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1. Introduction

Ever since the monumental work of Stein (1956) on the multivariate normal,
much research has been done to show that Stein-effect is a very general pheno-
menon, having Tittle to do with continuity of the underlying probability struc-
ture and often the exact form of the loss-function. Emphasis, for natural
reasons, has however shifted now to more delicate questions of greater practical
importance. Decision-theorists now often want to know how good and usable the
alternative estimators are; for example, are they simple and do they allow for
considerable frequentist risk improvement (at least in some parts of the parameter
space)? Some of us are also concerned equally about the Toss-specific nature of
many of these Stein-type improved estimators and recognize the paramount need to
build up such improved estimators which are consistent with prior beliefs about
the parameters. Many of these problems have been successfully addressed in the
multivariate normal situation; see the more recent works of Berger (1980a, 1982a,
1982b, 1983). Outside the normal distributions, however, these questions remain
largely unanswered, mostly because of the difficulties of obtaining neat answers
to most of these questions. The objective of this paper is to briefly touch on
some of these questions in the general scale-parameter fami]y;>the flavor 1is
still mostly frequentist and the relatively neater results obtained are also
frequentist in nature.

It was shown in Brown (1966) that the best invariant estimate of a location
vector is typically inadmissible for p > 3 under very general classes of loss-
functions, not necessarily convex. Shinozaki (1984) obtained explicit James-Stein
type improved estimators of a vector of location parameters in many important cases.
On the other hand, the best equivariant estimate of p independent gamma scale-
parameters was shown to be inadmissible in Berger (1980b) and relatively simpler

improved estimators with come empirical Bayes interpretations have been recently



found by DasGupta (1984). In the spirit of Shinozaki (1984) and DasGupta (1984),

in the next section we first obtain explicit improved estimators of p independent

arbitrary scale-parameters under sum of squared error losses E (ai-ei)z. The
i=1

results can be generalized to more general Tosses of the form (a-g)' Q(e)(a-s).

The best coordinatewise equivariant estimate ao(é) is shown inadmissible for

P>2. A typical improved estimator is of the form 6i(5) = 80,3 (%) + ¢+ (T xj)]/p,
’ J

where ¢ > 0 is a constant depending on the underlying distributions only through a
few moments; moreover, they also clearly satiéfy the desirable need of loss-robustness
to a certain extent. Possible generalizations have been indicated and the results
are compared to similar results earlier obtained in other distributions. As in
DasGupta (1984), exact analytical representations of the risk improvement are
possible to obtain in the general scale parameter case. Consequently, Bayes risk
calculations also turn out to be relatively simple and easy. Some results are
obtained towards Tocating an improved estimator which minimizes the Bayes risk

with respect to a given prior (the problem of minimizing the relative savings loss
(RSL), a concept introduced by Efron and Morris, is equivalent to this). Thus,
strictly speaking, in the general scale-parameter case, we have improved estimators
which are attractively simple and moreover allow for incorporation of prior
information in some form. Numerical ca]cﬁ]ations of Bayes risks have, however,
convinced us that estimators with better Bayesian performance need to be found.

The concluding section gives two real life applications of the new estimators and

encouraging improvements in mean squared error are found to obtain in both examples.



2. Improved estimators for arbitrary scale-parameters

Let X],Xz, ces Xp (p>2) be 1ndependent1y distributed and let X have

density of the form 9; (x; /%) ‘-—— (e 7 s

i <p. .:;Thus ei(assumed positive)
0 ,

is a scale-parameter for the distr1but1on of Xi’ We will throughout denote
expectation under ¢ = 1 as E(.). Moreover we will assume E(Xf) < = for every i.
The best equivariant estimate of 9 is 60(4) = AX, where A = diag (a1,a2,..., ap)

EX
and a, = == - In this section we first show that AX is iqadmj§§jp]g under

losses of the type mentioned in section 1 and suggest explicit estimators, in
the spirit of Das Gupta (1984), with uniformly smaller frequentist risk. The
proof essentially mimicks the proof of Theorem 2 in Das Gupta (1984) for the

special gamma case.

Theorem 2.1

Consider the problem of estimating 6 = (e],...,ep) under the loss
L(Q,a) = g (a -0 )2 Let GO(X) = AX be the best equivariant estimate of 9 and let
i=1 v v v

p
6(%) =AX +co(m X.1/p) 1, where ¢ > 0 is as in (2.5). Forp > 2,
i=1 ! " N

R(Q,G) < R(Q, 60) for every 9 and hence 8 (%) is inadmissible.

Proof:
Let ajE-= EXj

b, =EX.
JP J
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Then,
def

A(,%) = (R(,Qﬁ,(z) - R(,@Jsao)
= Ee [A% + ctl - QJWA% + ctl - g] - EQ [A% - Q]TA% - g] | (2.2)
= Eg[pc?t? + 2ct] " (AX - 9)]

6)/Py - 2c ze (Ha 6)/P) (2.3)

. . o\
bJpeJ : Jas. J (j aJP J jp J

a.c.
Now, by Liapunov's inequality, € = min (1 - —%—JE) > 0. Hence, from (2.3),
J Jp

2 02/P 1/P . 2.4

a(9) < pc(mb jp 0] ) - 2ce § 0. g 335083 ) (2.4)
i = . =mi . s T 2.4).
Setting bp mgx bJp and a m}n aJp rom (2.4)

a(8)

| A

pc?-bP(m62/Py - 2¢e aP (Ze ) (1o /P)
ij P J‘]

| A

2/p 2,p p
(5’ ") [pcbr - 2pceal)
i J p -P (2.5)

<0fm*wmwgif

a
0<c«< Zs(gﬂ)p
p

Remarks, generalizations, and discussion of the assumptions

1. Theorem 2.1 implies that in the general scale-parameter family uniform mean

squared error improvement can be obtained by shifting by multiples of the geometric



mean whenever p > 1. Shifting by the geometric mean in a scale-parameter problem
is much 1ike shifting by the arithmetic mean of the coordinates in a location
problem because it is well known that if xi's have a scale parameter family of
distributions, then log xi's have a Tocation parameter family of distributions.

It is also interesting that Theorem 2.1 holds even if the coordinate distributions
do not come from the same parameteric family, because the functional form of the

density of Xi was allowed to depend on 1.

2. Several generalizations of Theorem 2.1 are fairly easily obtained. First,

the vector l in the improved estimator can be generalized to an arbitrary positive
vector go. This will enable us to give unequal shifts in different coordinates.
This scope of choice in the vector ¢ also leads to the natural question of
selecting an ¢ that best suits the available prior knowledge on 9 so that good
risk-improvements would be obtained in that part of the parameter space where

9 is Tikely to Tlie.

Next, the statement of, Theorem 2.1 holds for more general losses of the form

(%‘Q)'Q(Q) (a-9) where Q(6) is any positive definite matrix such that inf Apin(@ >0
6

and sgp xmax(Q) < « where Anin® Mpax @re the minimum and ‘the maximum eigenvalues of Q.

Also, as in DasGupta (1984), improved estimators in the entire scale-parameter
m.
family can also be obtained for all Tosses of the form E Ciei1(ai'ei)2’ where
i=1

ms # 0. We have, however, no results for the invariant loss.

3. The estimators in Theorem 2.1 are somewhat loss-robust, but not immendsely so
(for a beautiful treatment of the problem of constructing loss robust estimators

in the normal (and some others) distribution, see Hwang (1983): however, robustness
with respect to that large a class of Tosses may often be unachievable and is
perhaps also a conservative formulation of the problem). Consider first the

case of Q = I; the allowed range of c in (2.5) is



a P
0<c<2€~(§p—)'.
p
a P
Taking ¢ = ¢ = E°(§E) » one will have uniformly smaller frequentist risk for
p

the estimate AX + cot1 under squared-error loss. It s natural to ask if one
can still achieve uniform domination with this same estimator when the loss is

(a - 8)'Q(a - o) where q is not necessarily the identity matrix. We have been

abTe to prove that uniform domination can be obtained by using the same estimator

described above for al] Q such that

> trQ ' (2.6)

: r
A )

min

Comparable loss-robustness was achieved in Berger (1976) for estimating a multi-
normal mean. It was proved in Berger (1976) that if X N(Q,I), then for
estimating 9 under Toss LQ(Q,Q) = (g-g)'Q(a-Q), the usual James-Stein estimate

continues to be minimax for p >3, if

2trqQ ‘
Mnax (@) < 5 (2.7)

Both (2.6) and (2.7) essentially mean that the eigenvalues of Q should not be -

very scattered. Thus a moderate amount of loss-robustness can be achieved with

our estimators,

3. Se]ecting an o
n

For the case Q = I, uniform domination can be achieved by choosing any positive
vector Q. It is natural to ask if g can be chosen so as to maximize the risk-

improvement in some desirable parts of the parameter space or perhaps to minimize



the Bayes risk against a certain prior. We will briefly touch on both the
problems so that the reader gets a flavor of how the present estimates allow for

incorporation of prior information to some extent.

Proposition 3.1. Assume Xi's are iid when all 6; = 1, and that Q = I. Then

on the set'{gzei =0V, > 1}, -a(p) = R(g:65) - R(9,8) is maximized by choosing

0
ae o

¢ to be proportional to 1.

Proof: -VA(Q) = Ee[Aé'"Q]' [AX - 6] - Ee[A)S +cto - g]' [AX + ctr - g]

p
ac a
where 0 < ¢ <_§g_ (1 -=—2) (min a.) (&) (3.1)
a'a a . i b
~ o p 1 p
€hoosing ¢ to be the mid-range, 1 9
22p ac 2 EZg'g(nej)p.(mgn o) - p-(qej)p-(m}n a)%q
-a() = p. S (1-By 4 ; : (3.2)
~ bP ) % a
p
Hence, on the set’{ei =0¥; > 1}
. . 2
2%, (min o.) - p(min o.)° .
| S i 12
-A(6) = constant x & 5 = ] (3.3)

Zd..i

Since -A(6) is scale-invariant in @, One may assume without Toss of generality

that g'a = p. The objective is to show (3.3) is maximized when ¢ is proportional
to 1.
v

Hence, it suffices to show that

ZZai(mjn ai) - p(min ai)z
! 5 ‘1
Lo; -
i :
. . 2
®  z{a; - min ai) > 0 (3.4)

T
Hence proved.
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Remarks 1. Proposition 3.1 means that if all ei's are equal, then every coordi-
nate should recejve equal shift in order to maximize the risk-improvement. This

is what is intuitively expected.

2. Proposition 3.1 immediately suggests that ifwei are not necessarjly - -~
equal but instead, are 1id, - then to minimize the Bayes risk one should choose

a as proportional to 1. This is indeed true. However, it would be more interes-
ting to consider more general non-iid priors. This is what we do below. Let
ei's be independently distributed with distributions i3 the problem is to
select an a that minimizes the Bayes risk against the product prior 1 =

L ®I® ... anp. Assume Q = I and as usual also assume the coordinate distri-
butions are identical if each 0, is set equal to 1.

First observe minimizing (with respect to a)r (m,s) = JR(e8,8)dn(e) s

equivalent to maximizing r(H,ao) -r (m,s8). Let

1
P _
Eo5™ = v;
2
P o
Eej aJ
and Ee’iH% =5, (3.5)
J J
From (3.2},
S
- Constant . : i . 2
r(1,85) - r(m,es) = “ate [2(min ui)(givj)(mi Y; ) - p(min o) (il]?ej)]
)
= _Eggﬁgéﬂﬁ [2(m1nai)zaivi - ¢cp(min ai)z] (3.6)

~ &



S .
;
where ¥. = — , c=1Teg./ Iv.

Again, because of scale-invariance, one may assume %'% = p. It is easy to show the
maximizing o must be such that the ordering of ai's is the same as the ordering
of V.'s. Assume without loss V; <V, < ... 5_vp. Suppose in the maximizing o,

the first k ai'S are equal tO-a] = min G We have to thus maximize
i

-k
2
20«] .iz

a:; Vs - cp a% subject to ka% + E a? = p (note k is not

P
) .
=k i=k+1

+1
known and has to be found out).

A standard argument using a Lagrangian mU]tip]ier A shows that the maximizing
Q& satisfies

k D ,
4a] 1=]V1 + 2 1=§+k ()L_iV_i - 2¢cp a + 2Aka] =0 (3.7)
"
oz1-=->\—V1. ,'lik"'] v (3.8)
Using (3.8), (3.7) reduces to
y E v2
. sofyp 1 _
S(k) =2 J Vi - 5 - cp k=0 (3.9)
i=1
Since oy > oy for i > k1, - A< V.¥3 > k+l. Hence,
2
Ve
S(k+1) = S(K) = 2v + + A

K+1 A

%—[A+Vk+1]2 <0 (as » <0 for a; to be positive for

i > k+1)
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Consequently, there is exactly one K satisfying (3.9) subject to the ordering

restriction a; > a; for i > k+1, or equivalently -x < Vi .

Let A and K denote the actual solutions to (3.9) Now the restriction g'g =p

will give us

p
k2, 2 V2 -
—— - ._p
%1 NZ i=%+1 i
p
2 1=E+1V$
: A
2 G |
@a]=——%—— (3.10)
kal+ ) Vf
i=K+1

(Note if k. = p, the problem becomes trivial).

Substituting (3.10) into (3.8) now gives a.

3. Note k has to be determined sequentially using (3.9). Once k and
A are found, the rest is fairly straightforward. It seems to us for small p,
the algorithm can pretty well be carried out using only a calculator. We will

shortly give an example.

4. The special case when ei's are iid is of some interest. In this case, it is

possible to come up with an attractive closed form solution of the problem. In

fact, it is not difficult to show that in this case the optimizing 9 is the

vector l. We omit the proof.

Below we give an example to show how the sequential algorithm described in remark
2 above is fairly easy to implement for even reasonably large values of p. The
example also shows that moderately good incorporation of prior information is

possible using the optimizing Q@ of remark 2.
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Example  Assume Xi 1n€ep. Gamma (a,ei) and let o = 1; take p = 8. Assume ~
r.
- 1
) “indep. Inverse Gamma (2,r.) with densi = 12 -3
i A S5 ) Wi ensity Hi(ei) =e ry o, Ie. > 0

It the priors are of these forms, their 4

8, rg- 1)
V. = — = . r,
1 Yas Tlhh_ L 1
i @ p)

1
(1r)P (3.11)
1

Let r = (.25,.5,1,1.5,2,8,40,50) (note Ee, = r;; so one may, for example, suspect
that a few normal variances are close to these numbers. respectively and try the
corresponding conjugate priors with these parameters). The A obtained from the

quadratic equation (3.9) does not meet the requirement - < Vk+1 if k < 5. For

1}

k = 6, one gets -» = 30.9432 < V7 45.7143. Consequently, the optimizing g will

be as follows: using (3.10), oy = .8307; now: (3.8) gives o, = 1.2273,

and ag = 1.5340. Clearly it is necessary to find out whether the best g actually
does significantly better than, for example @ = l, in order to understand how
well prior information is actually incorporated. In what follows, we shall let
§* denote the improved estimate with ¢ equal to the best choice, § denote the
improved estimate with g = l, and 3 denote the best equivariant estimate. Both

§ and &* uniformly dominate 8-
If no prior information is available, it may be natural to use & as an alternative
to 84, in which case one will get Bayes risk improvement equal to r(H,GO)’— r(m,s).

By using &*, the Bayes risk improvement will be r(H,GO) - r(I,8*). Consequently,
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the increase in the Bayes risk improvement by using §* in preference to § is
r(n,s) - r(m,s%). If we express this as a fraction of the Bayes risk improvement

that was already available by using § itself, we get the quantity

r(n,s) - r(m,s*)

I(m) = r(IL,5)= (1,57,

If 1(m) is reasonably large, we may be satisfied that we have estimators which
not only provide uniform frequentist domination but also allow for incorporation

of prior information.

Using (3.6),
r(H,GO) - r(I,8) = constant x 218.3116
and r(H,SO) - r(I,8*%) = constant x 247.5395

Hence, I(m) comes to a reasonable 13.39 per cent. If the ri's are more spread

out and p is a Tittle larger, we will get still better values for I(m).

4. Risk-improvement

In this section, we will first calculate risk-functions numerically in a
few scale parameter situations to get an idea of how much improvement is attainable
in practice and then use our estimators on two actual data sets and check the
amount of risk improvement actually obtained. Typically, the Stein-type improved
estimators give the best risk improvement when ei's are nearly equal or similar
in some sense. The following proposition can be regarded as a rough statement

of the best possible risk performance of our estimators.

Proposition 4.1

Let 6(%) = AX + cot+1, where

ac a
¢ = (1- 3B - BP. (4.1)
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Then, on the set D = {g: 65 =6, 1 <1 <pl,
. R(Qsﬁo) - R(%,G) _ (EX)2
11m R(e 6 ) = -l - _"2'

p-so0 A0 EX

2p
R(Q,so) - R(8,6) ) EEE.Z iE_ : (EX)2
R(6,6.) =(1-—=5"- D 1 - (4.2)
270 p bp EX
2p
o a

By the bounded convergence theorem, 1im EE-= 1 if P(x1=0) = 0. Also, lim —%— = ]

pre P proe bp

if E(x;S) < o for some s > 0. Now (4.2) immediately gives the result. Below

we briefly give a few examples on the above proposition.

Examples
. index . R 6’60)-R(2’6)
(1) Let X, "% Gamma {0,0.), where o > 0 is known. Then 1im
i i R(9,84)
-0 w0
]
Eﬁ~mr QED.

R(g,65)-R(6,8)
R(0,5,)

Clearly, sup 1lim = 1, implying that excellent risk improvements

a>0 p-eo

are attainable in the gamma probiem, approaching 100% as o - 0 and p gets large.

(ii) Let Xi 1ngex Pareto (a,ei) with densities
+1]
f(x,]e,) = _9.(_14“ I ., 0>2
ilYy 85 X X5>0;

Direct calculations yield that, for 8€D,
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R(98,5,)-R(6,68)
1im “R(g . )m - 1 s> 1as a2,
o REE55 (a-1)

Again, very encouraging risk-improvements are possible in Pareto problems when

p is large. Proposition (4.1) doesn't say anything about the extent of risk-
improvement = if ei's are unequal. Since our estimators permit an gﬁgg}_aha1ytica1
representation of the risk-improvement for arbitrary 9 (see (2.3)), it is>

easy to calculate percentage risk-improvements in different parts of the parameter
space. Table 1 below gives the percentage improvements when X5 ™ R(O,ei) and

Xi ~ Pareto (2.5, ei) respectively. The improvements are calculated using a

fixed set of ei's randomly generated from the indicated ranges.

Table 1. Percentage risk-improvements
Range of o, Rectangular Pareto
p=5 p=10 p=5 p=10
(0,3)P 10.14 12.86 32.21 30.96
(5,10)P 11.00 16.25 34.94 39.12
(5,15) 10.40 15.45 33.03 37.20

The numbers seem to indicate that satisfactory risk-improvements are possible
even when ei's are unequal, especially in Pareto models. Finally, we now
provide examples of two real-life situations where our estimators are used

and check how much is gained.

Example. 1. Proschan (1963) provides records giving the durations of time between
successive failures of the air-conditioning systems of 13 different Boeing 720
jet airplanes. These durations are listed in Table 2 below. Thus plane number
7907 had the first failure after 194 hours of service, a second failure after

another 15 hours, and so on. The time durations seemed to follow simple exponential



Table 2.

i Table of the Durations of Time Between Successive Failures of the
Air-Conditioning Systems of Each Member of a Fleet of 13 Boeing 720
Jet Airplanes (213 Observations in All)

Plane identification number

7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 8944 80}5
P Z

r4

7 7 4
194 413 90 74 55 23 97 50 35/9 50 130 487 102
15 14 10 57 320 261 51 44 9 254 493 18 209

41 58 60 48 56 87 11 102 12 5 100 14
29 37 186 29 104 7 4 72 270 283 757
33 100 61 502 220 120 141 22 603 35 - 98 54
181 65 49 12 239 14 18 39 3 12 5 32
9 14 70 47 62 142 3 104 8 67
169 24 21 246 47 68 15 2 91 59
47 56 29 176 225 71 197 438 43 134
18¢ 20 386 182 71 80 188 230 152
36 79 59 33 246 1 79 3 27
201 84 27, @21 16 88 130 14
118 44 2 15 42 106 46 230
059 153 104 20 206 5 66
34 29 26 35 5 8 5 61
31 118 326 12 54 36 34
18 25 120 31 22
18 156 11 216 139
67 310 3 46 210
57 76 14 111 97
62 26 71 39 30
7 44 11 63 23
22 23 14 18 13
4 62 11 191 14
2 16 18
130 90 - 163
208 1 24
70 16
101 52
208 95

* Indicates major overhaul.
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distributions (gamma with o = 1) for all the 13 jets; for risk calculations,
we take each 6. to be its best unbiased estimate based on the sample of
observations on the corresponding jet.

ac a
The estimator of Theorem 2.1 corresponding to ¢ = 1 and ¢y = (1-5—9) . (BE)P
p p

was used to simultaneously estimate g [gjlﬁis;taken as thevector (.012, .010, .012,
.008, .008, .017, .013, .016, .005, .009, .003, .009, .012)]. Using (2.10) and
(2.11),

R(%,&O) = ]2552179172, and -A(Q) = R(%’GO) - R(Q,G) = 35031.31054,

implying that 27.91% risk-improvement is attained by using the new estimator

instead of the standard coordinatewise best equivariant estimator.

Example 2. This is an example in which a Pareto model seemed suitable.

Table 4 below is copied from the Statistical Abstract of the United States
(1983-84). For our purpose, we will only use the part of the table giving
percent distributions of household incomes in four different regions of the
country (northeast, north central, etc.) in 1982. The household income in each
region 15 modeled as a Pareto variable and the shape and the scale parameters
of each of these four Pareto distributions are estimated from the given data
using the method of moments. Again, as in example 1, for risk calculations, the
ei's and the ai's are set equal to these method of moments estimates, which are

Tisted below.

Table 3.
i OC_i S_i
1 2.8006 15372.54
2 2.7117 14857.52
3 2.7093 14007.58

4 2.7913 15847.87



Table 4.

Income, expenditures, anad Wealth

MONEY INCOME OF HOUSEHOLDS—PERCENT DISTRIBUTION BY MONEY INCOME LEVEL, BY

SELECTED CHARACTERISTICS: 1982

[Households as of March 1983]

CHARACTERISTIC

PERCENT DISTRIBUTION OF HOUSEHOLDS BY INCOME LEVEL (IN DOLLARS)

Total '
White

Black

Spanish Origin * .......ccoooeoevereerean.

Northeast

North Central ..
South

West

Nonfarm.........c.occovmceneereeeeecens
Farm

Marital status:

Female householder
Married, husband present
Married, husband absent.
Widowed
Divorced....
Single (never married

Age ot householder:
15-24 years..
25-34 year:
35-44 year
45-54 year:
55-64 years..
65 years and ovel

Size ot household:
One person ..
Two persons

Education attainment of
householder:
Elementary school..

High school

Tenure:
Owner occupied...
Renter occupied ..
Occupier paid no cash rent .

|
Under | 5,000~ { 10,000~ ; 15,000~ | 20,000~ | 25,000- , 35,000-
5000 | 9,999 | 14999 | 19,999 | 24.999 | 34.999
9.6 14.3 13.5 12.2 114 17.0
8.2 13.5 13.2 12.3 1.7 176 °
217 20.9 15.8 1.2 97 12.0
12.9 20.2 16.3 13.7 10.7 13.5 ¢
‘
8.7 15.3 12.6 1.7 1.3
9.5 13.6 128 12.0 12.0
11.7 14.5 14.4 12,5 114 15.7
7.3 13.9 13.7 123 11.0
95 14.3 13.5 12.1 11.4
141 14.7 145 13.4 12.8
48 9.7 121 12.1 12.6 2
2.8 8.0 11.4 118 12.8 2
15.2 16.7 17.6 10.2 10.5 1
16.6 28.1 16.3 89 10.4
10.5 14.6 123 13.2 13.8 1
12.1 14.5 16.2 15.6 11.8 1
211 25.2 16.7 124 8.6
4.1 10.1 12.6 13.4 13.4 1
33.3 27.3 15.0 10.9 5.8
25.2 33.8 15.2 95 6.1
17.4 20.1 198 15.2 10.6 1
19.5 21.0 18.4 14.5 10.1
14.8 19.4 20.1 14.9 13.3 1
7.2 10.0 13.7 15.0 14.5 2
6.0 8.0 9.9 10.7 12.0 2
6.5 8.0 9.3 9.8 10.4 1
8.6 12.0 13.0 1.8 10.6 1
16.7 29.2 176 11.4 8.4
227 27.3 16.7 121 8.4 8.
6.6 133 15.7 139 12.6 17
8.5 9.3 11.4 12.0 121 20
4.0 6.9 9.0 10.9 125 22.
4.4 8.2 10.0 9.1 12.6 21,
5.1 96 101 10.4 10.4 18.
4.7 124 128 1.3 10.7 17.
28.2 18.0 11.0 7.9 8.
29.1 18.2 10.6 6.9 6.
271 17.8 1.5 9.0 9.
15.2 151 13.5 124 17.
22.2 16.3 12.3 10.3 12
12.6 14.6 14.0 13.1 19.
6.9 9.4 10.8 11.7 20.
9.8 12.8 125 133 21.
5.5 7.6 10.6 11.2 20.
6.4 1.1 115 11.2 1.7 19.
15.2 20.1 171 13.9 1.2 13.
238 225 16.9 15.0 7.1 7.
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Using (2.10) and the fact that R(g,@o) = ) N 5 » One has,
Jj=1 (aj—])

R(Q’SO) = 293658672.5, and -A(9) = 69844051.39, thus giving 23.78% risk-

improvement in as few as 4 dimensions. ' ~

5i1Final vemarks

The main result of this paper implies that the estimates for the gamma scale-
parameters proposed in DasGupta (1984) are robust and work equally fine for
arbitrary scale-parameters. Hopefully, however, the point has been made that the
important problem is to build up estimators allowing incorporation of prior know-
1edge and providing significant improVement on desirable parts of the parameter
space. In our opinion, minimaxity and (or) uniform dominatioh may have to be
sacrificed to meet this important need. It was unfortunate that we were unable to
find any reasonable Bayesian or empirical Bayesian interpretations of the estimates
in Theorem 2.1 outside of the gamma family. Again, broader classes of improved
estimates may be needed for this. See Berger and DasGupta (1985) for results in
the gamma case. Finally, although the results of this paper are stated for one
observation from each coordinate distribution, the multiple observation case,
theoretically, can be treated equally well by restricting to the distributions

of the coordinatewise Pitman estimates for which ei's afe still scale-parameters.

Acknowledgement

I am grateful to James Berger, the editors, and the referee for their highly
perceptive and constructive suggestions. Sincere thanks are also due to Herman

Rubin for graciously helping at various stages



19

References

Berger, James (1976). Minimax estimation of a multivariate normal mean under
arbitrary quadratic loss. J. Mult. Anal. 6 256-264.

Berger, James (1980a). A robust generalized Bayes estimator and confidence
region for a multivariate normal mean. Ann. Statist. 8 716-761.

Berger, James (1980b). Improving on inadmissible estimators in continuous
exponential families with applications to simultaneous estimation of
gamma scale parameters. Ann. Statist. 8 545-571.

Berger, James (1982a). Bayesian robustness and the Stein-effect. JASA 77
358-368.

Berger, James (1982b). Selecting a minimax estimator of a multivariate normal
mean. Ann. Statist. 10 81-92.

Berger, James and Berliner, L. M. (1983). Bayesian input in Stein estimation
and a new minimax empirical Bayes estimator. (To appear)

Berger, James and DasGupta, Anirban (1985). Estimation of multiple gamma scale
parameters; Bayes estimation subject to uniform domination. Technical
Report #85-13, Dept. of Statistics, Purdue University. (Submitted for
publication).

Brown, L. D. (1966). On the édmissibi]ity of invariant estimators of one or
more Tocation parameters. Ann. Math. Stat. 37 1087-1136.

DasGupta, Anirban (1984). Simultaneous estimation in the multiparameter gamma
distribution under weighted quadratic losses. (To appear in Ann. Statist.).

Hwang, J. T. (1983). Universal domination and stochastic domination: estimation
simultaneously under a broad class of loss functions. Ann. Statist. 13
295-314.

Proschan, F. (1963). Theoretical explanation of observed decrease failure rate.
Technometrics. 5, 375-384.

Shinozaki, Nobuo (1984). Simultaneous estimation of location parameters under
quadratic loss. Ann. Statist. 12 322-335.

Stein, C._(19§6). Inadmissibility of the usual estimator for the mean of a
multivariate normal distribution. Proc. Third Berkeley Symp. Math Statist.
Prob. 1 197-206.



