'n'_i W 02, slseeespP-1. .
i
This definition of precision is widely used (Cochran, 1968;

Thompson, 1963). . However, other authors (e.g., Theobald and Mallinson,

1978) use the relative precision:

i=0,1,...,p-1. (1.4)

The advantage of using T is that T, is a dimensionless quantity. However,
T has the disadvantage of depending upon the variance 05 of u in the
population of units used for the experiment; this population need not be
the same as the population of units to be used in future applications of
the instruments. For this reason, we prefer to use (1.3) as our measure
of precision.

Howevér, if we are comparing the precisions of instruments 1,2,...,p-1
to the precision of the standard instrument, it does not matter which

definition of precision is used, since the ratios
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have the same value using either definition of precision. Notice that

since we assume (see (1.2)) that Bg = 1,

TI'O_]_23TO__’ T'i - 2 ° 1=]923-"3p—].' (]'6)
UO -i

1.3 Summary of the Paper

The questions that are treated in this paper are:

s - ' — ] '
(I) How to estimate n = (ﬂo,n],...,wp_1) and y = (w],...,wp_]) ;
(II) How to test the null hypothesis

of ¥ <1, d=1,2,...,p-1 (1.7)

that the standard instrument is at least as precise

as any other instrument, versus alternatives

If H0 is rejected, we may also want to follow up by determining
the instrument or instruments which are more precise than the standard
instrument. 1In consequence, we are interested in finding tests of H0
which lend themselves naturally to such follow-up procedures.

When p = 2 (only one instrument other than the standard instrument

is included in the experiment), the model (1.1) remains nonidentifiable

even after imposing the constraints (1.2). A further parametric constraint



is required. Given our earlier characterization of the standard
instrument, it is reasonable to assume that prior experience with this
instrument on the given population of units has yielded an accurate
estimate of the relative precision T9 = cazoﬁ of the standard instrument
(see the Appendix). Thus, we assume in Section 2 that T is known, and
show how to find maximum 1ikelihood estimators of the parameters (and
also mgs 7y and ¢1) under thfs assumption. We also construct a 100(1-y)%
confidence interval for ¥1> and show that HO: ¥y 511 can be tested using
a test for correlation. The power function and other properties of this
test are determined.

When p > 3, the model (1.1), (1.2) is identifiéb]e. Maximum
likelihood estimators ;, @ for o = (ﬂo,ﬂ],...,ﬂp_])l and y = (wl,...,wp_])',
respectively, can be obtained; but for P > 3, require use of computer
algorithms. In Section 3, we use the recent results of Fuller, Pantula,
and Amemiya (1982) to obtain the asymptotic (m) distributions of « and
of @, and to construct approximate 100(1-#)% confidence regions for w and
for y.

Our results in Section 3 reveal that the variance of the asymptotic
marginal distribufion of @1 increases as any of the ratios wj, J.# 1, are
allowed to become small, and convergesvto infinity when ?;¥»¢j goesato 0.
ConsequentTy, care must be used in selecting instruments té be used in com-
parative precision experiments: If we cannot rule out the possibility that
the wj, J#1, are all small, then the maximum likeTihood estimator of ¥y
can be less efficient than alternative estimators based on data taken only
from instrument i and the standard instrument (provided that Tg is known).

Similarly, the likelihood ratio test of HO V.S, H] may be less powerful



than alternative tests.when imprecise ‘instruments are included in the
experiment.

Thus, in Section 4 we propose a union-intersection test (Roy, 1953)
for H0 V.S, H] based on simultaneously testing the subhypotheses |
L vy 21,0 = T,...,p-1, using the test for p = 2 instruments
obtained in Section 2. Although this test requires us to know Tg» it
has two important advantages over the likelihood ratio test: (1) it
Tends itself more naturally to follow up seérches'for more precise
instruments when H0 is rejected, and (2) its power is not affected by

the inclusion of imprecise instruments in the experiment.

2. The case of two instruments

When p = 2, the model (1.1), (1.2) becomes

y. = - " o YY) L i=1.2,.00, 2.1)

where z; = (uj"eoj’ e]j)' are i.i.d. with a trivariate normal distribution

with mean vector (4,0,0)' and covariance matrix diag(os,og,of)u That is,

. 2 2
Zj " MVN3((p,0,0)', d1ag(0u,00,0

- N

))s

Jj=1,2,...,n. We assume that T = 06205 is known.

It follows from (2.1) and our assumptions on ZyseeanZy that

Yyse«ssy, are i.i.d. MVN2(n,Q), (2.2)
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- °0%0 < T >
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It is easily shown that the transformation (2.3) is a one-to-one onto

map from the original parameter space
_ 2 2y, o 2 2
{(Usa]sB]acosU])- - < U,a],B] < o« 0030] > 0}
of the model (2.1) to the space

{(n,Q): -® < nos n] < ®3 wS,N% > 0; 92 f_TO(]+T0)—]}- (2.4)

Since TO(]+T0)_1 < 1, the space (2.4) is a proper subset of the usual

parameter space for a bivariate normal distribution.
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Theorem 1. The maximum 1ikelihood estimators of Ng» N> wg, w% and p
are the following:

A -~

n-i = y'l’ w.i = Si.i(1-02)/(]-pr), i= ],2,

~ ) TO a1
p = r[min{] s _2“}] =2,
r (]+T0)

The maximum of the Tikelihood is
. N e N2k
[n/(2re) 1M e(1-67) s gy (15r) 23330

Proof. Fix p and maximize the likelihood over the remaining parameters,

using the results on p. 73 of Anderson (1958). Then maximize over 0,

pzi TO(]+TO)-]. O
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It follows from Theorem 1, and the invariance property of maximum
likelihood estimation under reparameterization, that the maximum likelihood

. 2 2
estimators of y, aqs B], % and o, are

~ ~ A

_ _ ~ o =1 1
u = yos a] = 1 B]yo, B] = D(]+T0)TO (511/500)2 s

~2 ~2 "2 -1
~2 i} 500(]‘0 ) ~2 S]](]—p )(]-p (]+T0)T0 )
GO S ’ G] = ~

(T+zp) (1-0r) (1-or)

s

and the maximum likelihood estimators of the precisions Tgs and of

the precision ratio ¥y = “5]”1 are:

- (eg)(-or) L (1er)5P(14ey)?

"o~ 2y > M T "2y(. 2 ’
Soo(]'p ) Tosoo(l'p )(To_p (]+T0))

- %(Tteg)

vy = "

t(rgme (T+))

Note that ¥ is a function of the data only through ;2, and thus
only through rz. We could obtain a 100(1-vy)% confidence interval for
w] by using the above fact to determine the c.d.f. of @1. However,

the following approach is more convenient because of the availability

of tables.

100(1-v)% Confidence interval for v

1
Step I. Use David's (1938) tables of the c.d.f. of r to construct
a 100(1-y)% confidence interval [pL(r), pU(r)] for p. Let
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0,3 x(r) = ‘0 4
Treg) ©)s of(r) = min(o(r), <]+SO> ).

oj(r) = max(p (r), - (

Step II. Note that

(147,)o?

IP =
' rlrg-(1+eg)ed)

is strictly increasing in p2 for |[o] 5_10(1+ro)-]. Hence,

(1+TO)02

TO(TO-(1+TO)02)

{c: ¢ =

> of(r) <o < ofj(r)}

is a 100(1-v)% confidence interval for Yy-

As an example, if n =10, vy

.05, r = 0.7952, T = 10, we find that

o (r) =0.34 = of(r), pU(r) 0.94 = ox(r), and the 95% confidence

interval for vy is [.015, 3.466].

Turning now to the test of

HO: Y < T v.s. Hy: ¥y > 1,

note that ¥y < 1Tif and only if p2 5_13(1+T0)-2. Thus, we can

equivalently test

2 2
HO: p2 < 0 9 vs. H]: p2 > 0 5 -
(1+zy) (T+cy)

Using Theorem 1, but with p2

2 -2
bounded by T0(1+T0)
in (2.4),

rather than TO(]+T

we can find the maximum of the Tikelihood under HO’ and thus

determine the likelihood ratio test statistic A for HO V.S, H]. It is

-1
0

11
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easily shown that A is a function of the data only through [r], that a is
a continuous and strictly decreasing function of [r] for |r| > TO(]+T0)_],
and that x = 1 for 0 < Ir] < TO(]+T0)_1. Consequently, the Tikelihood

ratio test of HO V.s. H]'has rejection region for H0 of the form

rc > ¢4, (2.5)

2 > TS(]+TO)-2. Since the density function of r2 is known to have

where ¢
monotone Tikelihood ratio (in terms of its parameter p2), it follows
that for a level Ys 0 <y <1, test of H0 V.s. H], the critical constant

c? = Cz(y) in (2.5) should be chosen to satisfy

Pir > 2|y = ro(T+ey) Tr= (2.6)

The resulting test is UMP among all tests depending only upon rz. Since
r2 is the maximal invariant in the sample space under the group of
transformations

b0 0 a

yj+ 0 b yJ+ R s '.°°<a0a a]; bos b-'<°°s
1 1

and since this group of transformations (together with thé induced group
of transformations on the parameter space) leaves the problem of testing
HO V.S. H] invariant, we conclude that the test defined by (2.5), (2.6)

is UMP invariant lTevel y for testing H0 V.S, H].
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Subrahmanian (1980). The value of ¢2 satisfying (2.6) is an increasing
function of ) (for fixed n, Y), and a decreasing function of p (for fixed
o> Y). The following table gives c2 to four-decimail accuracy for

Y = 0.05, ™9 = 1.0, 2.0, 4.0, 6.0, n = 10(5)30(10)50.

Table 1

Value of c2 for y = .05

n
;;\\\\ 10 15 20 25 30 - 40 50

1.0 .6927 .6053 -5541 .5198 .4947 .4599 -4364
2.0 -8053 7429 7047 6783 .6587 .6308 .6118
4.0 .8879 .8487 .8241 . 8066 .7935 .7745 -7612
6.0 .9214 .8924 .8739 .8606 .8505 .8354 .8245

Note that when T is Targe (the standard instrument has large relative
Precision), a very large valye of Ir[ (exceeding .9) is needed to conclude
that instrument 1 is more Precise than the standard instrument._

We now investigate the power of the test (2.5), (2.6) at an alternative:

H Y =1 +4, 4>,

1A°

If H]A is true, then



(1+4)72
2 pZ(A) - 0

1+(2+A)T0+(1+A)T§ '

Since the density of r2 has monotone Tikelihood ratio in terms of

14

(2.7)

its parameter p2, and since it is easy to see that p2 is increasing in

A for fixed Tg»> and also increasing in Ty for fixed A, it follows that

the power function

Power(a, 74, n, v) = p{r? 3_c21p2(A)} (2.8)

of the test (2.5), (2.6) is increasing in A for fixed Tgs Ms ¥,
and is increasing in T for fixed a, n, Y- The power function is
also easily seen to increase in n for fixed a, 9o Y-

We have calculated the power of the test (2.5), (2.6) for y = 0.05,
A = 3.0, 5.0, n = 10(5)30,40,50, 9 = 1.0, 2.0, 4.0, 6.0. The
results are shown in the following table.
Table 2.
The power of the test (2.5), (2.6) for Y = 0.05, A = 3.0, 5.0.

A= 3.0

n .
g 10 15 20 25 30 40 50
1.0 0.13160  0.16951 0.20450 0.23751  0.26917 0.32967 0.38635
2.0 0.14222  0.18629 0.22720 0.26590  0.30301 0.37286 0.43702
4.0 0.14895 0.19738 0.24234 0.28530 0.32638  0.40407 0.47615
6.0 0.15473  0.20772  0.25807 0.30677 0.35426 0.44533 0.52850
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10 15 20 25 30 40 50

1.0 0.15512  0.20592 0.25297 0.29721 0.33931 0.41820 0.48983
2.0 0.16630 0.22380 0.27714  0.32725 0.37473  0.46207 0.53940
4.0 0.17316  0.23529 0.29281 0.34718 0.39840 0.49246 0.57559
6.0 0.17947  0.24663 0.30978 0.3697] 0.42670 0.53111  0.62051

As can be seen from Table 2, the test (2.5), (2.6) is not very
powerful, when n and Tg are small, for detecting even six-fold (1+2=6)
increases in precision of instrument 1 relative to the standard instrument.
Since g is not usually under the control of the experimenter, we must
be prepared to use fairly large sample sizes n when 5 is small.

It is known that as N,
Ai(r2-02) 5 N(0, 4p2(1-p2)2), (2.9)

in distribution. Consequently, it follows from (2.6) that if n is large

and
2 2T0(1+2T0) T(z)
C =—x—% 7z +—— (2.10)

1 s
n2(1+1‘0)3 Y (1+TO)2

then the test (2.5) has size approximately equal to y. (Note: Here,
z, has its usual meaning; that is, z, is the 100(1-y)th percentile of

the standard normal distribution.) Using (2.7), (2.8) and (2.9), the
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power function of the test (2.5), (2.10) can be approximated. We have
used this approximation to find the power of the test (2.5), (2.10) for
y = 0.05, A = 3.0, 5.0, g = 1.0, 2.0, 4.0, 6.0, and n = 150, 200(100)500.

The results are shown in Table 3.

Table 3.
The approximate power of the test (2.5), (2.10) for y = 0.05, A = 3.0, 5.0.

A= 3.0
n
150 200 300 400 500
0
1.0 0.78665 0.87890 0.96391 0.99002 0.99740
2.0 0.82891 0.91883 0.98413 0.99721 0.99960
4.0 0.84524 0.93514 0.99068 0.99890 1.00000
6.0 0.84892 0.93959 0.99231 0.99920 1.00000
A=5
n
150 200 300 400 500
T 0 :
1.0 0.87893 0.95787 0.99350 0.99910 1.00000
2.0 0.92652 0.97651 0.99807 1.00000 1.00000
4.0 0.93636. 0.98266 0.99991 1.00000 1.00000
6.0 0.93853 0.98472 0.99930 1.00000 1.00000




3. The case of three or more instruments
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When p > 3, the model (1.1), (1.2) is identifiable without additional

parametric restrictions. In vector-matrix form this model can be written

as follows:

u i oﬁ 0
(J ,1<3<n arei.i.d. MVN+]< ) ,
e. P 0 0 D
J 52
where y. = (Ynis Yysoee:sy D'y e = (enss €anynn. e Y
J 0j° 71j p-1,J J 0j> =ij>r--°"p-1,3) °

a = (d],...,dp_])l, B = (B],---,Bp_])rs

2 2 2
D, = d1ag(00, SEPPRRY _]).

g

Let
—_ — . -1 0
y = (y03~"3yp_]) =n jZ] yj9
10 — —
S = (s, ))s s, = ﬁ-jz](yuj-yu)(yvj-yv), 0<u, v<p-l.

When p = 3, the maximum Tikelihood estimators of u, 03, a, B, and
2 (02

0,...,c§_1)' have the following form (Barnett, 1969):

(3.1)
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A —_ "~ _] ~ —_ —_ _"
T yOs 05 = S]ZSO]SOZ, o = (y]:yz)' - YB
(3.2)
B = (B]’Bz)‘ = 0; (5013502)'9
0% = (5hton)! = (5g0s5115559)" - 02(1,8%,8).
For p > 3, the maximum 1ikelihood estimators of u, o and o2 have the
usual form:
W= yb: o = (yis~° syﬁ_])' - ybs ]
"2 "2 "2 CyNa o244 R2 22
(oo,. ’Gp—l) = (500’511” sSp-1,p-1 cu(1,B], .,Bp_])

The maximum 1likelihood estimators of these and the remaining parameters

require solution of the equations:

where

. /1) [T\ ) )
2 . 2
y =% <B> <s> + Diag(og,. - -»0p_q)-

Alternatively (Theobald and Mallinson, 1978), we can use standard computer

algorithms (Joresksg and Sorbom, 1982) to find maximum likelihood estimators

of the parameters

- ' - ' 2 _ ;a2
E - (EO’..-’EP‘]) ) A= (Aos---skp_]) s 0 - (eo"" 0 -
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where Ao 2 05 e? >0, 0 <i <p-1, in the factor analysis model:

=&+ xf.+e.,i=1,...,n,
yJ g j eJ J n

f, :
<a> . - 1o
o) 1<Jj<n, are i.i.d. MVNp+] 0, 0D R

J 02

where D 5 = diag(eg,...,eg_]). Then, since as noted in Section 1 there
6 ‘
is a correspondence between the parameters of this model and the model

(1.1),

85 = ig, é = Xa (X1,...,Xp_])', 62 = 5?, 0<1i<p-l.
Because of the computational difficulty in finding the maximum
likelihood estimators for p > 3, Barnett (1969) suggests method-of-
moments estimators for the parameters based on the maximum 1ikelihood
solutions for p = 3.

Once the maximum 1ikelihood estimators of 8 and 02 have been
obtained, the maximum 1ikelihood estimators of the precisions s and

precision ratios ¥, are calculated as follows:

o S

Tfo_o-o, Tri-c_i B_i, 1‘=1’|o-’p-‘l’

(3.3)

"2 "2 2
"% B

<= >
-ty
|
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3.1 Asymptotic Theory

For notational convenience, we adopt the convention that for any

vector t = (t1""’tr) .

Thus, Dy = diag(8;...-281)s D 5 = diag(gg,...,cg_]). The symbol 0
will be used to represent the scalar zero, a zero vector, or a matrix
of zeroes; the dimensions of such a matrix will always be clear from
the context.

Fuller, Pantula, and Amemiya (1982) have considered a generalization
of the model (3.1) in which uj is a k-dimensional vector of normal
variables and 8 is an rxk matrix of unknown paramefers. They have
shown that the maximum 1ikelihood estimators are consistent and jointly
ésymptotica]]y normal (n»=), and have given an explicit expression for
the covariance matrix of this asymptotic‘mu1t1variate normal distribution.
When k = T, r = p-1, their results can be simplified into the following
form.

Lemma 1. Under the model (3.1),

~

. B -8 0 v v
/n ~ MVN,, 4 < ) ) o 602
~2 2 P 0
g =0

Bo foli']

in distribution as n » «, where
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) W + PV pr, v -pPV »
88 g 02 802 0202
. 2 :
W= (1+ ) [diag(of,... 002 1) + of 6e']
o 0
u
. 2 2 -1
P = TOH [d1ag(c1,. ’Gp-1)] ( B’DB)
H pil 1 20 Q"D
= Paes Un =1,V = s
sk Y9 Yo 22n b
and Q = ((Qij)) is defined by
) bivye 1 N
HOQ; 5 =
2 . . ..
(H-p:)%, 1 =3, 1,5 =0,1,...,p-1.

A

We are interested in the asymptotic properties of the maximum

likelihood estimators =« = (wo,...,np_]) s U = (w],. ,wp_1) of
0 = (ﬂo,. ’“p-l)l and y = (w],...,wp_])', respectively.
Theorem 2. Under the model (3.1)

(r-m) + MUN_(0,L)

W

n

in distribution as n+«, where

D0 +rt) + 2 07T,

L = iz (1+
T
9, 0
- 2 2
T = (]+’_[_H) D.“- = TOH(O,TT)'

0
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Also,
1 - .
n= (y-y) > MVNp_](O,M)
in distribution as n-», where
M= 20 wwt) + 202020, -4)Q7 (D, ,-p)"
TaH TOH v’ N :

Proof. It follows from (3.3) that

Dg + Dg
T e [diag(s2,...,02 1)1 N(8-g)
0 -I,o-.’p_'l
2
D 0 n
- D"} D25(6°-0),
0 1 o o
and that

Y R . ) ~9 -1,"
w_w_co(DB+DB)[d1ag(U]a---aqp_]) (B‘B)
2F s 02 ~2 -1 -1,~2 2
-co[d1ag(o],...,cp_])] DB(_B’DB)D 2(0 -5 ).

o

Since é and ;2 are consistent etsimators of g and 02 respectively,
the conclusions of the theorem follow from Lemma 1 and Slutzky's Theorem,
after considerable algebraic simplification. O

The covariance matrices L and M of the asymptotic distributions of
A 1

(m-7) and n§'($-¢), respectively, depend on Q'], which is difficult

1
n2
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toexpress in a single explicit form.which holds for:all-values- of the wi's.

One exception is the case p = 3, where

H O 0
-1_ _H 2 |
Q7! = 2015 0 5 o + 151, (3.4)
2
0 0 Vs

where 13 = (1,1,1)".

3.2. Asymptotic confidence regions

To construct joint asymptotic 100(1-v)% confidence regions for the
vector parameters = or y, we could use the Scheffé method to form

confidence ellipsoids:

A{n: n(;r-'rr)' IA--](TAr-Tr) iXSsY}’

~

Ay n(yp-p)’ fﬂ'](q:-w) ixz

p_]’Y},

2

where y
r,’Y

is ‘the 100(1-y) percentile of the xg-distribution, and L,
M are consistent estimates of L, M formed by replacing the parameters

Ta s 05, TS in the expressions for L and M in Theorem 2 by their
"2 _ =202 )
practical applications these regions will only be used to provide

maximum Tikelihood estimators. (Note: However, in most
simultaneous 100(1-y)% confidence jntervals for the individual “ils
or the individual ¢i's. For this purpose the Scheffe method yields

intervals which are much too broad. Instead, using Theorem 2 and
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'Sidak's (1968) Corollary 3, we can ConstrUCt.iheérECtangles

me=n 2ZY1 25 My St ng] 255 021 <p-1,
(3.5)
N -5 " N -3 3
wi -n zY2 me; < ¥y <Yy +n zY2 My 1 <1 <p-T1,
where
1, =30-0-0)"P) 5 = 30 - V-1 (3.6)

zY is the 100(1-y)th percentile of the standard normal distribution,
and Eii’ &ii are the ith diagonal elements of E, ﬁ, respectively.
(That is, Eii is a consistent estimator of the variance of the asymptotic

1 A N
distribution of n= (wi—mi), and m, is a consistent estimator of the

i
variance of the asymptotic distribution of‘n%'(@i-wi).) The rectangles
(3.5) provide 100(1-v)% simultaneous confidence regions for the elements
of m and y, respectively, and yield simultaneous confidence intervals

for mi5 0 <1 < p-T1, and for Yis 1 < i < p-1, which are shorter than

those provided by the Scheffé method.

Note: Alternatively, we éou]d let y; = (Zp)_]y, Yo = (Z(p—]))—]y in (3.5)
The resulting Bonferroni rectangles are -slightly wider than thetrectdhg]es
 (3.5) with v;,y, defined by (3.6); see Seber (1977, Chapter 5), Miller
(1981). If the matrices L and M can be shown to have a convenient struc-

ture, the rectangles (3.5) can be narrowed through use of more precise

inequalities than that of §%dék; see tong (1980).
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3.3. A comment on the variance of the maximum likelihood estimators of

Yyaeeesl y
Recall that My the ith diagonal element of M, is the variance
1 A
of the asymptotic (normal) distribution of n? (wi-wi)? i=1,...,p-1.

When p = 3, it follows from (3.4) and Theorem 2 that

4 1
i =z, (07 oReEe LR IT)

2 2, w§(1+wi)2
+Hy ty,) ————

i =1,2. Note that My depends not only upon w1, but also upon Vo and

o> and that myp can be arbitrarily large when either ¥y is small (instrument
2 has small precision relative to the standard instrument) or 9 is small
(the relative precision of the standard instrument is small). Similar
remarks hold for Moo

When p > 3, each m,

i depends not only on Vi but also on wj’ J# i,

and on t,. It can be shown that m;. » » if either t, >~ 0 or max y. » 0,
0 id 0 i#i

and that ms 5 is increased by decreasing either Tp Or any wj, J#i.

Consequently, the accuracy of maximum likelihood estimation of any Vs

is adversely affected by the inclusion of any imprecise instruments in

the experiment described in Section 1.

This observation partially justifies Barnett's (1969) decision
to forgo maximum likelihood estimation of the parameters of the
model (3.1) in favor of estimators which involve data taken from
only three instruments at a time. Unfortunately, our criticism can

be also levelled (as we have seen) at the maximum 1ikelihood estimators
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for the case p = 3. We can try to use the data to judge which instruments
are the most precise (so as to always estimate wi from a triad in which
the third instrument, other than instruments 0 and i, is a precise one).
However, if our estimators are fallible, our choice of a precise
isntrument to use may also be fallible. It would be preferable to use
information of which we are more certain. In many cases, as noted in
Section 1, we may have a good estimate, based on previous experience,

of g This suggests making use of the results of Section 2 (the case

p = 2) to estimate and compare the precisions. Indeed, if we know the
value of Tg» there is no need to use all instruments simultaneously

on the same units - a series of experiments in which each new instrument

(i = 1,2,...,p-1) is tested with the standard instrument may do as well.
We hope to study this design question in our future research.

Of course, one advantage of the experiment described in Section 1
is that (particularly when p is large) it can lead to a good estimator
of ' This may be helpful when such an estimator is not previously
available.

The discussion above also suggests that the 1ikelihood ratio test
0° Vi <1, i=1,...,p-1 versus H]: P 1, some i, may have poor
power in cases where some of the instruments included in the experiment
for comparison to the standard instrument are imprecise relative to the
standard (but where at least one instrument s more precise than the
standard). For this reason, and because of its appropriateness for
follow-up determination of moré precise instruments than the standard when
H0 is rejected, in Section 4 we propose a union-intersection test for HO

based on the correlation test described in Section 2.
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4. A union-intersection Test of H, when 1, is known
Note that the null hypothesis H0 that the standard instrument is

at least as precise as any of the other instruments can be written as

p-1

0 Hooto v, <1, 1 =T,...,p-1. (4.1)
=1

-l

If we assume that o js known, then the theory of union-intersection
tests (Roy, 1953) and the results of Section 2 suggest the following
rejection region for HO:

2 2

3

max r: > c’, (4.2)
T<i<p-1

where

2

SAzs
2 S0

T 300%4i
Theorem 3. Let r have the‘distribution of the sample correlation
statistic based on a random sample of size n from a bivariate normal
1 _1
population with correlation p = r5 (1+T0) 2, If c2 in (4.2) is chosen

to satisfy
pie? s 2y =1 - (1M (P71, (4.3)

then the test of H, defined by the rejection region (4.2) has level of

significance no greater than v, 0 < y < 1.



28

Proof. It is straightforward to show that

= = [ S—- 1
X = sg8 (501""’50p-1) (x],...,xp_1)

has, conditional on Yo1°+++*Yon> @ (p-1)-variate normal distribution
1 -

with mean vector 55b TO(]+T0) 1 B and covariance matrix

)-1

o s 2 2 2 2 .
z = d1ag(c],...,op_1) + 9 TO(]+T0 BR',

and is dndependent of -~ _ ..
. = S.. -——, 1=1,...,p-1,

where q%,...,qs_] have the joint distribution of the diagonal entries
of a (p—T)-dimensibna] Wishart matrix with n-2 degrees of freedom and

covariance parameter =. Note that

2
r. 2
Y'_I?f_cz, '|=-l, .,p--l o4 12 __<_ czs 1=13 -sp"-ll’
1-r: T-c
i
and that
2 2 |
5 =5 i=1,...,p-1.
I-ry gy

Note also that the conditional joint distribution of x, q%,...,qp~]bgiven

Yoi-++* Yon depends on the y01's only through S00°
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Thus,

2 2 %1 AN
P{r; <c%, 1= 1,...,p—1|H0} = P{ 5;( > , 1 =1,...,p-1}
1-c

tl
™

oo lP(Al500)]

where

1
IXs | 2\ ® '
A= {— 5_<;—E§-> s i = 1,...,p-11.
95

Further,

- P 2 2
P(Alsge) = E » > [P(A]q],..,qp_],soo)].
975+ -0

It is easily seen that the mean vector sé% T0(1+TO)_] g8 and covariance
matrix = of x given S00 satisfy the conditions of Theorem 3.1 of Das

Gupta, Eaton, et al (1972) for every partition of x info components X, X
Consequently, using induction, it can be shown that

1

. -1 x| 2 \ %
2 2 P 1 c 2
P(Alays- 595 75500) > I P{ 3 5_<1 2 > a5 s5qg) -

Then, noting that = has the form of Example 4.1 in Karlin and Rinott
1
(1981) and that P{|x;| < (c%/(1-c%)) 2 q,]q%, sgy} is increasing in g,

i=1,...,p~-1, we can use the arguments of Section 6 of that paper
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to show that

P §_< = ) |a%s Sant
q$’-.-3q§_] [-i'—'.l q-i ]-CZ 1 00

Finally, since each

%] 2\ 3
P{— 5_( < > Isanlt
% 1-c? 00

is decreasing in S00° repeated use of Lemma 3 of Lehmann (1966) shows

that

However, by (4.3) and the results of Section 2,

P < gy > (1o VP =,
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Consequently,

P{ max rf 3_c2|H0}
1<i<p-1

1]
—
I
-
—_—
=
| A
v
weda
I
o |
“
-
©
1
o
T

| A
]
1
o=

proving the assertion of the theorem. [

When n is large, we can let

2
2t~ (1427t,) T
2. _jél____l¥§ 2, + ___ll__f , (4.4)
n< ('I+T0) (]+To)

where £ = 1 - (1-y)]/(p']) and z, is the 100(1-£)th percentile of

the standard normal distribution. This fact, and also the large-
sample representation of the power of the test defined by (4.2), (4.4),
follows from the following theorem and its corollary.

Theorem 4. Let

2
2 ____ %0
P17 () (Thyyeg)

3 e e l pp 'l p I L]

in distribution as n+», where C = ((Cik))’
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4p§ (1-p§)2, i=1,....0-1,

O
]

2 2
4o p
= _1_IS 1 - 2 _ 2 1 2 2 . - _ .
ik T T2 [tg(1+2 1) (1-05) (-0, ) + £ o301 5k = T.....p-1, 1 # k.
0

Corollary. For large enough n,

p { max rf Z_CZITOa Vpseoby 1}
1<i<p-1 P
N 1.2 2, -3 1,22, -%
o~ 1 - @p_](n2 (c —p]) 3 »...sN= (C -pp_]) Cp-l,p-l)
p-1 1 _1
= 1- 1 q)(n? (Cz-p_I?')C_i_iz ),
IR

where @p_](z), Z = (z],...,zp_]Y is the joint c.d.f. of a (p-1)-variate

i1
normal distribution with mean vector 0 and covariance matrix ((cik/c{2c£1)),
and o¢(.) is the c.d.f. of a standard normal random variable.

Proof of Theorem 4. We can use the results in Section 3 of Olkin and

1
Siotani (1964) to show that n= (r1—p],...,r fpp_])' has asymptotically

p-1
(nsw) a (p-1)-variate normal distribution with mean vector 0 and a
certain covariance matrix which depends upon Pis i=1,...,p-1, and also on
the corre]at1pns Pik between yij and ykj’ i#k,ik=1,...,p-1, any
J=1,...,n. However, the fact that

-1
o5k = Tg (T*Tglego,



33

simplifies matters considerably, and the conclusion of the theorem
follows from a standard Taylor's series argument. O

1 _1
Proof of Corollary. Since the correlations cikc;ftckf are all nonnegative

(see Theorem 4), the stated inequality is a consequence of Slepian's (1962)
inequality. O

One advantage of using the union-intersection test (4.2) of Ho is
thatvwhen H0 is rejected, we can search for instruments i which are more
precise than the standard instrument. Thus, we can agree that instrument
i is more precise than the standard instrument if r? z_cz. If H0 is
rejected, at least one such i # 0 must exist.
Note. Since we are assuming here that the value of g is known, we
can construct confidence rectangles for ¢1""’¢p-1’ alternative to
those given in Section 3, by simultaneously constructing the confidence
intervals for ¢1’°--’¢p-1 given in Section 2, each at confidence level
(]_Y)T/(p-l). That the resulting confidence rectangle formed from such
intervals has joint confidence 1-y follows from arguments similar to
those used to prove Theorem 3.
Appendix.

Since we assume in Sections 2 and 4 that o is known, we indicate
how past experience with the standard instrument can be used to obtain
an accurate estimate of g Assume that the standard instrument has

been used K, K > 1, times on each of m units selected from the target

population of units. Thus we observe

ijk = uj + erk’ k=1,...,K, J=1,...,m,
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.. 2 X .
where the €jk 2re i.i.d. N(O,oo) variables independent of Upseenslos
and where u],...,um are i.i.d. N(u,oﬁ) variables. Let yoj be the average

of the measurements on unit j and y,.. be the overall average. Let

(D)2 =K 3 Foe -T0 )% mikeT)s2 = Y E(
T ye 03 0 2 371 k=1

— 2
ijk-'ij')

Then when m(K-1) > 4,

| N
voo Im(K-1)-2 71

T T KMk 2 1)
2

is an unbiased estimator of T with variance

2
- (T+krp) 2(1K-3)

var(%o) = 2 (m-1)(m(K-1)-4) *

In some applications, it is assumed that instead of the value of g

the values of certain other parameters are known. For example, it may
be assumed that By =By = ... = Bp-] = 1 (Grubbs, 1973), or that the
error-variance ratios 05062, 1 <1 <p-T, are known. In each of these

two cases, a union intersection test of Hp: ¥y <1, 1 =1, 2,...,p-1
using a test statistic based on the sample correlations taken between
each instrument and the standard instrument can be constructed (see Shyr

(1984)).
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