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INTRODUCTION

In many practical situations, the experimenter is faced with the
problem of comparing k (> 2) populations, and desires to select the"
“best among them. In such sitﬁations, the classical tests of homogene-
ity are inadequate in the sense that they have not been designed to
meet this goal and do not provide an answer to this question.
Mosteller (1948), Paulson (1949), Bahadur (1950) and Bahadur and
Robbins (1950) were among the earliest research workers to recognize
this inadequacy. For overcoming this shortcoming, they formulated the
problem as a multiple decision problem aimed at the selection and
ranking of the k populations. The attempts to formulate the decision
problem to answer the realistic goal set the stage for the development
of the selection and ranking theory.

In the three and one-half decades since these early studies,
ranking and selection problems have become an activé area of statisti-
cal research. The two main approaches that have been used in formulat-
ing a selection and ranking problem are indifference zone approach and
subset selection approach. To fix ideas, suppose that there are
k (> 2) populations Mys wees Mps and population s is characterized by
a parameter ei for each i = 1, ..., k. . is said to be better than

1

w, if 6; > 6,. Consider the problem of selecting the best population,

J J
i.e., the population associated with e[k] = max ©O.. In the
1<i<k



indifference zone approach, due to Bechhofer (1954), the goal 1is to
select one population as the best population. The experimenter-is
required to specify an "indifference zone" in the parameter space and
the procedure determines the smallest sample size so that a certain
probability condition is satisfied whenever the unknown parameter Tlies
in the "preference zone." Contributions using this approach in the
decision-theoretic framework have been made by Lehmann (1966), Eaton
(1967) and Alam. (1973), among others. In the subset selection
approach pioneered by Gupta (1956, 1965), the goal is to select a
nonempty subset of the k populations so that the best population is
included in this selected subset with a minimum guaranteed probability
P*(%—< P*¥ < 1). The size of the selected subset is not determined in
advance but depends on the observed data themselves. Selection of any
subset consistent with the goal is called a corhecf selection (CS) and
the probability of a correct selection using a rule R is denoted by
P(CS|R). The requirement that P(CS|R) > P* is referred as the
P*-condition. It should be emphasized that in the subset selection
framework, there is no indifference zone specification. The pr_
condition must be satisfied whatever be the configuration of the
unknown parameters. Decision-theoretic contributions in this frame-
work have been made by Studden (1967), Deely and Gupta (1968), Bickel
and Yahav (1977), Chernoff and Yahav (1977), Goel and Rubin (1977),
Gupta and Hsu (1978), Miescke (1979) and Bjdrnstad (1981) in the
fixed sample case and by Gupta and Miescke (1984a, b) in two-stage

or sequential sampling cases. When the prior distributions of the

parameters of interest are known, some Bayes rules have been studied



by Deely and Gupta (1968), Bickel and Yahav (1977), Chernoff and Yahav
(1977), Goel and Rubin (1977), Gupta and Hsu (1978) and Gupta and
Miescke (1984a). When the prior distributions are unknown, Deely
(1965), Singh (1977), Gupta and Hsiao (1983) and Gupta and Leu (1983)
formulated some selection problems in terms of empirical Bayes frame-
work.

There have also been attempts 'in the literature to study the
performance of some existing selection rules and to. construct optimal
selection rules. For the class of subset selection rules satisfying
the P*-condition, Berger (1979) investigated minimaxity taking the
size of selected subset as the Toss function. Berger and Gupta (1980)
obtained minimax rules in the class of nonrandomized, just and invari-
ant rules when the risk is measured by the maximum probability of
including a nonbest population. Bjgrnstad (1980) compared three
minimax rules for the normal means problem. Gupta and Huang (1977)
derived a T-minimax procedure for selecting the best population.

Gupta and Kim (1980) considered some minimax and T'-minimax rules for
partitioning k populations in comparison with a standard or a control.
Gupta, Huang and Nagel (1979) inveétigated some locally optimal subset
selection rules based on ranks. Recently, Huang and Panchapakesan
(1982) and Huang, Panchapakesan and Tseng (1984) also derived other
locally optimal subset selection rules with different optimality
criteria.

The present thesis consists of investigations of some multiple
decision (selection and rankjng) problems. Some contributions to the

empirical Bayes rules, sequential subset selection procedures and



locally optimal subset selection rules have been made under the subset
selection framework.

Chapter I deals with the problem of selecting good populations
through the empirical Bayes approach. The empirical Bayes approach in
stétistica]-theory is appropriate when one is confronted repeatedly
and independently with the same decision problem. In such instances,
it i1s reasonable to formulate the component problem in the sequence as
Bayes decision problems with respect to an unknown prior distribution
on the parameter space, and then. use the accumulated observations to
improve the decision rule at each stage. This approach is due to
Robbins (1955, 1964). Many such empirical Bayes rules have been shown
to be asymptotically optimal in the sense that the risk for the nth
decision problem converges to the optimal Bayes risk which would have
been obtained if the prior distribution was known and the Bayes rule
with respect to this prior distribution was used. Two selection
problems have been studied in Chapter I: selecting populations better
than a control or a standard and selecting all good populations among
k populations. For the problem.of se]ecting>popu1ations'better than
a control or a standard, it is assumed that the populations are
binomially distributed. For the problem of selectihg all good
populations among k populations, we assume that the populations have
Pareto distributions. For each problem, a nonrandomized Bayes rule is
derived for a linear loss function. Later, this Bayes rule is repre-
sented in terms of the marginal probability density function of the

random observations. Based on this Bayes rule, a sequence of empirical



Bayes rules for selecting good populations is derived. For each
problem, the rate of convergence of the sequence of the empirical
Bayes rules is also studied. For the problem of selecting populations
better than a control or a standard, two sequences of smoothed decision
rules have also been studied when the prior distribution is symmetrical
about P = %3 but its functional form is still unknown. Some Monte
Carlo studies have been carried out. The results indicate that the
smoothed competitors actuaily perform better than the original ones.
Chapter II deals with the problem of selecting the best.population
through sequential subset selection approach. In most fixed sample
size cases, the subset selection rules always select a nonempty subset
containing the best population with guaranteed probability p* (%—< P*
< 1). However, those rules do not offer inference about the measure
of separation between each selected population and the unknowﬁ best
population. It may happen that a poor population may be contained in
the selected subset. Recently, Hsu (1981, 1982) and Hsu and Edwards
(1983) studied some methods to derive simultaneous upper confidence
intervals for all measures of separation between each popu]ation_and
the unknown'best population under the location model. This motivates
us to study selection rules such that, with guaranteed probability
P*, not only the best population is selected, but also, one can state
that separation between each selected population and the unknown best
population is bounded by some prespecified value. In Chapter 1I,
some sequential subset selection procedures achieving the goal

described above are derived. Basically, these procedures are formed



by choosing an invariant statistic of the parameter of interest,

based on the observations from each pair of two of the k populations
and by performing a modified sequential probability ratio teﬁt (MPRST)
based on this statistic. This is done simultaneously for all pairs of
populations and if a particular MSPRT terminates, then an appropriate
population is removed from the set of contending populations. This is
continued until only one population belongs to this set or some statis-
tical evidence indicates that all the populations remaining in this
set are not far from the unknown best population. At each stage,
these procedures also provide some statistical inference about the
bounds on the measure of separation between each remaining population
and the unknown best population. In Section 2.3, we study the problem
of selecting the best among k populations belonging to the exponential
family of distributions. We use the same measure of separation as
that considered by Bechhofer, Kiefer and Sobel (1968). For this
particular measure of separation, we consider an appropriate transfor-
mation of the random observations taken from any two populations.

With this transformation, the likelihood function of the new statis-
tics can be factored into two parts, one of whith, obtained by a
conditional argument, and termed the conditional 1ikelihood function,
is a function only of the parameter of interest. Based on this condi-
tional likelihood function, a sequential subset selection procedure is
derived. This sequential subset selection procedure achieves the goal
described above. At each stage, it also provides some statistical
inference about the bounds on the measure of separation betweén each

remaining population and the unknown best population.



In practical situations, it sometimes happens that the order of
the observations are easily obtained whereas the actual measurements
themselves are not available due to excessive cost or physical con-
straints. In a problem of this type, one may desire to investigafe
decision rules based on ranks. Gupta and McDonald (1970) studied
three classes of subset selection rules based on ranks for selecting
a subset containing the best among k populations under the situation
that the underlying distributions are unknown. When the form of the
underlying distributions is known, but its value depends on some
unknown parameter, Gupta, Huang and Nagel (1979) and Huang and
Panchapakesan (1982) studied the problem of deriving some subset
selection rules, based on ranks, which are locally optimal in some
sense. All the studies mentioned above only considered the situation
where the ranks are completely observed. Due to the design reasoning
or cost consideration, it sometimes happens that ranks are only
partially observed according to some censoring scheme. In Chapter III,
we assume that the form of the underlying distribution is known, but
there exists some unknown parameter. Based on the partial ranks, our
goal is to derive locally optimal subset selection rules for selecting
a subset containing the best population. Problems are formulated
according to whether the sample sizes from the k populations are equal

or not. Locally optimal subset selection rules R, (for the equal

1
sample sizes case) and R2 (for the unequal sample sizes case) are

derived and some local monotonicity of R1 and R2 are discussed.

Finally, a class of compatible censoring schemes is considered. We



observe that the properties of local optimality of R1 or R2 can be
extended to those locally optimal rules which are based on the partial

rank configurations censored by .any compatible censoring scheme.



CHAPTER I
EMPIRICAL BAYES RULES FOR SELECTING GOOD POPULATIONS

1.1. Introduction

The empirical Bayes approach in statistical decision theory is
appropriate when one is confronted repeafed]y and independently with
the same decision problem. In such instances, it is reasonable to
formulate the component problem in the sequence as Bayes decision
problems with respect to an unknown prior distribution on the param-
eter space and then use the accumulated observations to improve the
decision rule at each stage. This approach is due to Robbins (1955,
1964). Many such empirical Bayes rules have been shown to be asympto-
tically optimal in the sense that the risk for the nth decision problem
converges to the optimal Bayes risk which would have been obtained if
the prior distribution was known and the Bayes rule with respect to
this prior distribution was used.

Empirical Bayes rules have been derived for multiple decision
problems by Deely (1965). He considered selecting a subset containing
the best population. Van Ryzin (1970), Huang (1975), Van Ryzin and
Susarla (1977) and Singh (1977) also studied some multiple decision
problem by using empirical Bayes approach. Recently, Gupta and Hsiab'
(1983) studied some empirical Bayes rules for selecting good popula-

tions with respect to a standard or a control. In their paper, the
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underlying population s 1s uniformly distributed with parameter ei,
i=0,1, ..., k, and T is a control population. s is said to be

good if 0, > 8, and to be bad if 8, < 8- Let a [ {1, 2, ..., k} be

0

an action. With the loss function L(g, a) = § (6
jea

0~ %'(0, 6,) (%5

+ jia (ej - 60)1(60, ) (ej), where § = (eo, 015 v ek), they pro-

posed some empirical Bayes rules fbr the problem of selecting good
populations with respect to a standard or a control.

For a similar problem, if the underlying populations have binomial
distribution, then, in general, it is hard or impossible to find a
sequence of empirical Bayes rules (see Robbins (1964), Samuel (1963)
and Singh (1977)). In Section 1.2, we are concerned with this problem.
Two cases have been studied: one is that the prior distribution is
completely unknown and the other is that the prior distribution is
symmetrical about p = %3 but its form is still unknown. In each case,
empirical Bayes rules are derived and the rate of convergence of
corresponding empirical Bayes rules is also studied. In each case,
the order of the rate of convergence is O(exp(—cin)) for some s > 0,

i =1, 2. For the case when the prior distribution is symmetrical
about p = %3 in order fo improve the performance of the sequence of
empirical Bayes rules, two smoothing methods are studied. Some Monte
Carlo studies have also been carried out. The results indicate that
the smoothed competitors actually perform better than the original one.

Suppose now, an experimenter has k (> 2) different treatments.

He is interested in finding those populations among the k treatments
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which are good. In Section 1.3, we consider comparison among k
Pareto populations. Let 61 > 0 be the Tocation parameters of Pareto
population T Let e[l] 5_6[2] < oo g_e[k] denote the ordered
parameters of el, cees ek. For a given A > 0, population s is said
to be good if ei < 6[1] + A, and to be bad if ei > 8

— [1]
interested in selecting all good populations. When A = 0, the problem

+ A. We are

is similar to that considered by Deely (1965), Van Ryzin (1970) and
Van Ryzin and Susarla (1977). However, when A > 0, the problem

becomes more difficult since the determination of the Bayes rule

depends on the value f 6[1] f(5lg)dG(Q) which is hard to evaluate

Q
when the prior distribution G is completely unknown. In Subsection

1.3.2, a Bayes ru]é for this decision problem is derived and this
Bayes rule is represented as a function of the marginal density
functions of the random observations. Corresponding to this Bayes
rule, a sequence of empirical Bayes rules is derived in Subsection
1.3.3. Finally, the rate of convergence of the empirical Bayes rules

is studied in Subsection 1.3.4.

1.2. Empirical Bayes Rules for Selecting Good Populations--

Binomial Populations Case

Let Tye Tys +-es T denote k + 1 populations and et Xi be a
random observation from My Assume that Xi ~ B(Ni’ pi), where

P; e(0, 1) and Ni is fixed and known. Let T be the contro] popula-
tion. For each i = 1, -+.5 K, population s is said to be good if
P; Z_po and to be bad if pi < po, where the control parameter po is

either known or unknown. OQur goal is to derive some empirical Bayes
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rules to select all the good populations and exclude all the bad
populations.

In the following, Subsection 1.2.1 deals with the formulation of
empihical Bayes approach for our selection problem. Ih Subsection
1.2.2, we consider the case when the prior distribution is completely
unknown. In Subsection 1.2.3, we consider the case when the prior
distribution is partially known. In each case, empirical Bayes rules
are derived. The rates of convergence of these empirical Bayes rules
are also studied in the above subsections. For the case when the
prior distribution is symmetrical about p = %3 in order to improve the
performance of the sequence of empirical Bayes rules, two smoothing
methods are studied in Subsection 1.2.4. In Subsection 1.2.5, Monte
Carlo studies are carried out for some specified prior distributions.
The results indicate the smoothed competitors always perform better

than the original empirical Bayes rules.

1.2.1. Formulation of the Empirical Bayes Approach

When the control parameter Po is known, the empirical Bayes
framework can be formulated as follows:

1, 2, ..., k}.

(1) Let Q = {EIB = (pl’ cees pk)s p-i 8(03 1) for i
For each p eQ, define A(p) = {i]pi Z_po}, B(p) ='{i|pi < po}.
That is, A(p)(B(p)) is the set of indices of good (bad) popula-
tions.

(2) LetA ={ala [_ {1, 2, ..., k}} be the action space. When action
a is taken, it means that population s is selected as a good

population if i ea, and excluded as a bad population if i {a.
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(3) The loss function L(p, a) is defined as follows:

(1.2.1)  L(p, a) = Py =P+ I (py-p,

ich(p)-a | ica-A(p) !
where the first summation is the loss due to not selecting some good
populations and the second summation is the Toss due to selecting some
bad populations.

(4) Let dG(p) =
;

n=ax

dGi(pi) be the prior distribution over the
1

parameter space Q, where Gi(') are unknown for all i =1, 2,....k.

(5) For each i, let (xij’ Pij)’ J=1,2, ..., be pairs of random
variables associated with population LA where Xij is observable
but Pij is not observable. Pij has distribution Gi' Conditional
on Pij = pij’ Xij»1s binomially distributed with parameters Ni

)

‘ot s - .
and pij' Some additional observations !ij (Yijl’ R YiJYi

are also available. Conditional on Pij = pij’ xij and Yijm’
m=1,2, ..., Y;» are independent and identically distributed.
The jth stage observations are denoted by Zj. That is,

.= S P . Y 0)).
Z; = ((Xy5 14505 (Xes> Lis))

(6) Let X = (Xl’ cens Xk) be the present observation. Conditional

on P = (Pl, cees Pk), X has probability function

Ny X N, X,
% p'l (1 -p'l) .

i

P
—
N
N

SN
-h

—~~

1%
T
g
1l
[L==
-
(L=
—

FilslPy) =
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Finally, since we are interested in Bayes rule, we can restrict
our attention to the nonrandomized rules.
(7) Let D = {d|d =y +A, being measurable} be the set of nonran-
k
domized rules, where x = igl {o, 1, ..., Ni}‘ For each d €D,
let r(G, d) denote the associated Bayes risk. Then, r(G) =

inf r(G, d) is the minimum Bayes risk.
deD

When the control parameter Po is unknown, for the related frame-
work, the indices in the associated notations should begin at 0
instead of at 1. In the sequel, (0) will be used to show this addi-
tional fact.

s Z_) whose form

We now consider decision rules dn(g, Zl’ ees Lo

depends on x and gj, J=1, ..., n.

Qo

Definition 1.2.1. A sequence of decision rules {dn(x, Zl,...,Zn)} .
X> £ “n't o

is said to be asymptotically optimal or empirical Bayes relative

to the prior distribution G if

(1.2.3) v (6,d)= J EJ LRy dy(xs Zps 2oer )
xex g

- T(x[p) dG(p) + r(G) as n + w.
The expectation E in (1.2.3) is taken with respect to

(Zys -ens Z). For simplicity, dy(xs Zps .eny Z.) will be denoted
by dn(g).
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For constructing a sequence of empirical Bayes rules, we first
need to find the minimum Bayes risk and the associated Bayes rule,

say dG' From (1.2.1), the Bayes risk with associated decision rule d

is
(G, d)=j I L(ps d(x)) f(x|p) da(p)
2 Xex
- j L(p, d(x)) F(x|p) d&(p)
Xex ‘§
+ - p.}I|f dG
ted(x)Ea(p) 0 p‘)J (xle) de(e)
(1.2.4)

L ngsg(i) (py - P;)

K
AL pO)I(PO,U(pi)Jf(’élE) d6(p)

Z 5(5) jg (Py - P;) f(élE) d&(p)

Xey ie

k
+ 73 L} (o; = Ro)ip 1y (P)F(xID) da(p),

xex i=1
where IA(-) is the indicator function of set A.
The second term in the right-hand side of (1.2.4) is a constant

and does not affect the determination of the Bayes rule.
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Let ¢iG(§) = IQ (p0 - pi)f(glg)dG(E). After integration, one

obtains
¢ k
ﬁo(xo)f1(x1)‘ WHX#]‘o‘Xo’LEI Fix)
j#i
(1.2.5) ¢iG(5) = { if pg is unknown,
paf.( x. - W.(x, EI if p, is known.
[:0 i j=1 J 0
\ J#i
where
1
(12.6)  £00 = [ £(xIp) d6(p)  and
0

1 1 (N, N, -x
(1.2.7) wi(x) = JO pfi(xlp) dGi(p) = JO [ 1] x+1 (1-p) | dGi(p).

Since fi(x), the marginal probability function of Xi’ is always

positive for all x =10, 1, ..., Ny i=(0), 1, ..., k, the Bayes

rule dG can be obtained as follows:
(1.2.8)  dg(x) = {i]a,(x) < 03,

where
( . .
WO(XO)fi(Xi) - Wi(xi)fo(xo) if Py is unknown,

(1.2.9)  aq(x) = J

Pofi(x;) - wi(xi) if py is known.
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Now, for each i = (0), 1, ..., k, and for each n = 1, 2, ...,

.n)) be an estimator

let Win(xi)vE win(xi; (Xil’ Zil)’ cees (Xin’ X1

of wi(xi) and fin(xi) = fin(xi; (Xil’ Xil)’ cers (Xin’ Xin)) be an

estimator of fi(xi)‘ Define

wOn(XO)fin(xi) - win(xi)fOn(xO) if Py is unknown
(1.2.10) Ain(g) =

pOfin(Xi) - win(xi) if Pg is known.
Then, define
(1.2.11)  d(x) = {i]a;,(x) < o}

P P -
If win(x) > wi(x) and fin(x) > fi(x) for all x =10, 1, ..., Ni’

where " Bn means converdence in probability, then Ain(§) 5 AiG(&) for
all x ex. Therefore, from a corollary of Robbins (1964), it follows

that rn(G, dn) > r(G) as n ~ ». So, the sequence of decision rules

{dn(é)} defined in (1.2.11) is asymptotically optimal for our selec-
tion problem. Hence, in the following, all we have to do is to find

sequences of estimators, say {win(x)} and {fin(x)}’ i=(0),1, ..., k,

. . P p
satisfying win(x) > wi(x) and fin(x) > fi(x) for all x =0, 1, ..., Ni’
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1.2.2. A Case when the Prior Distribution is

Completely Unknown

In this subsection, we study the case when the prior distribution
G is completely unknown. Robbins (1964) and Samuel (1963), respec-
tively, pointed out that there was no way of approximating wi(x) Just

by using the observations (Xil’ .«.s X.. ). In order to remedy this

in
deficiency, we take, at each stage, some more observations (Yijl’ cens
Yijy ) in our model where Y; can be any positive integer. For

i

simplicity, let Y5 = 1 for all i.

Estimation of wijx) and fi(x)

A usual estimator of fi(x) can be given as follows:

_1 2 ]
(1.2.12) fin(x) == jzl I{X}(Xij) forx =0, 1, ..., Ni.

Then fin(x) is an unbiased estimator of fi(x), and by the strong law

of large numbers, fin(x) > fi(x) with probability 1 for each x =

05 1, .oy Nio Hence, £ (x) £ £.(x) forall x =0, 1, ..., N..
i in i i

For the estimation of wi(x), we consider the following. Define

(1.2.13) Vij(x) = ﬁj I{x} (Xij)'

Then,
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E[Vij(x)] = E[Yij I{x} (Xij)]

EGi[E[Yij Lixd (Xij)lB(Ni, P){I

i, [E1V, 180G PITELT (X, ) B0, |

N, N, -
e -

(1.2.14)

Ni wi(x),

where EL[h(X)[B(N, P)] denotes the expectation of h(X) when X ~ B(N, P).
In (1.2.14), the second and third equalities are obtained from condi-
tion (5) of Subsection 1.2.1.

We then define

It~3
-
P
x
g
~N
=

1
(1.2.15) W. (x) ==
in n 5y
Since Vij(x)’ J=1,2,..., are i.i.d. and bounded, it is easy to show
that win(x) > wi(x) with probability 1 for all x =1, 0, ..., N..
Now, let Ain(é) and dn(g) be defined as in (1.2.10) and (1.2.11),
respectively. From the discussion of Subsection 1.2.1 and the

construction of the sequence of decision rules {dn}:_1 through

(1.2.10) ~(1.2.12) and (1.2.15), we get the following result.
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Theorem 1.2.2. For our decision problem, the sequence of decision

ru]es'{dn}oo is asymptotically optimal relative to the prior distri-
n=1

bution G.

Rate of Convergence of Empirical Bayes Rules {dwl

Let {6n}°° be a sequence of empirical Bayes rules relative to
n=1 .

the prior distribution G. Since the Bayes rule dG achieves the minimum
Bayes risk r(G) relative to G, rn(G, én) - r(G) >0 for all n=1,2,....

Thus, the nonnegative difference rn(G, Sn) - r(G) is used as a measure

[se]

of the optimality of the sequence of empirical Bayes rules {Gn} 1
n=

Definition 1.2.3. The sequence of empirical Bayes rules {Gn}:ll is

said to be asymptotically optimal at least of order O relative to G

if (G, 8) - r(G) < 0(a) as n » » where Tim a = 0.
Nooo

In the following, we want to evaluate the behavior of the
sequence of empirical Bayes rules {dn} described in Theorem 1.2.2.

For each i =1, ..., k; n =1, 2, ..., -define
S. = {§€XlAiG(¥)»< 0},

T; = {xex|a,4(x) > 0},

Sip = X ex]Ain(é) < 03,

where AiG(é) and Ain(g) are defined in (1.2.9) and (1.2.10), respec-

tively. Let
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g = min (—AiG(g)), €y = min (AiG(§)) and € = min(el, 82).

. xeT.
i ~7

1<i<k 1<i<k

Since X 1s a finite space, therefore € > 0. Now,

J=
(1.2.16) J

k
DL e[ETs 00 - 15 (0] 1 i)

xex i=1

(-1)A16(5)P{Ain(5) > 0} jgl fj(xj)



22

<
i

[N

. { ) P{Ain(>~<) >0} + ) P{Ain(g) < 0}}

X€eS. xeT.
~7 ~7

where the last inequality is due to the fact that 0 < fj(xj) < 1 and

[A..(x)] < 1. From (1.2.16), it suffices to consider the behavior of
iG'~

P{Ain(ﬁ) > 0} when x Esi and that of P{Ain(5) < 0} when x eT; as n > o
for each i =1, 2, ..., k.

For each x Esi’

P{Am(L() > 0} = P{A1n(2,() - A'IG(Z-() > -A'IG()*(')}
< PLA () = B (x) > e)
(1.2.17) (

P{wOn(XO)fin(xi) - win(x')fOn(XO) - wO(XO)fi(Xi)

e} when p0 is unknown,

v

+ Uy () ()

Plpgfin(x;) - W (xs) - Pof(x;) + W.(x;) > €}

when po is known.

When Po is known,

P{A;,(x) > 0}< PipgFin(x;) - pofi(xi) - Wi (%) + Wi(x;) > e}
< PIPGin(xy) - pyfi(x) > §

(1.2.18) or win(xi) - wi(xi) < -3}
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< Prpfin(x) - pofi(x;) > 5

+ P{win(xi) - w'l(xi) < "_g'}
S-P{fin(xi) - fi(xi) >-§}

FPU, () - Wy (%) < -5

since Po e(0, 1).
When p0 is unknown,

Plhin(x) > OF < POy, (xp)F4(xp) - Wy ()8 (x,) - o (xg)F; (x;)

+ Wi(xi)fo(xo) > ¢}
< PG (x) Py (%) - Wo(xg)f;(x;) > 53
+ P{win(xi)fOn(XO) - wi(xi)fo(xo) < -%}
(1.2.19) < PR () T (%) - Hy(xg)1 > 23
P PO () - £ 001 > &
P gn (%) Wy (%) = Wy (x,)1 <=5

PO () [ (xg) - folxg)l < -f&
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S.P{WOn(XO) - WO(XO) > ﬁﬂ +P{fin(xi) -fi(x;) > %&

£
z} .

£ - -
+ P{win(xi) -wi(xi) < -4} +P{f0n(xo) fo(x0)<
In (1.2.19), the last inequality is due to the fact that 0 5_Ni(xi),
fi(xi) < 1 and that 0 5-win(xi)’ fin(xi) < 1 where the jatter can be
easily checked from (1.2.12), (1.2.13) and (1.2.15).
(1.2.18) and (1.2.19) show that it suffices to consider the

behavior of P{’fin(xi) - fi(xi)l > 8} and P{Iwin(xi) - wi(xi)l > 8}

for some § > 0. For this purpose, we note that Bernstein's inequality

is useful.

Bernstein's Inequality (see Ibragimov and Linnik (1971), page 169).
Let Zl’ 22, -+.» be a sequence of independent random variables with
mean 0 and variances Var (Zi)'= Bi for i =1, 2, .... Write

Bn=81+o..+BnandSnzzl+...+zn_

Lemma (Bernstein's inequality). Suppose that, for some H > 0, and

- Lo
integer m > 2, E[Z?] 5_%—siHm Zmt . Then, for 0 < t 5_%-8: ot

b by -t
(1) {Sn Z_ZtBn} <e

by -t
(2) Pls, < -2tB% < e™" .



From (1.2.13) and (1.2.15),

Y. I, L (X..)
{x} 1
. l_1J N wi(X{I "

i

nNe~—~1>

—
Il 10

(1.2.20) wmu)—mu)=;j 4

)/N,

where Ai' =Y, ;

; 1jI{x}(Xij - wi(x). It is easy to see that Aij’

A..

J=1,...,n, are i.i.d. with mean 0 and finite variance, say Bi = B.(x)

since lAijI < 1. Therefore, taking H = 1, we then have, for m > 2,

m m
E[Aij] §_E[|Aij| ]

5_E[|Aij|2]

g m
<3 Bim. .

Thus, by Bernstein's inequality, for any 8§ > 0,

PLIW,(x) - Wi(x)] > &8}

P{ .g Aij > na}

J=1

(1.2.21)

|
k=]
™

n 1 1 1
L o5 % -
P{ jzl Aij > n* 6p. Bn} where B




26

<2 exp{-[min(%-nzssfz, %—nﬁs?)]

=2 exp{--E m1n(cS2 1

n
Stmilarly, from (1.2.12), f, (x) -f, (x) = %— L1055 (05) = 15601

n
=1 - P =
= jgl i where B. i {x}( .) fi(x). Also, Bij’ J=1,2,..., n,
are i.i.d.with mean 0 and [B l 1, and hence with finite variance, say

a; = ai(x). Taking H = 1 and applying Bernstein's inequality again,

we obtain

(1.2.22)  PLIF(x) = F.(x)] > 8} < 2 expg -3 min(s%cL, )3

Thus, if we take § = 7, from (1.2.18) and (1.2.19), for X eSs

P{a; (x) > 0} < O(exp{ -g—min(aza;l(xi),ai(xi))})

(1.2.23)
-+ 0(exp{ -E-min(dzsgl(xi), Bi(xi))})-

Similarly, for each X ETi’ i=1,2, ...,k, following similar

arguments, we also get the conclusion given below:

P{a; (%) < 0} < O(exp{ -7 m1n(62 1 1)’0‘1‘("1))}}’
(1.2.24)
n_. 2 -1
+ 0(exp -7 min(s B; (xi)’Bi(xi))})'

where ai(x), Bi(x) are defined as above.



27

Now, let 1 =%—min(b1,b2) where b; = min | min (62a;1(x),ai(x)) R
m<i<k O<x<N, ‘

b2 = min | min (stgl(x), Bi(x)) » here m = 1 if Po is known and
m<i<k nggNi :

m=0 if Po is unknown. It is clear that ¢, > 0 since Bi(x) >0,

ai(x) > 0 and x is finite. Thus, we have the following theorem:

Theorem 1.2.4. Let {dn}:;l be the sequence of empirical Bayes rules

described in Theorem 1.2.2. Then, rn(G, d,) - r(G) 5_O(exp{-C1n})
for some e 0. That is, the sequence of empirical Bayes rules

{dn}n_1 is asymptotically optimal at least of order exp{- Cln}

relative to the prior distribution G.

1.2.3. A Case When Gij;) are Symmetric about p = 4

In this subsection, we suppose that there is sufficient informa-
tion to tell us that Gj(-) are symmetric about p = & for all
i=1(0), 1, ..., k. Further, we also assume that Ni are even integers

for all i = (0), 1, ..., k.

Estimation of wi(x) and fiiél

Under the above assumptions, fi(x)»= fi(Ni - x) for all

x=0,1, ..., Ni' Therefore, it is reasonable to use
(L § (X,) for x #
Nl TOGN-xpYg TON X F s
|
1 _el _
(1.2.25) fin(x) :fin(Ni -X) = .o Ni
it T (yy) for x = -

to estimate fi(x).
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For wi(x), x=0,1, ..., Ni’ we will construct a sequence of

consistent estimators {W}n(x)}, in terms of f%n(y), ye{0, 1, ..., Ni}’

by using the observations (Xij’

lemma is very helpful for the above purpose.

J=1, ..., n) only. The following

Lemma 1.2.5. Suppose that the prior distribution Gi(°) is symmetric

about p = %. Then

_ x+1 v . - _
(a) wi(x) —'N;_:_i'wi(Ni X - 1) for ?éch x=0,1, ..., Ni 1.

(b) wi(x) + wi(Ni - x) = f.(x) = f.(N. - x) for each x = 0,1,..., N..
(c) Furthermore, if Ni is an even integer, then, wi{—i] = %—fi[—l].

Proof: (a) Under the assumption that Gi(') is symmetric about p = %3

then, for each x = 0, 1, ..., N, - 1, we have

1 . N;-X
W, (x) = Jo p[N;]px(l -p) 1 dG,(p)

(1.2.26)
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X

+ 1
mwi(Ni -x-1).

(b) Similarly, for each x = 0, 1, ..., N.,

wi(x) + wi(Ni - Xx)

= Jl [ﬁz]Px+l(l - P)Ni-xdGi(p) + jl [Ni]pNi_X+1(l -p)xdGi(p)
(1.2.27) (1) N - 10 N x -

- Jo [;JPXH(I—D) T de, (p) + fo [;]px(l -p) ' ds(p)

- f: (e - o) e, o

= fi(x).

Theorem 1.2.6. Suppose that Gi(') is symmetric about p = %-and Ni is

an even integer. Then, for each x = 0, 1, e Ni’ wi(x) can be

represented as a linear function of fi(y), y=0,1, ..., Ni’

Proof: First, from Lemma 1.2.5(a) and(b), for each x = 0, 1, ...,

N. -1,
i
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wi(Ni - X) = fi(Ni - X) - wi(x)
(1.2.28)
= - _Xx+*1 - X -
= fi(Ni X) Ny - X ”1(N1 x - 1).
N
By taking x = —E-—l + Z and after some simple computation, we have
N; Ni +2 -2z Ni
”1[7'2} =Wfi[7'2+lj
(1.2.29)

N_i +2 - 2z N; '
TN F 2z wi{?? nz l]'

Next, from Lemma 1.2.5 (c), we have
(1.2.30) wi{—i} =

Then, by (1.2.29), (1.2.30) and induction, we conclude that for

Ny N;
eachz =1, 2, ..., 7%, wi{Z} - z] can be represented as a linear

function of f.(y)s yefo, 1, ..., N3

Finally, by Lemma 1.2.5 (b), we also see that for each

N;

X==*1, ..., Ni> W.(x) can be represented as a linear function

of fi(y), yefo, 1, ..., N;j}. Hence, the proof of this theorem is
completed.

By Theorem 1.2.6, for each x = 0, 1, ..., Ni’

N,

(1.2.31) Wi (x) = ZO B(N:» X, y) f.ly)s
y=
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where the coefficients B(Ni’ X, y) depend on Ni’ x and y. Also, the

values of B(Ni, X, ¥) can be obtained from (1.

relation (1.2.29).

For example, for Ni = 4, we have

u;(0) = 7 £;(3) - 75 £.(2)
W, (1) = %—fi(z)
i wi(2) = 3 7,(2)
W (3) = £,(3) - 3 £.(2)
W.(4) = £.(4) - %—fi(3) + T%'fi(z)

" We then define

N
i

L

1 =
(1.2.32) win(x) = Jo

B(N;» x5 y) f%n(y)

where f%n(y) have been defined in (1.2.25).

Now, define

(1 1
Won (X0 Tin

i}
A,

(1.2.33) Al (x)

Lpof}n(xi) - Wi (x)

and

(x;) - w%n(xi)f

2.30) and the iterative

1

On(xo) if p, is unknown,

if po is known,
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(1.2.38)  di(x) = {ilal (x) < 0}

From (1.2.25), it is clear that f1 (x) » £.(x) with probability 1
as n » « for each x {0, 1, ..., Ni}‘ Therefore, from (1.2.31) and
(1.2.32), w%n(x) + W;(x) with probability 1 as n + » for each

xef{0, 1, ..., Ni}' Thus, we have the following theorem:

Theorem 1.2.7. Suppose that the prior distributions Gi(°) are sym-

metric about p = %—and N; are even integers for all i = (0), 1, ..., k.

Then, the sequence of decision rules {drl]}oo 1 is asymptotically
n:

optimal relative to the prior distribution G.

Rate of Convergence of Empirical Bayes Rules {dil_

We now consider the rate of convergence of the empirical Bayes
rules {di}. Following the same discussion as given in (1.2.16)
through (1.2.19), and the fact that the estimators {f%n(x)} defined
in (1.2.25) share the same property as that defined in (1.2.12), it
suffices to consider the behavior of P{w%n(x) - wi(x) > &} and
P{w%n(x) - wi(x) < -8} as n > » for some § > 0, for each
xe{0, 1, ..., Ni}’ i=(0), 1, ..., k. From (1.2.31) and (1.2.32),
for each x {0, 1, ..., N3,

P{w}n(x) - W (x) > 68}

(1.2.35)

P{}]o BNps % V) [F1,0) - £50)]> o]

Ny

) P{B(Ni, Xs y)E%n(y) - fi(YEl > 51}

y=0

|A
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=——6_— -
where 61 Ni + 1 If B(Ni’ X, y) = 0 for some 0 <y S-Ni’ then

P{B(Ni, X, y)[f%n(y) - fi(Y)] > 61} = 0. So, we assume B(Ni’ X,y) # 0.

When B(Ni’ X, ¥) > 0, then

1
P{B(N;» X, ez (y) - .yl > 8}

(1.2.36) 5

1 1
= P{f1n(y) - f_l(.Y) > m}

where 61/B(Ni, X, ¥) > 0. When B(Ni’ X, y) <0,

PLB(NG» X, Y)IF} (¥) = £;(1)1 > 8,
(1.2.37)
- 1
= PLFiL () - fi0y) < 8,/8(N;s x5 )}

whére Gl/B(Ni, X, ¥) < 0. In either case, the problem can be reduced
to considering the convergence rate of P{If%n(y) - fi(y)| > 62} as

n -+ « for some 62 >.0. Similarly, for the convergence rate of
P{W%n(x) - W.(x) < -8} where x {0, 1, ..., N.} and 6 > 0, we also

get a similar result. Therefore, by applying Bernstein's inequality
and following an argument similar to that of (1.2.20) and (1.2.21),

we conclude the following theorem:

Theorem 1.2.8. Let {di}:Ll be the sequence of empirical Bayes rules
defined in (1.2.34). Then, (d})” | is asymptotically optimal at least
n:

of order eXp{-czn} relative to the prior distribution G for some Cy > 0.
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1.2.4. Smooth Empirical Estimation of fi(x) and wi(x)

In this subsection, we also assume that Gi(') are symmetric about
p = %—and N; are even integers for all i = (0), 1, ..., k. In Sub-
section 1.2.3, the marginal frequency functions fi(x), X e{O,l,...,Ni},
= (0), 1, ..., k, are estimated in terms of the empirical frequency
functions f%n(x), regardless of properties associated with the
marginal function fj(x). 1In this subsection, by considering some
properties related to fi(x) and wi(x), two methods for smoothing the

estimators f%n(x) and w%n(x) are studied.

We first need the following lemma.

N[

Lemma 1.2.9. Suppose that Gi(°) is symmetric about p = 3 and N; is

an even integer. Then,
(1.2.38) (y+1) fi(y + 1) < (N, - y) f.(y) and
(1.2.39)  Wi(y) < Wy(N; - y)

Ns
for all y 8{0, 1, ...,-7? - 1}

Proof: We prove the inequality of (1.2.38) first. It suffices to

show that

1 N.-x N.-

Y
(1.2.40) fo (1 -p) T e (p) <j ¥ (1-p) 1 da(p)

N.
for all integers x, y such that 0 < y < x 5_—%u
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By the symmetry of Gi(p)’

1 N.-x
f P (1-p) " day(p)
0

) N.-x 1 N.-x
- s, () ST )

Ny

(1.2.41)

e

% N.-x =X
- J p* (1 -p) ! da;(p) + f (1-p)*p! dG; (p)
0 0

L N.-x N.-
=J EX (1-p) 7 +@-p)¥p! :[dGi(P‘/-

N.
Note that for 0 <y < x i% and p [0, %] » the inequality

N.-y N.-x N.-x
Pl -p <cp !l - p)XepX(a-p)

(1.2.42) , N, -y
< p’(1 - p)

is always true. Also,

N.-x N,-x N.-y N.-y
(1.2.43)  p"(1-p) " p T - p)XepY(1-p) i p (1 )Y,

Then, by (1.2.42) and (1.2.43), we obtain

N.-x N.-x N.-y N.
(L.z.ad) p 7 (1 -p)+ X1 -p) T < p T (1 Y ep¥(a - p)

N.
for all pe[O,%] as 0_<_y<x571.
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Therefore, from (1.2.41) and (1.2.44), the inequality (1.2.40) is
obtained.

For the inequality (1.2.39), we consider

w'i(N‘i -y) - wi(.V)

) J; [N;} pNi_yﬂ(l 'p)dei(p) ‘J(l) [N;prﬂ(l -p)Ni-dei(p)
- 4] f; P -p)yENi_zy-u -p)Ni_ZidGi(p)

NDY (% oy N, -2y N,-2y]
[;J [0 SRR P dG; (p)

. 1 N.-2 N.-2
(1.2.45) + [N;]j pyJ’l(l-p)yE1 y-('l-'P)v1 )]dGi(p)

Nj) (L N, -2y N, -2y
i [}2”1/ P -p) iz "”E’ bo-ep) ! ]dﬁi(p)

2
>0

N N.-2y

. N.-2y
Since for 0 < y 5_—%—— 1, p e[%a 1, 2p-1>0and p ! >(1 -p) !

Ny
Therefore, W.(y) < W(N, - y) for yefo, 1, ..., — - 1}.
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Lemma 1.2.10. Let U(x), h(x) be nonnegative functions defined on

{0, 1, ..., N} and satisfy

(1) U(x) = 3L UM -x-1)  forall x=0, 1, ..., N-1.

(ii)  U(x) + U(N - x) = h(x) = h(N - x) forallx=20,1, ..., N
and

(ii1)  U(x) < U(N - x) for all x =0, 1, ...,

| =
]
—
w

where N is an even positive integer. Then,

(iv) (x+ 1) h(x + 1) < (N - x) h(x) for all x = 0, I, ..., ¥ - L.

1l

Proof: Note that from (i), (N - x) U(x) = (x + 1) U(N - x - 1).

Then, by (ii), we obtain

(1.2.46) (N - x)[h(x) - U(N - x)] = (x + 1)[h(x + 1) - U(x + 1)].

Hence, from (1.2.46), we have

(N - x) h(x) - (x + 1) h(x + 1)

(N - x) UN-x) - (x+1)U(x+1)
(1.2.47)

|v

(N - x) U(x) - (x +1) U(x + 1) (by (1))

> (N - x) U(x) - (x + 1) UN - x - 1) (by (iii))
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X +

(N-X)Ej(x)—N_}(U(N—x-l):[

0 (by (i)).

Hence, the proof of this lemma is completed.
We note that conditions (i), (ii) and (iv) of Lemma 1.2.10 do not
imply that U(x) < U(N - x) for all x = 0, 1, ..., g- 1. The

following example illustrates this fact.

Example 1.2.11. Take N = 4. Let

[ o) = £ [ (o) = 5
h(1) = 3 u(1) = 135
{ h2) =% Fou) = 5E
h(3) = = u(3) = &2
h@) =g ) = 5

Then, conditions (i), (i) and (iv) are satisfied but U(4) < U(0).
From Lemma 1.2.9, the inequalities (1.2.38) and (1.2.39) are
always true for ally =0, 1, ..., 2}-- 1. However, the empirical
frequency functions f%n(x) and the functions w%n(x) do not always
satisfy the above inequalities. Hence, it is reasonable to consider
some smoothing of f%n(x) and w%n(x), which will satisfy the above
jnequalities. - Two -smoothing methods, based on f}n(x) and w%n(x)

respectively, are given as follows.
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Method 1. Smoothing Based on f}r(x)

Given Al > 0 (for Al >0, Al is chosen small), for each y = 0, 1,

N4

o 1 1
s 3 - L let e (A y) = min(a;, 5 (y) + f

iy 1)) Letm

1
stand for the number of times the smoothing process is carried out.

Algorithmically, first m, = 0.

Step 1. my = my + 1.

1 1
Check whether (Ni - y)fin(y) - (y + l)fin(y +1) - €in(Al’ y) <0 or

N.
not. If not, for y_g-j% - 2, let

(8 ¥) =LY+ DTy +1) - (N -y)F] (v) +e, (8, 0)1/(N, +1),

£0 (y) = f?n(Ni -y) = £l (y) + ain(Al’ ¥)s

0 _ 0 _ el
fin(y+1) - f'ln(N'l -y ‘l) - f1n(y) "ain(Als .Y) and

0 _ £l
fin(x) = fin(x) for all x #y, y + 1, Ny -y - 1N -y

N,
For y =-7% -1, let

1 4
. ‘.Y)f.in(.Y) +€.in(Als.Y)]x 3N1 T >

3in(Bpy) =Ly +1)F (v +1) - (N,

0 _ 0 R | 1
fin(y) - f1n(N1 y) f-ln(.Y) + 2 a'in(A].’ .Y) ]

0 |
fin(y +1) = fin(y +1) - ain(Al’ y) and

N N N

0 _ el i i i
fin(x) = fin(x) for all x #-7? - 1,-7? and - t 1.
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0 0
Step 2. Check whether (Ni - y)fin(Y) - (y + l)fin(y + 1) - ein(Al’ y)

N.
>0 forally=0,1, ..., —%—— 1 or not.

If yes, go to step 3.

If no, Tet f%n(x) = f?n(x) for all x =10, 1, ..., Ni’ and go to step 1.

N
Step 3. Define W (x) = T B(N., xo y)f (y)s x = 0, 1, ..., N..
in = in i

Remark 1.2.12 (1). We note that when the above smoothing procedure

stops, then the smooth estimators f?n(y) have the property that

N.
(v + DFf,y + 1) < (4 - N (y) forall y =0, 1, ..., - - 1.

(2). However, it is possible that the above smoothing procedure never
stops. In this situation, we can set up a maximal smoothing time to

stop this procedure. When this happens, the inequality that

N,
(y + 1)f?n(¥ +1) < (Ny - y)f?n(y) for all y =0, 1, ..., » - 1,

is not guaranteed.
Based on the smooth estimators f?n(x) and w?n(x), we define

decision rules dg(-), n=1,2, ..., as follows:

0

(1.2.48)  dp(x) = (i [W3 (eg)fd () - W8 (k)70 (x0) < o).

n

. 1
Method 2. Smoothing Based on wi (x)

Given A, > 0 (for A, > 0, b, is chosen small), for each

£ (N:-y)1/2)

_ e - 1
y=0,1, ..., > - L, let ain(Az, y) m1n(A2, [1»11.n(y)+l,~!1.n
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_ ol 1 .
and bin(AZ’ y) = [win(y) - win(Ni -y)/2 + Gin(AZ’ y). We start with

a variable m, which stands for the number of times the smoothing

carried. At first m2 = 0.

Step 1. m, = m, + 1.

Check whether w%n(Ni -y) > W . (AZ’ y) or not. If not, for

y = 0, let
* _ oyl
win(Ni) - win(Ni) + C(O)bin(AZ”O)’

* _ 1 :
win(o) - win(o) - d(o)bin(AZ’ O)’

w*

— *
1.n(N - 1) = N.WY (0) and

i i'in

* =yl -
win(x) win(x) for all x # 0, Ni 1, Ni'

M.
For 1 <y 5_—1-- 1, let

2
* _ ol _
Wig(Ngy - y) =W (N, - y) + cly)b, (A5 ¥),
* - wl
Win(y) = Wy (y) - d(y)bs (a5 ¥),
* - N'i ~ Yk
win(Ni -y - 1) - y +1 win(Y)

*
S R AT
Hiply = 1) = gy Wip(N; - v) and

* _nl
win(x) = win(x) for all x #y -1, ys Ny -y - 1, Ny - y.
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-yt 1)/(Ni +2), d(y) = 2(y + 1)/(Ni + 2) for

i

s 5T 1.

* *
Step 2. Check whether win(y) + din(AZ’ y) 5-win(Ni - y) for all

Ny
y=0,1, ..., > - 1 or not.

If yes, go to step 3.

*

If no, let w%n(x) = win(x) forall x=0,1, ..., Ni and go to step 1.

-y) forally=0,1, ..., N..

* _ ok *
Step 3. Let fin(y) = win(y) + win(N 5

i

Remark 1.2.13. (1) We note that when the above smoothing procedure

stops, then the smooth estimators W% (y) satisfy that W% (y) <Wi (N.-y)
in in™/ =%int

Ny * - y+1l =x
0, 1, ..., > - 1, Win(y) = win(N

for all y Ny -y

i Y- 1) for all

_ * * _ g% _ % _
y = 0: 1’ LICIC ) N, - 1 and w-in(.Y) + wm(Ni - Y) - fin(Y) - f.in(N-i .Y)

for all y = 0, 1, ..., N;. Then by Lemma 1.2.10, (y + 1)} (y+1) <
* N'i .
(Ni - y)fin(Y) for ally =20, 1, cees " 1. Therefore, method 2 is

better than method 1 in this sense.

(2) It is also possible that the above smoothing procedure never
stops. Hence, we can set up a maximal smoothing time to stop this
procedure. When this happens, for the smooth estimators, the inequal-
ity properties of (1.2.38) and (1.2.39) are not guaranteed.

Based on the smooth estimators f?n(x) and w:n(x), we define

decision rules d:(-), n=1,2, ..., as follows:
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(1.2.49) d’(x) = {11Wg, (xg) 5 (x4) = Wy (x5 )5 (xg) < 0.

1.2.5. Monte Carlo Studies

For the sequence of decision ru]es'{én(g)}i;l, the conditional

Bayes risk at stage n + 1 given (51, cees gn) is

(1.2.50) R (G, &) = L L(p, 8,(x)) f(x|p) d&(p).
n n Q xey n

To measure the performance of the sequence of decision rules
{an(f)}:=l’ computing the overall risk Pn(G, Gn) = ERn(G, Gn) is

needed, where the expectation E is taken with respect to (Xys -vs £,)
For the small sample situation, it is impossible to analytically
determine such values. Therefore, Monte Carlo simuiation is employed.
In this subsection, we have carried out some Monte Carlo studies
to see the performance of the sequences of decision rules {di}, {dg}
and {d;}. We Tet, conditional on Pis Xy ~ B(Ni’ pi) where N, are even

integers for i = 0, 1 and Po is treated as unknown. We also assume

that

fp F(Zai +2) a. O,

(1.2.51)  6(p) = 7y (1-y) ' dy, i=0, 1

0 [F(ai + 1)1

Then,

r(x *ta; +1) T(N, to; -x+1)
2" (N, + 20 ¥ 2) ’

[Ni] P(Zai +2)

(1.2.52) fi(x) %

[P(a.i +1)]
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( ) (x) N4 I’(ZOL_i +2) r(x +oL_i + 2) F(N'i +a'i -x+1)
1.2.53 W.(x) = [ ] X :
’ ir(a; +1)1° (N + 20, +3)

forx =0, 1, ..., N.; i =0, 1.

'Hence, the Bayes rule dG is:

Select ™, as good iff wo(xo)fl(xl) g_wl(xl)fo(xo) R
. xO + ao + 1 . x1 + al + 1 .
Ng + 20y + 2 =N ¥ 2a; + 2

A random sample of size 50 was generated by computing from a
population having f;(x) (i = 0, 1) as probability function. For each
N =1, 2, ..., 50, the conditional Bayes risks R (G, dl), R (G, d%)
‘and Rn(G, d:) were calculated. One hundred repetitions were performed.
Estimates of the overall risks rn(G, di), rn(G, dg) and rn(G, d:) were
obtained by averaging the associated conditional Bayes risks and the
standard deviations of the estimated overall risks were also obtained
based on these repeated samples.

In Table I, we consider the combinations of different Ni's and
ai's values for our decision problem. We Tet ?n(G, dn) denote the
average of 100 Rn(G, dn) values obtained from simulation. The stan-
dard deviation associated with Fn(G, dn) is given in the corresponding
parentheses. It is easy to see that the performances of the sequences
of decision rules {dg} and {d:} are always better than that of {d%},
as we expect. For the comparison of {dg} and {d:}, for the cases

that (NO’ Nl’ g, al) = (2, 2, 4, 4) and (NO, Nl’ %> al) = (2, 2,6, 6),
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both of them have the same performance. For the other (NO,Nl,aO,al)'s,

the performance of'{d;} is always better than that of {dg}, except
the case that (NO, Nl’ %5 al) = (2, 2, 4, 6). Even in this case,
the difference between ?n(G, dg) and ?n(G, d;) is very small for each

n=1,2, ..., 50. It is also interesting to note that in most cases,

1
h

largest standard deviation. This fact indicates that the behavior of

?n(e, d;) has the smallest standard deviation while Fn(G, dX) has the

the sequence of decision ru]es,{d;} is more stable than the others.

1.3. Empirical Bayes Rules for Selecting Good Populations--

Pareto Populations Case

In the previous section, we considered the construction of empiri-
cal Bayes rules for selecting good populations in comparison with a
control or standard population. However, an experimenter may be con-
cerned about comparisons among k (>.2) different populations. He may
be interested in finding the superior (or the inferior) populations
among the k populations. For example, a sociologist may be concerned
about the development of the environment of different local areas.
An economist might be interested in the incomes of different groups.
One of the most commonly used models for the above situations is a
Pareto model. For income example, economists believe that there
should be some minimum income for a family to subsist on. Similarly,
for the environmental problem, there should also be some minimum
acceptable Tevel for a person to live in some area. However, it may
be -hard to define what kind of level it should be, and these levels

may change with time. Social workers, generally, are interested in
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TABLE 1.1

Simulation results for the comparative performance of sequences
of empirical Bayes rules {dr11}’ {dg} and {d:}.

(NO, N> 2y al) =(2,2,4,4), r(G) = 0.05287

n r (6, dl) Fa(Gs ) Fp(Gs )
1 0.08936 0.06299 0.06299
(0.00118) (0.00073) (0.00073)
2 0.08426 0.05907 0.05907
(0.00171) (0.00062) (0.00062)
3 0.09188 0.05638 0.05638
(0.00213) (0.00053) (0.00053)
5 0.08745 0.05452 0.05452
(0.00227) (0.00038) (0.00038)
10 0.08299 0.05298 0.05298
(0.00222) (0.00010) (0.00010)
15 0.07899 0.05287 0.05287
(0.00251) (0.00000) . (0.00000)
20 0.07767 0.05287 0.05287
(0.00243) (0.00000) (0.00000)
25 0.07849 0.05287 0.05287
(0.00234) (0.00000) (0.00000)
30 0.07481 0.05287 0.05287
(0.00212) (0.00000) (0.00000)
35 ©0.07328 0.05287 0.05287
(0.00215) (0.00000) (0.00000)
40 0.07215 0.05287 0.05287
(0.00203) (0.00000) (0.00000)
45 0.07200 0.05287 0.05287
(0.00213) (0.00000) (0.00000)
50 0.07157 0.05287 ©0.05287
(0.00212) (0.00000) (0.00000)
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TABLE 1.2

Simulation results for the comparative performance of sequences
of empirical Bayes rules {drl]}, {dg} and {d:}.

(Ng» Nys ags a7) = (2, 2, 4, 6), r(G) = 0.04965

no ? (6, dl) 7 (6, ) F (6, d¥)
1 0.08093 0.06135 0.06135
(0.00103) (0.00068) (0.00068)
2 0.07724 0.05747 0.05747
(0.00147) (0.00066) (0.00066)
3 0.07771 0.05459 0.05447
(0.00215) (0.00058) (0.00059)
5 0.07706 0.05209 0.05212
(0.00220) (0.00032) (0.00032)
10 0.07659 0.05112 0.05097
(0.00210) (0.00012) (0.00014)
15 0.07314 0.05090 0.05129
(0.00211) (0.00013) |  (0.00014)
20 0.07034 0.05107 0.05138
(0.00203) (0.00013) (0.00014)
25 0.07006 0.05093 0.05082
(0.00215) (0.00014) (0.00014)
30 0.06743 0.05085 0.05115
(0.00195) (0.00013) (0.00014)
35 0.06682 0.05078 0.05121
(0.00197) (0.00014) (0.00015)

40 0.06724 0.05059 0.05118
(0.00192) (0.00012) ~ (0.00014)
45 0.06632 0.05061 0.05111
(0.00194) (0.00013) (0.00014)
50 0.06676 0.05074 ©0.05127
(0.00184) |  (0.00013) (0.00014)
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TABLE 1.3

Simulation results for the comparative performance of sequences
~ of empirical Bayes rules {drll}, {dg} and {d:}.

(NO, Nl, ay> al) = (2, 2,6, 6), r(G) = 0.0489

n P (6, dl) 6, d) F (6, d¥)
1 0.07640 . 0.05626 0.05626
(0.00089) (0.00056) (0.00056)
2 0.07188 0.05284 0.05284
(0.00126) (0.00043) (0.00043)
3 0.07577 ' 0.05121 0.05121
(0.00160) (0.00038) (0.00038)
5 0.07272 0.04965 0.04965
(0.00175) (0.00022) (0.00022)
10 0.07098 0.04896 0.04896
(0.00164) (0.00000) (0.00000)
15 0.07111 0.04896 0.04896
(0.00189) (0.00000) ' (0.00000)
20 0.07090 0.04896 (0.04896)
(0.00173) - (0.00000) (0.00000)
25 0.06931 0.04896 (0.04896)
(0.00185) (0.00000) (0.00000)
30 0.06904 0.04896 0.04896
(0.00176) (0.00000) (0.00000)
35 0.06938 0.04896 0.04896
(0.00181) (0.00000) (0.00000)
40 0.06855 0.04896 0.04896
(0.00171) (0.00000) (0.00000)
45 0.06860 0.04896 0.04896
(0.00169) (0.00000) (0.00000)
50 0.06681 0.04896 0.04896
(0.00169) (0.00000) (0.00000)
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TABLE 1.4

Simulation results for the -comparative performance of sequences
of empirical Bayes rules {drl]}, {dg} and {d;}.

(Ny> Nis s °‘1) = (4, 4, 4, 4), r(G) = 0.04114

n R (6, d]) r (6, d9) F (6, d)
1 0.08641 0.07389 0.06350
(0.00030) (0.00123) (0.00123)
2 0.09043 0.06071 0.05480
(0.00168) (0.00164) (0.00116)
3 0.08626 0.06396 0.05026
(0.00069) (0.00131) (0.00092)
5 0.08595 0.05851 0.04613
(0.00174) (0.00156) (0.00059)
10 0.08479 0.05546 0.04274
(0.00145) (0.00147) (0.00035)
15 0.07992 0.05596 0.04189
(0.00161) (0.00147) ‘ (0.00016)
20 0.07994 . 0.05536 0.04148
(0.00156) (0.00145) (0.00010)
25 0.07514 0.05358 0.04155
(0.00185) (0.00133) (0.00011)
30 0.07674 0.05446 0.04144
(0.00157) (0.00141) (0.00011)
35 0.07458 0.05449 0.04144
(0.00156) (0.00139) (0.00010)
40 0.07024 0.05312 0.04168
(0.00158) (0.00130) _ (0.00013)
45 0.06855 0.05267 0.04158
(0.00145) (0.00126) (0.00013)
50 0.06749 , 0.05187 ' 0.04158
(0.00152) (0.00119) (0.00012)
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TABLE 1.5

Simulation results for the comparative performance of sequences
of empirical Bayes rules {drll}, {dg} and {d:}.

(Ng» Nis ag> o) = (4, 4, 4, 6), r(G) = 0.03937

n F, (6, ) A6, ) F (6, d¥)
1 0.08071 0.06913 0.06074
(0.00027) (0.00102) (0.00103)
2 0.08244 0.05919 0.05334
(0.00145) (0.00139) (0.00094)
3 0.07920 0.05979 0.04862
(0.00072) (0.00126) (0.00088)
5 0.07858 0.05437 0.04439
(0.00154) (0.00140) (0.00071)
10 0.07701 0.05012 0.04082
(0.00152) (0.00123) (0.00015)
15 0.07278 0.05212 0.04098
(0.00158) (0.00118) (0.00017)
20 0.07153 0.05074 0.04057
(0.00152) (0.00120) (0.00014)
25 0.06943 0.05023 0.04099
(0.00152) (0.00116) (0.00018)
30 0.06777 0.05017 . 0.04058
(0.00153) (0.00121) (0.00012)
35 0.06606 0.04839 0.04084
(0.00146) (0.00107) (0.00015)
40 0.06493 0.04839 0.04082
(0.00150) (0.00111) (0.00014)
45 0.06345 0.04853 0.04078
(0.00138) (0.00115) (0.00014)
50 0.06300 0.04867  0.04080
(0.00136) (0.00111) (0.00012)
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TABLE 1.6

Simulation results for the comparative performance of sequences
of empirical Bayes rules {drll}, {dg} and {d;}.

(No’ Nl, Cg> al) = (4, 4, 6, 6), r(G) = 0.03970

n r (6, dl) rp(6s ) F (G, d¥)
1 0.07415 0.06354 0.05607
(0.00020) (0.00088) (0.00087)
2 0.07609 0.05526 0.04950
(0.00117) (0.00119) (0.00073)
3 0.07333 0.05737 0.04669
(0.00057) (0.00104) (0.00066)
5 0.07158 0.05513 0.04275
(0.00110) (0.00108) (0.00051)
10 0.07102 0.05097 0.04079
(0.00132) (0.00103) (0.00024)
15 0.06987 0.05202 0.04006
(0.00102) (0.00106) (0.00009)
20 0.06907 0.05035 0.04001
(0.00122) (0.00105) (0.00009)
25 0.06632 0.04973 0.04004
(0.00121) (0.00100) (0.00010)
30 0.06748 0.05067 0.04004
(0.00118) (0.00099) (0.00010)
35 0.06669 0.05024 0.03997
(0.00136) (0.00101) (0.00009)
40 0.06712 0.05034 0.04004
(0.00118) (0.00098) (0.00009)
45 0.06626 0.05110 0.03987
(0.00129) (0.00101) (0.00006)
50 0.06373 0.05042 0.03992
(0.00126) (0.00102) (0.00008)
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those who have a Tow level or standard of living. From the past and
current information, they may select some subgroups and render help
to improve their 1iving conditions. In this section, we consider

k Pareto populations and suggest a method to decide what populations

are around the low level situation.

1.3.1. Formulation of the Problem

Let Tys e M be k (> 2) populations, and let Xi be a random
observation for a certain characteristic of s Assume that Xi has
a Pareto distribution and write Xi ~ Pa (ei, o) where a > 0 and

ei >0 for all i=1, 2, ..., k. That is, conditional on ei, Xi has

(6]
(o 43 )
. _ i - -
density fi(xlei) = N I(ei,m)(x). Let @ = {g = (61, cees ek)lei >0
k
for i =1, ..., k} be the parameter space. Let G = I Gi be a prior
_ i=1

distribution over Q. Suppose that the following information is

available for all i 1, 2, ..., k.

[ (i) Gi(c) 0 for some known positive constant c.

(i) Gi(°) has a continuous probability density function g;-

(1.3.1)4 :
(i11) sup gi(e) <M< w,
8>

(iv) r 046, (6) < .
C

From (i), the parameter space 9 can be reduced to Q = {9 =

(61, cens ek)lei > c}. For each § eQ, let AA(Q) = {1Iei <9

[1] + A},
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B,(0) = {j|e, > 6 + A} where 0 = min @8, and A > 0 is a
A J [1] [1] 1<j<k

prespecified constant. Population ms is said to be good if i sAA(Q)
| and to be bad if i sBA(Q). We are interested in selecting all good
populations.

Let A = {ala [ {1, 2, ..., k}, @ # ¢} be the action space. When
action a is taken, it means that ™, is selected as a good population
if iea and rejected as a bad population if ita. For each acA and

8 €Q, define the loss function

L(Q: a) = Z (6- = 6

jea J [11 - A)

I (6.)
[6[1]+A,°°) Jj

(1.3.2)
+ (6r47 + A -0.)1 ny(05).
jga [1] VR CEL PSR VAN
The first summation is the loss due to selecting bad populations and
the second summation is the loss due to rejecting good populations.

Let (Xil’eil)’ cees (Xin

> ein) be pairs of random variables
associated with population M- Q47 --es ein are independently
distributed with common distribution Gi and are unobservable. Condi-

tional on eij = eij’ Xij ~ Pa (eij’ a). Let Xj = (le, cees ij)

denote the previous jth observations taken from 7 -» M > respec-

1>
tively. Llet X = (Xl, ey Xk) be the present observatijons.
Conditional on g = (91’ cens ek), X has a joint density

k
(1.3.3) f(x]g) = E fi(xilei) where fi(xilei) = —
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Let x =

X; where X; = [ei, ©). Let D={d|d = x -~ A} be the
i

=1

1
decision space. For each d €D, let r(G, d) denote the associated

Bayes risk. Then, r(G) = inf r(G, d) is the minimum Bayes risk.
deD

Let d (x) = d (x, X1> -+-» X) be a decision rule, based on the

present observation X, and the previous n observations X s X .

17 "+ I

The sequence of decision rules {dn(f)}oo is said to be asymptotically

n=1

optimal relative to the prior distribution G if rn(G, dn) - r(G) as
n >, where r (G, d ) = fx E Lz L(8, d (x5 X;s -os X ))f(x]0)dG(g)dx

and the expectation is taken with respect to the o-finite measure
generated by (X;, ..., X ).

Note that for A=0, our problem is reduced to similar cases studied
by Deely (1965), Van Ryzin (1970) and Van Ryzin and Susarla (1977)
for other distributions. We see that when A = 0, the determination

of the Bayes rule is independent of the value J (§|Q)dG(Q), and

0,.,F
q [1]
hence the computation of the Bayes rule is quite easy in this case.
However, when A > 0, the determination of the Bayes rule depends on

the value J e[l]f(glg)dG(Q) which, in general, is very hard to
Q .

evaluate.

In Subsection 1.3.2, a Bayes rule for our selection problem is
derived. Later, this Bayes rule is represented as a function of the
marginal density functions of Xi’ i=1,2, ..., k. Corresponding to

this Bayes rule, a sequence of empirical Bayes rules is derived in
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Subsection 1.3.3. Finally, the rate of convergence of the empirical

Bayes rules 1is studied in Subsection 1.3.4.

1.3.2. A Bayesian Framework

Determination. of a Bayes Rule

Let ass i=1, ..., 2k - 1, denote the 2k - 1 nonempty subsets
of {1, ..., k}. When x = (Xl’ cens xk) are observed, let Pi(é) be

the probability of taking action a;- Let d be the randomized decision

k

rule determined by (Pi(g), i=1, ..., 2 - 1). Then, under the prior

distribution G, the Bayes risk associated with d is

k

2°-1
¢ (6, d) = fﬂ[ 17400 Lg, ap) (xlg)x da()
X 1=

[ Y h jﬂ L(8, a;)-F(x]8)dg(g)dx

2°-1
- JX 121 P, (x) jg Jga (65 - 8117 = Mg 4p.0)(05)

[1]

(1.3.4) ¥ jiﬂ(eu]+A “% ”[ce”]A)wjﬂ
- Fx]e)da(0)dx
2%_1
i IX 2P Lz Jéa (05 - 81y - &)
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k
2"-1
=f L Pi(x) [9 jgai (ej - e[ll—A)f(;g]Q)dG(Q)dl(

k
+ IX fﬂ ng (9[1] +A 'ej)I[c,e[l]+A)(ej)f(ﬁlg)de(ﬁ)dﬁ-

In (1.3.4), the second equality is obtained from the condition (iv) of
(1.3.1) and by applying Fubini's theorem. Since the second term at
the right-hand side of (1.3.4) is independent of the choice of action
s, thus, the Bayes rule can be determined by considering only the

first term.

Hence take action a, with probability 1 if

Lz jgai(ej'em'A)f(xI@)dG(g)
(1.3.5)
- min I (8, -6

. -A)f(xlg)dG(e) .
1<m<2k-1 "% JEqy,

In general, let
Alx) = {aieAUQ L 05-0p) -0 (xl)e(e)
3
- min j T (o5-0p, -A)f(yg)de(g)}.

lgmgzk-l @ jeam

A randomized decision rule d satisfying ) ) P{d(x) = a} = 1 is also
aeA()S -

a Bayes rule. Since for our problem, we can restrict our attention to
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nonrandomized rules. A nonrandomized Bayes rule dG can be obtained

as follows:

Let Rg;(x) = J (05 - 817 - A)F(x|0)d&(8). Then,
Q

[ (i) If Rgj(x) < 0 for some j, then

dg(x) = {j|Rgj(x) < 0}

{j|xj <A+ c} L_]{jlxj > A+ c and Rgj(x) < 0}

Ng(x> &+ ¢) S5z, &+ c)

(1.3.6) 3 where NG(g, A+ ¢) {jlxj < A+ c} and

1

S

(x, A+ c)

{jlxj_z A+ c and Rgi(x) < 0}

(i1) If RGj(ﬁ) > 0 for all j, then

dg(x) = {min{m[R, (x) = min Rg;i(x)}}
G Gm'= 1<j<k JiZ
{ = Sé(é, A+ c).

We note that RGj(ﬁ) > 0 implies that X5 > c+ A

A Representation of the Bayes Rule dg

aeq

i . .
Note that fi(xlei) = G I[ei’w)(x). Thus, the marginal density

function fi(x) of the random variable X; is:
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—~
>
—r
I

(1.3.7) ¢ ¢ X

0 otherwise.

So, the marginal distribution function Fi(x) of Xi is:

(o0

Fily) = Je=c Fi(yle)da, (o)

Jw fy fi(x|6)dx dGi(e)
6=c ‘x=0 '

(1.3.8) r Jy 08>\ da (6)
e e = X .
8=¢c ‘x=0 xOL+1 1

y e
j (1 - ©)aa. (o)
B=c Yy

= 6,(y) - L£.(y)

Therefore, the posterior distribution Gi(ehi), when Xi

observed, is:

7]
Gi(elxi) = JC dGi(zlx

(1.3.9)

X X o0
f fi(xle)dGi(e) = J e dGi(e) for x > c,

58

. is
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and

0 if e <c,
Gi(B[xi) =
1 if 6 > X -

We now are going to find the posterior distribution of 6[1] =

min O, when X = X are observed. Let G 5) denote the posterijor

1<j<k

O

distribution of © given that X = x are observed. Then

(1]

G[l](6]>~<) = P{0[,, < 8|x}

[1]

=1 - P{e[ll > 9]x}

=1-Plo, >0 foralli=1,...,k|[x}
k

=1- T P{o, > 8]x;}
=1 i i

(1.3.10) -

k

=1- T [1-G(6[x;)
i=1

(0 if 8a<c,

1 if 6 >x

where x = min X..
[1] 1<i<k
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Then,
RGJ(?V() = L} (BJ - 6[1 A)dG(G! f(X
(1.3.11) .
= (EGj[Ojlxj] - E [1]|x] - A)f(x)
where
*3
E. [0.]x.] =f 8dG;(6]x.)
G573 c 3773
*3
(1.3.12) - x; - fc 65(0]x;)do
X5 6% 1e ()
= X, - ds
J atl ?
x5 F30
"[11
[1]
= x[l] jc [1 e|x)de
(1.3.13)
[ k 0™*Lf . (0) )
= X - 1 -1 1 - 6]
wol e ]
C j=1 X3 fi(x1)
X a+l
[1]1 k f (8)
=c + J I E o :I do
c i=1 X fi(xi)
k
and f(x) = T f.(x.) is the marginal joint density function of x.

. i
i=1 1
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Hence,
" *5 6%*1. (o)
Re :{x X. - dé - ¢
Gjt= [ J J atl
Xy fj(xJ)
X atl
J [11 k ;) fi(e) )
) 1 E B} ]de —A]f X
c i=1 x?+lfi(x1)
(1.3.14)
, f(x) N
= (x5 - ¢ - AF(x) - = [ * 6*1r,(0)o
J ~ at+l J
X5 fj( j) c

X
[11 k
- l—f I E&‘ﬂf.(x.) - e°‘+1f.(e)1de.
atl Jc j=1 L1 L 1

nax
=

Therefore, from (1.3.6) and (1.3.14), the Bayes rule dg can be repre-

sented in terms of the marginal density functions fi’ i=1,2, ..., k.

1.3.3. Empirical Bayes Analysis

Foreach j =1,2, ..., ks n=1, 2, ..., let fjn(x; Ajl’ cees

Xjn) = fjn(x) be a nonnegative density estimator of fj(x). Let
k

f(x) = jgl fjn(xj)‘ Define
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an(g) = an(é; X

fn(é) xj o+l
g ) - L 0**1f . (0)do
J Jn'J
(1.3.15)
X
[1] k
-~ 1 f E(1+1f1.n(x1.) . e°‘+1f1.n(e)]de
otl ‘¢ i=1
I )(_i
i=1
Next, define the decision rule dn(g) = dn(f; 51,'..., En) as
follows:
[ () If X < ¢ * A for some j or an(g) < 0 for some j,
let
d.(x) = {jlxj <A+l L_]{jlxj > A+ candR . (x) <0}
- 1
= NG(g, A+c) || Sn(f’ A+ c).
(1.3.16) J

(ii) 1If X5 > A+ ¢ and an(ﬁ) > 0 for all j, let

o

—
1

o
0]

{min{m|R_ (x) = min R _.(x)}}
Run(®) = min 50

| Sﬁ(5, A+ c).
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We then have the following result.

Theorem 1.3.1. Let G be a prior distribution over the parameter

space Q. Suppose that [w edGi(e) <o forall i=1, ..., k. If
Cc

an(g) P RGj(g) a.e. (X) as n > «, then rn(G, dn) > r(G) as n + o,

Therefore, the sequence of decision rule {dn} is asymptotically
optimal relative to the prior distribution G.

o

Proof: The finiteness of j edGi(e) for all i = 1, ..., k, implies
c

that the Corollary 1 of Robbins (1964) can be applied here. Thus, it

suffices to show that for each x ey,

jﬂ L8, d,(x))F(x|0)ds(e) & [Q L8, dglx))F(x]8)da(g)

(1.3.17)
as n - w,

Now, dG is a Bayes rule, so,

o
A

__fg L(e. d_(x))f(x|e)da(e) - jg L(8, dg(x))F(x]0)da(s)
= Res(x) - Res(x)
jed(x) 9 jedg(g) w=
(1.3.18)

R ( ) - R ( + R . - R..
jﬁdg(’é) [GJ Y 5)] J‘edcz;(%') [na(ﬁ) GJ(’~‘)1
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Rag(x) - Rpz ()| + R 5(x) - Rgs(x)

since by the definition of dn(g), . ) R .(x) - R .(x) < 0.

Therefore,

(1.3.19) 5.j€d§(x [Rej(x) - Ry (x)] + Jedg(é) [Rp; (%) = Rgz(x)]
k
<2 ] [Rgglx) - Ry500)]

which converges to zero in probability by assumption.
Hence, (1.3.17) holds. Thus, {dn} is asymptotically optimal
relative to the prior distribution G.

In the following, we give a sufficient condition under which

an(§) -> RGj(é) with probability 1. Then, the assumption in Theorem

1.3.1 that an(g) £ Rg (%) a.e. (X) as n > w, will be satisfied.

Theorem 1.3.2. Let G be a prior distribution over the parameter

space Q, satisfying Gi(c) = 0 for some ¢ > 0 and J edGi(e) <o for
o

alli=1, ..., k. Let fjn(x) = fjn(x; Xjpoeses Xjn) be a density

estimator of f.(x), based on x and (X,

j ..» X. ). Suppose that

jr - jn
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(1.3.20)  supl|f. (x) - f.(x)] ~ 0 with probability 1 as n + o,
we dn J

forall j =1, ..., k.

Then, an(g) > Rgj(x) with probability 1 for each xex and j=1,...,k.

X .0 X
: ' ! = ae _g_ .g'_ o)
Proof: Note that 0 f_fj(x) fc o] de(e) S'Jc M de(e) LTS

So, f5(x), j =1, ..., k, are bounded functions. Since

sup|f. (x) - f.(x)| +~ 0 with probability 1 as n + », then, there
x>¢c JIn J

exists some positive integer, say Y such that for all n 3—"0’

fjn(x)’ J =1, ..., k, are uniformly bounded functions. That is,

there exists some constant M1 > 0 such that lfjn(x)] 5_M1 for all
X>cC,n 2—"0 and j =1, ..., k.

Now, for each x ey,

[Ro52) = Rg3(x)]

f(x) (%
1 n'~ atl
< Ixg-e-al[f (0 -F(0)| + W e L 0" Fynlo)de
(1.3.21) Fx) jxjea+lf (e)de[
fjiji ¢ J
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= =x

1 [%?*1 f.(x;) - g% fi(e{I'de

i 1 1

< Ixg - ¢ - AlIF () - F(x)]

k Xy
1 atl
Tt | B fin(x1)l J 8 lfjn(e) - f5(6)]do
xj_ 1—% C
i#]
X.
k k J
1 atl
+|1gl ) - T )| i jc o**1|r,(6) -7 (0 |do
1#] i#] J
X
[1] k
e 1 J , i [;?+1fin( ) - %t ls n(e):]
atl ‘¢ i=1 L 1 1
I X
i=1 !
K o+1 at+l
o E( £.(x:) - 6%1s (e)]lde
j=1 LT i i

By the uniform boundedness of fj(x), f.n(x), n.> ng and the assumption

J

that sup|f. (x) - f.(x)] - 0 with probability 1 as n > », we see that
e N J

for each x ex, each term on the right-hand side of (1.3.21) tends to

0 with probability 1 as n » ». Hence, an(é) - R..{x) » 0 with

GJ
probability 1 as n -~ » for each X €X.

Estimation of Density Function fj(x)

Theorems 1.3.1 and 1.3.2 imply that if sequerices of uniformly

consistent estimators {fjn(x)} of fj(x), J=1, ..., k, can be
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constructed, then a sequence of empirical Bayes rules for our selec-
tion problem can also be obtained. Before searching for the con-
sistent estimators fjn(x), a lemma about the property of uniform

continuity of fj(x) is given below.

Lemma 1.3.3. Suppose that the prior distribution Gj(') satisfies the

following conditions:

(1) Gj(c) = 0 for some ¢ > 0.

(2) Gj(°) has a continuous probability density function g

(3) sup 9.(8) <M< o,
6>c =

(4) r 006 (8) < .
[od

Then, the marginal density function fj(x) is uniformly continuous.
This lemma can be verified directly. We omit the proof here.

We now define

v 1 n xv-X.m
(1.3.22) fjn(x) = nh(n) mzl ¢{ h(n) ]

where ¢(x) is a certain density function and the sequence of positive

constants {h(n)} satisfying that 1im h(n) = 0.

n—>ce

Let V. = sup |f. (x) - f.(x)]. Nadaraya (1965) studied some
I xer - IN J

situation in which an + 0 with probability 1 as n > «=. We cite his

main result here.
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Theorem (Nadaraya). Suppose that ¢(x) is a function of bounded

variation, fj(x) is a uniformly continuous density function and the

series ) eXp(-r‘nhz(n)) converges for every positive value r. Then
n=1
an = ;:E |fjn(x) - fj(x)[ -+ 0 with probability 1 as n + =,

In our model, under the assumptions of (1.3.1), fj(x) is uni-
formly continuous for each j =1, ..., k. Thus, by Nadaraya's
theorem, we can construct a sequence of estimators {fjn} such that
an ~+ 0 with probability 1 for each j =1, ..., k. Then, by

Theorems 1.3.1 and 1.3.2, a sequence of empirical Bayes rules for

our selection problem can also be obtained.

A Special Case when A = 0

In case that A = 0, we only need the assumption (iv) of (1.3.1).
When A = 0,

0 < Rg;(x) = JQ (65 - 0pq) F(x]9)da(g)

(1.3.23)
- JQ o5 (ale)de(e) - fﬂ 01,7 (x]8)d6 (o).

Let dé be the Bayes rule for the case when A = 0. Then,

X
N
|

= {min{m|R;_(x) = min Rn:(x)}}
| I Gm 1§_jik GJ ~

{min{m

J o f(x]g)da(g) = min f 6.(x[6)d6(0)}}.
Q I<j<k Jg 3~
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Note that here the determination of the Bayes rule dé is inde-

pendent of the value j Or17(x10)dG(8). Let
o _

(x) = f
Tg; (%) JQ 07 (x|@)dG(e)
k XJ
_ 1 atl
=) - gy 1Ay [T (o)ae
X - i= 0
(1.3.25) b i
m.(o,x.) k
= x.f(x) - 4—34° 1 f.(x.)
J atl . ivhd
X~ i=1
J i3
where
%5
.3. (o, x.) = o%tl ¢ = gyl 1.
(13.26)  my(e, x) fo £5(0)do = ELX I(O’Xj)(XJ)]

Therefore, let fjn(x) = fjn(x, le, cens Xjn) be a density

estimator of fj(x), based on x and (Xj cees X. ). Let

=1
(1.3.27)  my (as x) =+

et~
.
+
—
—

msy 9m  (0,x] 1 gm’

Define

mjn(oc,XJ-) k
(1.3.28) Tn\](é) = Xan(é) - —:C;*‘T— 1I=Il f. (X),

and
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1 - 1 / y, = s ) = s
(1.3.29)  d (x) = d (% Xps -ons X)) = {min{m|T _(x) 1T}2k Thi (X013

Then, similar to Theorem 1.3.1, we get the following theorem.

Theorem 1.3.4. let G =

n ==

Gi,be a prior distribution over the

i=1

00

parameter space 9, satisfying that J edGi(e) <o foralli=1, ..., k.

0

Suppose that Tnj(g) £ TGj(ﬁ)a-e-(E) as n >~ . Then, the sequence of

decision rules {dﬁ} is asymptotically optimal relative to the prior

distribution G.

Proof: The proof of this theorem is similar to that of Theorem 1.3.1
and hence omitted.
Note that for each x > 0, mjn(a, x) can be viewed as the sample

. . atl _
mean of bounded 1i.i.d. random variables ij I(O,x](xjm)’ m=1, ..., n.
It is also an unbiased estimator of mj(a, x). Thus, mjn(a, X) -

mj(a, x) with probability 1 as n > ». What remains is that we need

to find a sequence of estimators {fjn(x)} such that fjn(x) P fj(x)
a.e.(Xj) as n-»>e<. If all the conditions of (1.3.1) are satisfied,
we can still apply Nadaraya's theorem to derive such a sequence of
estimators. However, here, only condition (iv) of (1.3.1) is avail-

able. Thus, we need to consider some other approach. First we give

a lemma similar to Lemma 1.3.3 as follows:

Lemma 1.3.5. The continuity of the prior distribution Gi(e) implies

the continuity of fi(x).
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Now, define

(1.3.30)  f, (x) = nh%n)

N~
e
<
—~—
=
=}

where the kernel density function ¥(+) satisfying

(1.3.31) (i) sup p(x) < o, (ii) 1im [xp(x)| = 0,
xeR | X |+

and the sequence of positive constants {h(n)} satisfying

(1.3.32) (i) 1im h(n) = 0, (ii) 1im nh(n) = .
N oo

Then,

Theorem 1.3.6. Let G be a prior distribution cver the parameter

space Q, satisfying (1) ]w edGi(e) < = and (2) Gi(e) is a continuous
0

function of o for all i = 1, ..., k. Let {fin(x)} be a sequence of
estimafors defined in (1.3.30), where the kernel density function y
and the sequence of positive constants {h(n)} satisfy the conditions
of (1.3.31) and (1.3.32), respectively. Then, the sequence of

decision rules {di} is asymptot%cally optimal relative to the prior

distribution G.

Proof: By our assumption and by Lemma 1.3.5, fj(x), =1, ..., k,
are continuous function. Then by Parzen (1962), fjn(x) L4 fj(x)

a.e.(Xj) as n+ « for each j = 1, ..., k. Also, we have shown that
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mjn(a, X) - mj(a, x) with probability 1 as n -~ «». Therefore,

Tnj(é) 5 TGj(§) a.e. (X) as n->=. Hence, this theorem is a direct

result of Theorem 1.3.4.

1.3.4. Rate of Convergence of the Empirical Bayes Rules

In this subsection, we assume that o > 1. This assumption and

condition (iv) of (1.3.1) together imply that E[Xi] < » since
= = O o
E[Xi] = EGi[Elxilei]] o1 EGi[ei] < o,

When A > 0, let Sy = {5|jede(§)},Shj={5|j€dn(5)}. Then, we have

the following theorem:

Theorem 1.3.7. Assume that P{x eSnj - Sj} = O(an), P{x eSj - Snj} =

0(B) for all x ex, where Tima_ = 1im B_ = 0. Let vy = max(a., B.).
n o N e D n n’ “n

Then, the sequence of empirical Bayes rules {dn} is asymptotically

optimal at least of order {¥,} relative to the prior G.

Proof: We see that

0<r (6, d) - r(e)

- [ {e] Re<(x)] - Re:(x) bd
Jx{ Jedg(z() 3 )”(] jedé(z) o 5}5

—k k
- [ {e] 3. Rajtx) 1 <>] - ]
X 1 J=

(1.3.33)



|
Il D~ X

Jx o (%) EESnj(i() i Isj()ﬁ):ld)ﬁ

J
k . .
= R . 7 L - . o - )
jzl N GJ(E) E{)”( eSnJ SJ} pix ESJ SnJ}___ld)f
k¢
= Rgi(x S .-S.} - -5 .
J'Zl JH;UH? Gj(x) E){L( €303 J} pix eSJ SnJ}:leE

1_ . 2 _
where Hy {x|Rg3(x) < 0} and Hs = {x|Rg;(x) > 0.

hen x ehl, -f(x) < NOE J (05 - 0y4; - A)d6(8]x)F(x) < 0.

Q 9
Hence,

Rp . - S.} - .-

JH% GJ(ZS) Eﬂ:f ESnJ SJ} p{§ ESJ Snj}:]dé
J

(1.3.34)

< Afp{xeS_. - S.} + .- R
_IHl E)"E nj ~ 537 * Plxes; SnJ{I,f(’é)dé

2
hen x eiff, 0 < Rg;(0) = | (95 - 01 - a)aa(alx)T()

q [1]

< [ sy8ielnr(0
Q 3

< x.f .
< x;F(x)

Hence,

[ R 60 [Pixes. . - 53 = oix cs. -
ng Gj(ﬁ)[:{f ESnJ SJ} p{x eSJ Snj%]dﬁ
J
(1.3.35)
< JH? XJE){)“( E:Snj - Sj} + p{x €35 - Snj}]f(i‘)d’é .
J
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From (1.3.33) ~ (1.3.35), we obtain

0 < rn(G, dn) - r(G)

J

A
[N e

A+ x. ) . - S.
1 JHl.UH? ( XJ)[§{§ “>ng J}
i

+ plxes, - Snj%]f(5)d5

k
(1.3.36) jzl fx (A + xj)[E{§ Esnj - Sj} + pix eSj - Snj{]f(g)dg

]
I B~~1)0

[t xp) otre00ay

Py

J

; [j

= 0(v,).

I >R

X (A + E[Xj])] 0(yn)

This implies that the sequence of decision rules {dn} is asymptoti-
cally optimal at least of order {Yn} relative to the prior G.

A - 1_ . 1 1 _ . 1
Similarly, for A = 0, Jet Sj {§|JedG(§)}, Snj {EIJEdn(é)}-

Then, we have the following theorem:

[y

1
Theorem 1.3.8. Assume that p(x eSij - 51} = 0(ar), plxes? - 53} =

1
n’

S G

O(Bl).fOP all x ex, where 1im ai = 1im 8- = 0. Let Y% = max(a .Bi)'

n
nsoo Noo
Then, the sequence of empirical Bayes rules {di} is asymptotically

optimal at least of order {yi} relative to the prior distribution G.
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Proof: Note that from (1.3.25), 0 g_TGj(§) 5_xjf(§). Thus,

0 <r (G, dl) - r(a)

E T.. - T.. d
JX{ [;ggg(z) GJ(*{] jegé(5> SOIE

k . K
E Taa(x) 1 - T.(x) I y
fX{ {;Zl GJ X s%j(ﬁiJ jgl GJ(é S% (5)} X

(1.3.37)

1
g
1
—
(%]
[ay
Lo
1
=1
(=%
¢X

_Taj(i‘)EESl (
nj J

1l
(SN
[
-
S————
b

K 1 1 1 1y
f_le JX fo(x) p{x eSnj - S } + p{x €S, - nJ}jdé
k
_ 1
- L] kgt oeey
k
_ 1
_ [jzl E[Xj]] o(v})
= O(Yl)-

Hence, the sequence of decision rules {di} is asymptotically optimal

at least of order {Yi} relative to the prior G.



76

CHAPTER II
SEQUENTIAL SUBSET SELECTION PROCEDURES

2.1. Introduction

An important class of statistical problems is concerﬁed with the
selection and ranking of k populations. The selection and ranking may
be defined in terms of a parameter of the population which may physically
represent the mean, the variance or some quantile of the distribution.
Consider designing and analyzing an experiment for comparing k popula-
tions 7

l, LU Y
characterized by the value of an unknown parameter 61 for i=1,2,...,k.

LI The quality or goodness of population s is

Let 61j = 6(61, ej) be a measure of separation between s and s and

let § = max min {61.}. Population s is called the best population
1<i<k j#io M

if s is the unique population having the property that min{Gij} = 6.
J#i
If more than one population has this property, one of them is tagged

and considered as the best population.

Suppose that observations can be obtained from the k populations
sequentially. It is often desirable to terminate sampling from a
population as soon as there is statistical evidence that it is not the
best population, and this population is eliminated from further con-
sideration. Selection through sequential comparison with elimination
provides a significant advantage. .To achieve a certain accuracy, it

requires, on the average, substantially fewer samples than the fixed
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sample size procedure. This average saving can be very large,
especially due to the rejection of the populations that are clearly
not the best.

In sequential selection and ranking procedures, contributions have
been made to select the best population by usiﬁg the indifference zone
approach. The simplest formulation of the indifference zone approach
is the situation where one may wish to select only a single population
‘and -guarantee with probabi]ity-P* that the selected -population is the
best population provided some other condition on the parameters is
satisfied, usually an indifference zone. However, in the real situa-
tion, it is hard or impossible to specify that condition. Therefore,
as in the fixed sample size case (see Gupta (1965)), a reasonable and
useful approach is to derive some sequential selection procedure to
select a small subset containing the best population. This sequential
selection procedure should satisfy the P*-condition regardless of all
the possible configurations of the parameters. Thus, in this type of
formulation, there is no indifference zone configuration. However,
the size of the selected subset is a random variable. We desire that
each of the selected population is not far from the best population.
Therefore, some inference is needed here to assert that each selected
population is within some prespecified distance from the best
population.

In Section 2.2, some parametric sequential subset selection
procedures achieving the goal described above are derived. These
procedures are formed by choosing an invariant statistic of the

parameters of interest, based on the observations from any pair of
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two of the k populations and by performing a modified sequential
probability ratio test (MSPRT) based on this statistic. This is done
simultaneously for all pairs of populations and if a particular MSPRT
terminates, then an appropriate population is removed from the set of
contending populations. This is continued until only one population
belongs to this set or some statistical evidence shows that all the
populations remaining in this set are within some prespecified
distance from the unknown best population. At each stage, these
procedures also provide some statistical inference about the bounds
on the measure of separation between each remaining population and
the unknown best population.

In Section 2.3, we study the problem of selecting the best
population among k populations belonging to the class of exponential
family of distributions. We use the same measure of separation as
that considered by Bechhofer, Kiefer and Sobel (1968) for selecting
one or more fixed number of populations using the indifference zone
approach. For this particular measure of separation, we consider an
appropriate transformation of the random observations taken from any
two populations. With this transformation, the 1ikelihood function
of the new statistics can be factored into two parts, one of which,
obtained by a conditional argument, and termed the conditional
TikeTihood function, is a function only of the parameter of interest.
Based on this conditional Tlikelihood function, a sequential subset
selection procedure is derived. This sequential subset selection
procedure achieves the goal described above. At each stage, it also

provides some statistical inference about the bounds of separation
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between each remaining population and the unknown best population.
Finally, some applications of these sequential selection pro-
cedures are studied in Section 2.4. Simulation studies are carried

out to see how these sequential selection procedures perform.

2.2. Sequential Subset Selection Procedures

Based on Invariant Statistics

2.2.1. Formulation of the Problem

Let My ees T represent k(>2) populations and let Xin denote
the nth observation from population LI i=1, ..., k. It is assumed
that the observations {Xin} are independent random variables for all

i and n. Suppose that K;p has distribution function F(x|ei) depending

on some unknown parameter 8; forall i =1, ..., k. Letg =

(875 --vs 6,) and Tet @ = {g]g = (695 --vs 8, )} be the parameter

space. For each pair i and j, let 6ij 6(61, ej) be a measurz of

separation between populations 5 and ms where 6(61, ej) is a function

of 0; and ej,band increasing (decreasing) in 0. (ej) when ej (ei) is

fixed, and satisfies that &§(6, 9) = 60 for all 6. Define

§ = max min{S..} = max &. where 5} = min {6

; Population s
I<ick g#i Y 1<i<k ! j#i

ijd:
is called the best population if ™ is the unique population having
the property that E% = §. If more than one population has this

property, one of them is tagged, and considered as the best popula-
tion. We use (k) to denote the index of the best population. For

example, if the observations taken from s have normal distribution

with unknown mean Gi and common known variance 02, we may be
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interested in selecting the population with the largest mean. Thus,

we define Gij = Gi - ej. Then & = e[k] - e[k-l] where 9[1] 5_6[2] <

) Therefore,

.. < e[k] are the ordered parameters of el, cens

ﬂ(k) 1s the population having the largest mean 6

K

[kl~®
Suppose that observations can be obtained from the k populations

sequentially. The selection procedure will depend upon the observa-

tions through a sequence of statistics {Ti.(n), n > 1} which are

J
defined to be functions

(2.2.1) Tij(n) = Tn(Xil’ ey Xin; le, e Xjn)
of the first n observations from populations s and "j' In a given
problem, the function Tn is chosen as to indicate the difference
between the populations in a reasonable way. Let fij(n) =
(Ty5(1)s «os Tis(n)). We assume that Tij(n) has a joint probability
density gn(Tij(n)ldij) depending on the parameter 61j‘ Usually,
Tij(l)’ Tij(z), ..., are chosen so that it is both a sufficient and
transitive sequence and also invariantly sufficient for Gij (see
Hall, Wijsman and Ghosh (1965) and Hoel (1971)).

We assume that there is no information about the separation 61j,
i, =1, ..., ks 1 # j, and we use the subset selection approach.
However, the size of the selected subset is a random variable. Thus,
we desire that each selected population should not be far from the
best population. Let S denote the selected subset and CS denote
the event that the best population T(K) is selected in the subset S.

Let Gi(k) denote the measure of separation from the population s to
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the best population ﬂ(k). Then, by .the property of function &(-, ),

6i(k) 5_60. For a prespecified value 6, < 60, population T s said

to be good if Gi(k) > 84. Now let CD(8,) denote the event that

ﬂ(k)es and for each TieSs 8y 5-61(k) < 8y- Clearly, CD(s,) implies
*

CS. Thus, for a prespecified value P*, 1/k < P~ < 1, we require a

sequential subset selection procedure satisfying

(2.2.2) PICD(8,)} > P* for all g eq.

2.2.2. Sequential Subset Selection Procedure Pl(d*, 611

Let h(-) be a monotonically decreasing function such that

h(aij) = Gji' Let 84 < 60 be a prespecified value used to specify
the event CD(8,). Then 60 = h(ao) < h(8,). Let a 5_60 <8y < h(s,).
Consider the likelihood ratio statistics
g (T..(n)|s,)
- on'ij 1
(2.2.3) Lij(n’ 81» a) (n Z_no)

gn(T35(n)[a)

which have been used by Hoel (1971) and Gupta and Huang (1975),
respectively, to construct sequential selection procedures where g
is the initial sampling size of the procedure. For simplicity, we
assume that ng = 1. We now define a sequential subset selection
procedure Pl(é*, 61) as follows:

Let B0 = {nl, cees wk}. First, we take one observation from
each popu]atioh. Compute the values of the 2k(k - 1) statistics
Lij(l’ 61, 60) and Lij(l’ 815 8,). Eliminate ms from further con-

. . . . k-1
sideration if there is some s such that Lij(l’ 61, 60) 3_1 TpE
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Let B1 be the set of remaining populations. For each ﬁiEBla s is

. k-1
labelled as good if Lij(l’ 61, 8y) 3_1—:—5;-f0r all ms eBl - {ﬁi}.
Let |A| denote the number of elements in set A. Then, the procedure
terminates at stage 1 if either |Bll = 1 or all populations in B1

have been labelled as good. In this situation, B, is taken as the

1
selected subset S. Otherwise, we go to the next stage. In general,

for each n > 1, let
(2.2.4) Bn = {'lT_i EBn-].'Lj'i(n, 61, 60) < Tj;
for all . eBn_l - {Wi}}.

That is, Bn is the set of populations which have not been eliminated

up to stage n. For each ms eBn, label m; as a good population if

(n, 51, 8y) z-Ik-—P£ for all ms eBn - {ni}.

(2.2.5) Lij

If either |Bn] =1 or all the populations in B, have been labelled
as good, then the procedure terminates and we take S = Bn’ Otherwise,

we go to the next stage. The procedure is continued in this way.

2.2.3. Probability of a Correct Selection

Let gm(tlE(m - 1), 8) denote the conditional probability density
function of Tij(m) given that Tij(m - 1) = t(m-1), and Lij(n’ 815 a)
be the statistic defined in (2.2.3). Then, the statistic

Lij(n’ 61, a) can be rewritten as:
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g1 1)|6 n g ( (m |T (m-1), 61)

(2.2.6) Lij(n, §1» a) =

91(47 (1)|a74‘m-2 9(T35 (M| Ty5(m-1), a)
n>1,
n
where T [ ] =11if n=1. For each n > 1, let fﬁj(n) denote the
m=2

o-field generated by (Tij(l)’ cees Tij(n))' Then,

Lemma 2.2.1. {Li(k) (n, 815 Gi(k))’ Pe, fi(k)(n)’ n > 1} forms a

~

nonnegative martingale for each i # (k).

Proof: This lemma can be easily verified by direct computation.

Theorem 2.2.2. Let {Bn} be the sequence of sets of remaining popula-

tions defined in (2.2.4). Then,
(2.2.7) Podlirry(Ms 815 8:ry) < 2L for all m. B . -{m, \}
e ol i(k)\" %1 (k) < T - pw i ©%n-1 71 (k)
for all n 3_1} > P* for all ¢ eqQ.

Proof: Note that for any ¢ eQ,

k-1
PQ{Li(k)(n’ 815 Gi(k)) < T - px for all mieB ;- {ﬂ(k)}

for all n 3_1}



84

for some m, eB ;- {ﬂ(k)} for some n 3_1}

(2.2.8)

k - 1 .
PQ{Li(k)(n’ IR Si(k)) > 7= px for some n 3_1}_

| v
—
1
— Il >~ R
=
N

Next, by Lemma 2.2.1, {Li(k)(n’ 61, Gi(k))’ PQ’ Fi(k)(n)’ n > 1}

forms a nonnegative martingale. Hence,

k-1 1 - pP*
(2.2.9) PQ{Li(k)(n’ 815 61(k)) > 1 —pw for some n 3_1} <Ko

Then by (2.2.8) and (2.2.9), we obtain

i k -1

(2.2.10)

;
i#
Therefore, the proof of this theorem is completed.
For each a 5_60 (the value a is chosen so that the joint
probability density function gn(?ij(n)[a) is well defined), let

k-1
1 - pP**

Aij(n’ a) denote the event that Lij(n’ 815 a) < That is,
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= k-1 .
Aij(n’ a) = {Lij(n’ 61, a) < 1 P*}' In the following, we assume
that the condition of (2.2.11) is satisfied.

m
(2.2.21) 0 Ay, 0) [ 01 4,

.(n, a) for allm> 1 forb < a < 8-

The implication of (2.2.11) is that the values of the statistics

Lij(n’ 61, a) for n > 1, never exceed the boundary level Tkjlﬁ%-before
that of the statistics Li.(n, 61,'b), n>1whenb<acx< 8g- A suffici-
ent condition for (2.2.11) is that A (n,b) [ A (n a) for all n > 1.

For each n > 1, s T € Bn-l’ as i # 3, def1ne

It

(2.2.12)  bl.(n)

kK -11.
i 1nf{a < 8§ |L n, 8;5 a) < 1 P*} if{}#¢

§g ifF {1 =9

where ¢ denotes the empty set. Also, let D{%(n) = 60.

Under the assumption (2.2.11), if D%j(n) < 60, then

k-1 1
Lij(n’ 815 @) < T —px for all D3 (n) <agéand L, (n 8§15 b) >

k-1
21 -p*

for all b < D}j(n).

For each n > 1, as T, EBn-l’ define

(2.2.13)  D}(n) = max [ min D?.(m)].

1<m<n {7 eB 1

. m-1
J
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_ : . 1 _ ol
As ms ¢ Bn-l’ Tet n, = max{mlﬁi eBm_l} and def1n¢ Di(n) = Di(ni)'

Note that by the definition of D%(n), for each i =1, 2, ..., k,

{D;(n), n > 1} is an increasing sequence and bounded above by § The

i 0°

value D%(n) will be used at stage n as an estimator of a lower bound

of Gi(kr

Theorem 2.2.3. Suppose that for each pair i and j, i, j = 1, ..., k,

m m
i#d, ngl Aij(n’ b) [ ngl Aij(n’ a) forallm>1lasb<ac<s

0"
Then
P{L. (ns 815 8.0y) < ==L for all m, eB . - {r,, )
81 (k) 1° 7i(k) 1 - p* i“"n-1 (k)
fur all n 3_1}
(2.2.14)
E-Pg{ﬂ(k) eS and Gi(k) Z_D%(n) for all Lp eBn-l
for all n 3_1}
for all 8 eqQ.

Proof: Since Gi(k) 5_60 for all i, then, under the assumption, we

have



87

k-1 -
PQ{Li(k)(n’ 61, ai(k)) <T e for all T eBn_l {Tf(k)}

for all n > 1}

< PQ{Li(k)\(n’ 815 60) < ——1k_'P£ and Si(k). > D%(k)(n)

for all m, eB . - {ﬂ(k)} for all n > 1}

1

for all n > 1}

(2.2.15)

1
Pg{n(k) eS and 61’(k) > Di(k)(n) for all s s:Bn_

1

for all n > 1}

| A

. 1
Pg{w(k) eS and Gi(k) > min Dij(n) for all T €B_4

1Tj an_l

for all n > 1}
- 1
= Pg{ﬂ(k) eS and Gi(k) _>_ D_i(n) fOl" a]] ﬂ_i €Bn_l

for all n > 1}.

Therefore, the proof of this theorem is completed.
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The following corollary follows immediately from Theorem 2.2.2

and Theorem 2.2.3.

Corollary 2.2.4. Suppose that for each pair i and I P R D '

0 (n, b) [ 0
i#3, A..(n, b n A.
I 1 ~op=1 !

n, a) forallm>1lasb<ac<sg
n=1

3 0

Then
1
(2.2.16) Pg{n(k)e S and Gi(k)-z Di(n)
for all m, eB,_; for all nlz%%iP*

for all g Q.

Theorem 2.2.5. Suppose that for each pair i and Jy 1,3 =1, ...5 kK,

m m
i3 0N Ai.(n, b)Y M Ai.(n, a) forallm>1lasb<a < 8-
n=1 " n=1 'J

Then,

(2.2.17) Pg{cn(a*)lpl(a*, §;)} > P* for all g e,

provided that the procedure Pl(a*, 61) terminates with probability one.

Proof: Note that when the procedure Pl(G*, 61) terminates, each
selected population must have been labelled as good at some stage.

Let s eS and T, has been labelled as good at stage n. Then,

k-1 s
Lij(n’ 815 64) > 7 - pw for all mseB - {m;}. By definition of
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1 . 1 -
Dij(n) and the assumption (2.2.11), Dij(n) > §, for all s eBn {Tl'_i}s
and so, D%j(n) > 6, for all s eB . Hence from (2.2.15), we have

k - 1
1< p* for all ™y €Bn_l - {TT(k)}

PQ{Li(k)("’ 810 Si(k)) < 1
for all n > 1}

1
< PQ{“(k) €S and 61‘(k) > Di(k)(n) for all =, eB 4

for all n > 1}

1

for all n > l}
(2.2.18)

) 1
Pg{ﬂ(k) eS and ai(k) > min D}.(n) for all s an

1J
1TJ. eBn

for all n > 1}

| A

] 1
Pe{"(k) eS and 51.“() > min Dij(n) for all s )

<~ 1TJ. eBn

for all n > 1}

- ) 1
= Pg{ﬂ(k) eS and 61‘(k) 31;1?1( (min D].J.(n)) for all s es}

|A

PQ{’IT(k) eS and 6'i(k) > &, for all ™ eS}

= PQ{CD(G*)IPI(G*, 51)}-
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Then, by Theorem 2.2.2 and the inequality of (2.2.18), we conclude

this theorem.

Corollary 2.2.6. Suppose that for each pair i and j, i, j = 1, ...k,

m m

i#3, [ Ay, b) [ ] Ai(n,a) forallm>1asb<ac§,.
n=1 W n=1 W

Then Pe{CSIPl(a*, 61)} > P* for all § €Q, provided that the procedure

P.(6,, &,) terminates with probability one.

p{ 1

Proof: This corollary can be obtained directly from Theorem 2.2.5

and the fact that CD(8,) [  CS.

Remarks 2.2.7.(1). Corollary 2.2.4 implies that one can assert at the

prespecified confidence level P* simultaneously that at each stage,
none of the eliminated populations is the best population and that
the measure of separation from each remaining population, say Tas to

the best population is bounded by D%.

(2) Theorem 2.2.5 implies that at the conclusion of the experiment,
one can assert at the prespecified confidence level P* simultaneously
that the best population is selected and also only good populations

are selected in this selected subset.

(3) The sequential comparison inference is based on the inclusion

relation of (2.2.11). On the event {Li(k)(n’ 815 Si(k)) <7 P

for all moeB g - {ﬂ(k)} for all n 3_1}, the best population will
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never be eliminated. Therefore, at each stage, the comparison
between each remaining population and the unknown best population

is made.

(4) Hsu and Edwards (1983) also obtained some result similar to that
of corollary 2.2.4 for the location parameters. However, our approach
is quite different from theirs. Their procedure ié based on some
location invariant statistics while ours is based on the modified
likelihood ratio of the probability density functions of some invari-
ant sufficient statistics. Our approach can be applied to more

general cases but theirs is valid only for location parameter case.

2.2.4. A Property of the Selection Procedure Pl(ﬁ*, 611

Consider two prespecified values 81 < 8ip < §y- Let {B (8,4)}

*2 0

be the sequence of sets of remaining populations defined in (2.2.4)
by the procedure Pl(é*i, 61) for i =1, 2. Also, let Ni denote the
stopping time and Si denote the selected subset of the selection

procedure P1(5*1’ 61), i=1, 2. Then, we have the following theoren.

Theorem 2.2.8. Suppose that for each pair i and j, i, j =1, ..., ks

m m
iti. N Ai.(n, by [ 1 Ai.(n, a) forallm>1asb<a < 8y
n=1 " n=1

Then, N; < N, and S, ] S,

Proof: Let N = min (Nl’ NZ)' Since both the procedures P1(6*1, 61)

and Pl(ﬁ*z, 61) use the same eliminating rule, thus, for each -
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n <N, Bn(d*l) = Bn(é*z). Now, 8,1 < &y, < 8y- By the assumption,

if s eBn(d*z) is Tabelled as a good population at stage n when the
procedure Pl(G*Z, 61) is applied, then ™. must also be labelled as
a good population not later than n when the procedure P1(6*1’ 61)

is applied. This fact implies that N1 5_N2. Now, by the definition

of B, Bn:]' B, asm> n. Therefore, BN1(6*1) ] BNZ(G*Z). That is,

S S,

2.2.5. Sequential Selection Procedure for Selecting

a Good Population

Consider a selection problem among k populations. In most
applications, we are usually content with selecting a good popula-
tion. With this goal, what we want is in fact a selection procedure
P having the property that

(2.2.19) Pe{ni is selected and 6i(k) 3_6*} > P* for all @ eQ.

Also, the procedure should stop as soon as we are confident that a
good population has been found. A sequential selection procedure
achieving this goal can be obtained from Pl(s*, 61) with a Tittle
modification on its stopping strategy. We now describe it as
follows.

Let {By} be the sequence of sets of remaining populations
defined in (2.2.4). For each U an, Ty is labelled as good if

k -1
Lij(n’ 81 ) 3_i~:f§;-for all s eBn - {ﬂi}. The procedure
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terminates at stage n as soon as one of the populations in Bn has
been labelled as good. If there is only one population in Bn having
been Tabelled as good, we then select this population as a good
population. If more than one population have been Tabelled as good,
we usually select the one with the largest D%(n) value. We denote
this modified sequential selection procedure by MPl(é*, 61).

The following theorem quarantees the desired confidence level
of selecting a good population by applying the selection procedure

WP (845 6,).

m m
Theorem 2.2.9. Suppose that the condition l A..(n, b) C N A;:(n,a)
n=1 " n=1 '

is true for allm> 1 and b < a <38 Then,

0
. l *
PQ{ni is selected and 61(k) 3_6*|MP1(6*, 61)} > P

for all 8 eQ.

. = M
Proof: Let A(g) {Li(k)(n’ 61, si(k)) - for all
mieB_q - {”(k)} for all n 3_1}. Then by Theorem 2.2.2,

PB(A(Q)) > P* for all 9 en. We note that on the event A(9), under

. . k-1
the assumption of this theorem, Li(k)(n’ JE 60) < 1—:—5;-for all

s EBn-l - {n(k)} for all n > 1. Therefore, T(y) can never be

eliminated in comparison with another population at any stage.

Let B(p) = {ﬂiléi(k) < 6*}. That is, B(g) is the set of bad
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populations. It suffices to show that on the event A(8), any
popﬁ]ation in B(8) cannot be labelled as good when the procedure
MPl(G*, 51) terminates.

Let M be the stopping time of the sequential selection pro-
cedure MPl(a*,Gl). On A(9), since k) can never be eliminated

prior to the stopping time M, then “(é) eBn for al1 1 < n < M.

Moreover, for each Ti € B(e), Gi(k) < 8, 5_60 and on A(8),

k -1
Li(k)(n’ 81s Gi(k)) <Toprforall 1<n<M. Then, by the

assumption, Li(k)(n’ 815 8,) < inlﬁi-which means that T

cannot be labelled as good. Hence, T, cannot be selected as a

good population. Therefore,

. *
Pg{ﬂi is selected and 6i(k) 3_6*]MP1(6*, 61)} >P

for all ¢ eq.

2.3. Sequential Subset Selection Procedures for

Exponential Family Populations

2.3.1. Introduction

Let Tys «-.> m be k(> 2) populations in which we may observe

the independent random variables Xl’ cees Xk’ respectively. We
assume that the distribution of Xi is a member of the exponential

family so that Xi has a frequency function f(xlei) of the form
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(2.3.1) F(x]0;) = exp{Q(6,;)P(x) + R(x) - 9(6:)}

where f(x|9) represents the probability density at x for continuous
variable or the probability of obtaining the observed value x for
discrete variable and 8 is the unknown real parameter on which the
value of the frequency function f(x]6) depends. Here, P(x) and
R(x) do not involve fhe parameter 6, while Q(8) and ¢(6) do not
depend on x. The function Q(e) is assumed to be a continuous,
strictly increasing function of 0.

Define aij = 6(81, ej) = Q(ei) - Q(ej) as a measure of separa-

tion between populations ™ and Ty This particular separation
measure had been considered by Bechhofer, Kiefer and Sobe] (1968).

Let § = max min {5..}. Population m; is called the best population
I<i<k jgio W

if s is the unique population such that ?;? {aij} = 8. If more than
one population has this property, one of them is tagged as the best
population. Let (k) denote the index of the best population and
k) the best population. For 8 > A* for some given A* (> 0) which
is known, a sequential procedure for selecting the best population
through the indifference zone approach was derived by Hoel and
Mazumdar (1968).

In this section, we assume that there is no information about
6ij for all i, j = 1, ---» k. Thus, subset selection approach is

more appropriate here. For a prespecified value 6* > 0, we say that

population m; 1s good if Q(e(k)) - Q(ei) < 8*. Let S denote the



selected subset, CS be the event that = ) eS and CD(&*) be the

(k
* .
event that (k) eS and a(k)i < &* for all s eS. We require a
sequential subset selection procedure to seTect a subset S such

that Pe{CD(S*)} > P* for a preassigned probability level P* e(l 1)

T
for all ¢ = (el’ cees ek) eQ where @ = {9 = (61, cees ek)lf(xlei)
is well defined for all i = 1, ..., k} is the parameter space.
For this particular separation measure Gij = Q(ei) - Q(6j),
some appropriate transformation of the random observations taken
from a pair of any two populations is considered. With this trans-
formation, the Tikelihood function of the new statistics can be
factored into two parts, one of which, obtained by a conditional
argument, and termed the conditional Tikelihood function, is a
function only of the parameter of interest. Based on this condi-
tional likelihood function, a sequential subset selection procedure

is derived.

2.3.2. Some Properties Associated with Exponential

Family Distributions

Let Xin denote the nth observation taken from population -

It is assumed that the random observations X X

i1’
with the frequency function f(x|ei) = exp{Q(ei)P(x) + R(x) - ¢(ei)}

for i =1, ..., k. For each pair (i, j), 1 <1, j <k, i#j, let

(2.3.2.)

Z;5(n)

]

(P(X.

i)+ POL)/2

96

j0 e are i.i.d.,
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Then, (wij(n), Zij(")) have a joint frequency function

(2.3.3) g(w, 2191-, SJ-) = exp{éijw + (Q(e;) + Q(Gj))z

*alzaw) - o(ey) - o(97)]C 1,0, 2,

and given that Zij(n) = z, the conditional frequency function of

wij(n) is

(2.3.4) g({w|z, 0., ej) exp{6ijw +a(z, w) - (z, 61j)}IA(w, z),

where

(o (1) a(z, w) =R(z +w) + R(z - w) ,

(i1) v(z, 8) = log J explow + a(z, w)ldw ,
weAZ

(2.3.5) { (iii) Set A is the support of the random vector
(wij(n), Zij(n)) and A = {w|(w, z) €A},

(iv) C 1is a constant such that g(w, Zlei’ ej) is a

{ frequency function.

Note that for each z, (w, z) eA iff (-w, z) €A. Thus, w eAZ iff
-w eAZ. Also, a(z, w) = a(z, -w). Hence, by the definition of

IP(Za 6): 1‘)(23 6) = w(Z, -—6).
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From (2.3.4), given that Zij(n) = Z, the conditional frequency
function g(w|z, 8.5 ej) of wij(n) depends on (ei, ej) only through
the difference 6ij = Q(ei) - Q(ej). Hence, this conditional fre-
quency function is also denoted by g(w|z, 6..). That is,

13

(2.3.6) g(w|z, sij) = exp{sijw +a(z, w) - y(z, Gij)}IA(w’ z).
It is clear that g(w|z, aij) has exponential- family distribu-
tion and hence has monotone likelihood ratio property. Therefore,
Ea[a(wij(n))lzij(n)] is a nondecreasing function of & whenever a(+)
is any nondecreasing function of w. Also from the usual theory for
the exponential family distribution, we know that given Zij(n) =z,

the conditional mean and variance of wij(n), for any 60, are

[ )
(1) B [iylz 50 = o] = 2y, a)’HO = U(25 5,
(2.3.7) J
y y _ ) - 8
(1) varg (5001245000 = 2) = 2y, a),HO
L = wGG(z, 60) > 0.

The following lemma is easily obtained from the above discussion.

Lemma 2.3.1. For each z belonging to the domain of Zij(n)’
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(i) w(z, 8) = y(z, -8) for all s.
(i1) ¥(z, 8) is a convex function of &.

(ii1) w(z, 6) is decreasing in § ¢ (-o, 0] and increasing in

6 [0, <) and y(z, 0) = min ¥(z, §).
: o}
(iv) Let 215 a,, bl’ b2.be points such that a; < a, < b2,
a; < b1 5_b2, then,

¥(z, b} - w(z, a;) ) ¥(z, by) - (z, a,)
b — b2 - a2

1 -9
For each z, define
(2.3.8) I(b|z) = bbs(z, b) - [¥(z, b) - ¥(z, 0)] where .b eR.
By the convexity property of y(z, b), I(blz) > 0 for all z if b > 0,
I(b[z) < 0 for all z if b 5_0. In (2.3.7) and (2.3.8), we replace z

with the random variable Zij(n)‘ Then ws(Zij(n), b) and I(blZij(n))

are nonnegative (nonpositive) random variables if b > 0 (< 0).
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Lemma 2.3.2.

(1) Ee—i(dijlzij(n)):[ > (=, <) 0 iff o,

(1) By 02350 8) = wg(Zy5im). )] > (=, <) 0

- iff 62 > (=, <)61.

Proof: We prove part (i) only. The argument for proving part (ii) is
similar to that for part (i).

Without loss of generality, we assume that ei > ej. Then

aij > 0 and so I(aijlzij(n)) > 0. Suppose that EQ[I(61j|Zij(n))] = Q.

This implies that 6ijw6(z, $ = y(z, aij) - ¢(z, 0) a.e. (Z..(n)).

ij) ij

By mean-value theorem, for each z, there exists ¢ = z(z, Gi') e (0, Gij)

J

.) - v(z, 0). Hence, vs(z, 2) =

such that 6ijw6(z’ z) = ¥(z, 613

ws(z, Gij) a.e. (Zij(n))' Now, since wa(z, a) is an increasing
function of a, hence, wd(z, a) = ws(z, Gij) for all a e[z, Gij]'

Thus, $s(z, @) = 0 for all ae(z, 6ij)' By (2.3.5), wss(z, a) is

a continuous function of a. So, waa(z, Gij) = 0. This holds a.e.

(Zij(n))' That is, was(zij(")’ Gij) = 0 a.e. Hence
Varaij(wij(n)lzij(n)) = 0, which implies that wij(n) is exactly a
function of Zij(n)' By the transformation (2.3.2), it implies that
Xin is exactly determined by Xjn’ which is a contradiction. So,

EgL1(8;51Z,

1J.(n))] > 0 when Gi. > 0.

J
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2.3.3. Sequential Subset Selection Procedure P, (H, §*)

Al
Let &* > 0 be the prespecified value used to define the event

CD(&*). Let H(y) be a distribution function defined on [0, &*] such

that for some CO e(0, &*), the interval [0, CO] is contained in the

support of H. Let a > 0. For each pair (i, j) and n > 1, define

§* n .

I g(W,.(m)|Z,.(m), y) dH(y)

(2.3.9)  Ly;(n, a) = fo = 3™ ;
m];[]. g(WIJ(m)IZ1J(m)’ 'a)

where g(w|z, §) is the conditional frequency function defined in
(2.3.6).

We now define a sequential subset selection procedure P2(H, §*)
as follows.

Let B, = {7

O 1, eees T

k}. For each n > 1, define

_ K- 1 s
(2.3.10) B = {m B, [L;i(n, 0) < £k for an neB ) {ni}}.

That 1is, Bn is the set of remaining populations up to stage n. At

k-1
1 - p*

stage n, s an is labelled as good if Lij(n’ 8%) > for all

s eB - {m:}. If either |Bn| = 1 or all the populations in B, have

been labelled as good, then the procedure terminates and we take
S = Bn' Otherwise, we go to the next stage. The procedure is
continued in this way.
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In the next subsection, we will give a sufficient condition
under which we prove that the sequential subset selection procedure

PZ(H’ §*) terminates with probability one.

2.3.4. Termination with Probability One

We first assume that H(e) is a distribution function defined on
[0, 8*] such that for some C0 e(0, &%), the interval [0, CO] is
contained in the support of H. It is also assumed that the condi-
tional variance wﬁa(z, b) of wij(n), given that Zij(n) = z, satisfies

condition (2.3.11).

(2.3.11) wda(z, b) < M(b) a.e. (Zij(n)) for each b > 0
where M(+) is bounded on [a, ») for all a > 0. That is, there
exists a finite function q(+) such that M(b) < g(a) for all
b>a>0. It is not hard to verify that many exponential family
distributions, including normal, exponential, binomial, satisfy the
condition (2.3.11).

Let ™ and Ty be two populations belonging to the same class
of exponential family distributions with parameters el and Y
respectively. Without loss of generality, we assume that 61 > 8,
Define stopping times T1 and T2 as follows:

(2.3.12) T, = min{n]LlZ(n, 8*) > k;- 1} R

. k-1
(2.3.13) T, = m1n{n|L12(n, 0) >3 P*}
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Lemma 2.3.3. Let Lij(n’ a), n > 1, be the statistics defined in
(2.3.9) where H(+) is a distribution function on [0, &*] such that
for some Co e(0, 8*), the interval [0, Cyl is contained in the
support of H. Suppose that wss(z, b) < M(b) a.e. (Zij(n)) for each
b > 0 where M(-) is bounded on [a, «) for all a > 0. Then,
PQ{T2 < o} =1 if 61 > 62.

Proof: The proof is analogous to that of Lemma 1 of Pollak and

Siegmund (1975). Note that 612 > 0 and

Lio(n, 0) Jé* { E W, (m) rZ] EP(Z (m), y)
s = ex m) - my),
12 R ML L1 12\ Y

- ¥z, (), 0)]fai(y).

For convenience, in the following, we let W(m) = wlz(m), Z(m) =
k -1

le(m), )\(ms d, b) = lP(Z(m)a a) - IP(Z(m): b)s 60 = 612 and o = T_lﬁ:' .
For each n, define T2n = min{Tz, n} - 1, so that T2n +11is a

bounded stopping time.
Case 1. When Sg 5_C0. From the definition of TZ’ we have
log o
> Tog L12(T2n’ 0)

(2.3.14) Ton T

W(m) 5" ( )
=6 - A ,6,0
0 mzl " mzl " %o
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T T

&* 2n 2n
+ Tog fd exp{(y - &) mzl W(m) - le A(m, vy, 60)}dH(y)
T
2n
28 I [Hm) - yg(z(m), ao):[

T2n
- L s, 5) - A, 5y 0) |

2n
+ log J exp{(y - 8g) 1 W(m)
|y—6O <e m=1

T2n

"

L A(m, y, 60)}dH(y)-

By using Taylor's expansion,

A(m, y, 8g) = v(z, y) - y(z, 60)
(2.3.15)

(v = 8g)g(zs 80) + 5y - 6)%4(z. ©)

where ¢ = ¢(z, v, 60) is between y and 60. By the assumption
(2.3.11), we can find an e so small that %1y - dolwaa(z(m), z) <1 a.e.
for all y 5(60 - €, 8yt €). We then obtain
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T T

2n 2n
Tog f exp{(y - 8g) 1 W(m) -
ly-84l<e m=1

L

Alm, y, 8.) rdH(y)
) My, o) jauty

T2n
(2.3.16) > Tog fl L - 8) T i) - agtzm, )]
€ m=

Y'sol
- eTzn}dH(y)

T2n
> log H(d0 - 8yt e) + (d - 60) Zl W(m) - ws(z(m), Goil
m:

- €T2n

where H((S0 - €, 60 + ) = J dH(y), d = J ydH(y)/

|y-8,1<e |y-8,l<e

H(cSO - €, 60 + €) and the second inequality is obtained by Jensen's
inequality. From (2.3.8), (2.3.14) and (2.3.16), we have

T2n 2n
1| Ueglzm) - e] d T - gz, 50)1

(2.3.17)

< log a - log H (60 - e, 60 + g).

Therefore,
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T2 +1 +1

;
n 2n
1 |1sglzm) - e] ra ) EJ(m) -y (Z(m), ao)]

nm=

(2.3.18) < loga- log H (60 - € 85t g) + I(SOIZ(T2n +1)) - ¢

+ d[: npa(z( + 1), 60)].

Now, consider the expectation Ee of both sides of (2.3.18).

~

Since
= E I: I:W(m ¢5(Z , 8 )l Z(m:[:'
(2.3.19)
e [0 - o0, o]
) {EQ E’aa(z(m), 50)]}1/2
iMl/z(so)
and

(2.3.20) = [ [(m - yglZim), 8,)]Z(m ]:l
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Also,
0 <E, 1(50|Z(m))]
= Eg[Sgta(Zim) &) - A(m, &, 0)]
(2.3.21) < By [5505(2(m). 60{]
- 8% E—IGOE\J(m)IZ(m):I]
= 60Eg[w(m)] < oo
'TZn+1
Thus, by Wald's lemma, Eq Y [W(m) - wG(Z(m), 60)] = 0 and
~| m=1
T2n+1 ] -
Eg mzl [I((SOIZ(m)) - e]_ = EQ(TZn + 1)] X EQ[I(SOIZ(l))] - e:’

Also, by Schwarz inequality,

(2.3.22) < EQBN(TZn +1) - gg(Z(T, + 1), 50”]
s{EQBW(l) - v (Z(1), 66))2} X EQ(T2n+1):U1/Z .

EQme - y(z(1), 60))2]

Here,

EQ[EGO[(W(l)’ - 1s(2(1), 50))2|z(1)]]

5_M(60).

(2.3.23)



Hence, ,EQ[Q(TZn +1) - wG(Z(TZn + 1), 60

Similarly,
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il

£y | 1(812(Ty, + )]

oFo|¥s(Z(Ton + 1) 60)]

~ L

(2.3.24)

|A

Therefore,

and so,

—
0 GE(TZn * 1)]

ol 0T 5 i

g0 -  « i 1)

£ 201 E s E
Eq W (1)] + dM (50)} X {EQTZn +1}

- Tog H(cS0 - & 8y *e) + Tog a,

:i(ao|2(1))] - e}{EQ Top * 1}1/2

EQW (1{] + dM (50)} - log H(a0 - € 8yt e) + log a.

Now, by Lemma 2.3.2, e can be chosen so small that Ee[I(GO)IZ(l)]

- e > 0. While

the right-hand side of (2.3.25) is independent of n,
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S0, as n » «, the left-hand side of (2.3.25) is still bounded.

Hence, EQ(TZ) < « and so, PQ{T2 < o} = 1.

Case 2. When 60 > C,. From (2.3.14), we also have

0
T2n+1 T2n+l
WL TColzm) +a T [um) - yy(z(n).o)]
T2n+1

* mgl {dEJG(Z(m), 85) = ¥s(Z(m), CO):l - e}

(2.3.26) < log a - log H(C0 -g, C, + €)

0

r d[HTy #1) < (20T, +1), 8)) |
+ dEb(S(Z(TZn +1), 85) - w(Z(T, + 1), co)].

Following an argument analogous to the above, we have Ee[Tz] < o,

and so PQ{T2 < w} = 1.

Lemma 2.3.4. Let Lij(n’ a), n > 1, be the statistics defined in
(2.3.9) where H(+) is a distribution function on [0, §*] such that
for some Co e (0, 8*), the interval [0, Col is contained in the

support of H. Then, PQ{T1 < w} =1 if 91 = 92.
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Proof: Note that here 612 = 0 since el = 62. From (2.3.6),

§* n n
Lyptns 60 = [ ety + 69 M+ ] A, %, y)Gy).

By Jensen's inequality, we have
L 109 Lyy(n, &%)
n 09 ~12tf

§* n n 1
(2.3.27) > [0 {<y+a*> I W)+ T A, 6%, y)lau(y)

m=1 m=1

S|=

S|k

v
m

nHes-1>

m=1
6*

where Vm = I {(y + 8*)W(m) + A(m, 8%, y)}dH(y), m =1, ..., n, are
0

i.1.d. By Lemma 2.3.1 and the fact that §,., = 0, then,

12

Eq V)

(S*
= JO Eg{(y + 6*)W(m) + A(m, 8%, y)}dH(y)

(S*
Eg{a(m, &*, y)}dH(y)
0o = _

6*
. Eglw(Z(m), 6%) - ¢(Z(m), y)1dH(y)

Co

Eo[w(Z(m), &%) - w(Z(m), y)]dH(y)

|
(2.3.28) = f
>

0



111

C
0
> | Eyam), o) - vizm, coiany)

>0 .

By strong law of large numbers and by (2.3.27) and (2.3.28), we obtain

lin dnf 7 100 Lip(n, %) > EgI0(Z(1), 6%) - u(Z(1), Cy)IH(C,) ae.,

1 k - 1 - o] =
while 2 1og 77— > 0 as n > =. Therefore, PQ{T1 < o} - 1 when

= 0,.

Theorem 2.3.5. Let PZ(H’ 6*) be the sequential subset selection

procedure defined in Subsection 2.3.3 where H(-) is a distribution
function defined on [0, §*] such that for some Gy e(0, 6*), the
interval [0, CO] is contained in the support of H. Suppose that
wss(z, b) < M(b) a.e. (Zij(n)) for each b > 0 where M(+) is bounded
on [a, ») for all a > 0. Then, the procedure P2(H, §*) terminates

with probability one.

Proof: It suffices to show that, by applying the procedure P2(H, §*)
for any two populations, say m and Tos with probability one, the
event that either one of them will be eliminated (in comparison with
the other) or both of them are labelled as good, occurs. This follows
from Lemma 2.3.3 and Lemma 2.3.4 immediately. Therefore, the proof of

Theorem 2.3.5 is completed.



112

2.3.5. Probability of a Correct Selection

‘For each n > 1, Tet Fij(n) denote the o-field generated by

W..(m), Z.J.(m), m=1,2, ..., n). Then, we have
Lemma 2.3.6.
(i) E@E‘ij("’ O)IFij(" - 1)] iLij(” -1, 0) foralln>1

if 61. < GJ. where Lij(n’ 0) =1 if n = Q.

(1) B[y o, 00 [Fagi o - 0] = gy o - 1 6

for all n > 1 for all ¢ eq.

Proof: Note that (wij(n), Z..(n)) is independent of Fij(n - 1) for

iJ
all n > 1. Thus,

1e>]

E @.jm, O)lfij(n . 1)]

[ r6* n n
(2.3.29) = E, jo exp{y mzl Wys(m) - mgl ¥(Z;5(m), y)
&* n-1 n-1 _
“Jo ey 2w T gm.
- vz, o) Jaa. myan(y)
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where A(g, n) = EGEXP{y Wj(n) - 9(Z45(n), y) + $(Z;5(n), O)H and

the second equality is obtained from Fubini's theorem and by the

property that (wij(n), Zij(n)) is independent of'fgj(n - 1). Also,

(2.3.30)

9z, 0} |
< 1.

The last inequality follows from Lemma 2.3.1 and the fact that

Sij < 0. Therefore,

£ Ly (> Ol (n - 1)

n-1 n-1

6*
2.3.31 iy .
( ) S JO eXp{‘y mzl 1] =1 1]

= Lij(n - 1, 0).

Hence, the proof of (i) of this theorem is completed.
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Similarly, we can prove that

Eg[gi(k)("’ Sy i (n - {ﬂ, = Ligy(ns 8(yy;) foralln>1

for all @ eQ.

Theorem 2.3.7. Let PZ(H’ 8*) be the sequential subset selection

procedure defined above where H(*) is a distribution defined on

[0, 6*] such that for some C0 e (0, 8*), the interval [0, CO] is
contained in the support of H. Suppose the condition that

wés(z, §) < M(b) a.e. (Zij(n)) for each b > 0 where M(+) is bounded

on [a, =) for all a > 0. Then,

(i) PG{CSIPZ(H, a*)} > P* for all g eq.

. k-1
(1) PgfLy (10 83y9) < F7pk for am my s, - !

for all n 3_1} > P* for all g eQ.

Proof: (i) Let ICS denote the event that the best population is not

selected. Then, from Theorem 2.3.5,
CS|P,(H, §)} = {1cs|P..(H, &*
PQ{ IP,(H, 6 )} =1 - Py CS[P,(H, %)},

Here,
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PQ{ICS[PZ(H, &%)}

PQ{Li(k)(n’ 0) > inlﬁ%-for some n > 1 for some i # (k)}

(2.3.32)
; k -1
5. -igl PQ{Li(k)(n, 0) > m for.some n Z l}
i#(k)
k
1. px
< 1
o= k-
i#(k)
=1 - p*

where the Tast inequality is obtained from the fact that {Li(k)("’ 0),
Pe, fg(k)(n), n 3_1} forms a nonnegative supermartingale which can be

ubtained directly from Lemma 2.3.6 (i).

Therefore, Pé{CS!PZ(H, §%)} > px.

For the proof of part (ii) of this theorem, we see that, from
Lemma 2.3.6 (ii), {Li(k)(n’ G(k)i)’ PQ’ f&(k)(n)’ n 3_1} forms a

nonnegative martingale. Then following an argument similar to that

of Theorem 2.2.2, we can prove that

k -1
PQ{Li(k)(n’ G(k)_i) < W for a]] Tl'_i EBn_l - {Tr(k)}

for all n 3_1} > P* for all g eQ.
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For each pair (i, j), 1 <1, j <k, i# j, and each a > 0, let

k-1
1 - p*

Aij(n’ a) denote the event that Lij(n’ a) < That is,

- k -1 . .
Ass(ns @) = {Lij(n’ a) < 1-:—5;}. The following result is very

helpful for obtaining some sequential estimate of an upper bound

on a(k)i’ 1=1,2, ..., k.

Theorem 2.3.8. Let Lij(n’ a), n> 1, be the statistics defined in
(2.3.9). Then,

(2.3.33) Aij(n’ b) [:Aij(n’ a) foralln>14ifb>a>0.

Proof: Suppose that the statement of (2.3.33) is not true. Then,

there exists some n such that

(2.3.38) L0, b) < F5k < Liz(ns a).

By (2.3.9), we have

(2.3.35)



(2.3.34) and (2.3.35) together imply that

n -1 n
(2:3.38)  § uym < 2l 1 Ep(zij(m), b) = w(Z;;(n), aE].

Then, by (2.3.34) and (2.3.36)

&* n n
(2.3.37) = Jo exp{(y + a) 2 Wij(m) )

m=1 m=1

¥(Z;4(m), a)
=925 m, )]} any)

Zij(m)’ Y) - W(Zij(m)a a)'
y - (-a)

5.[2* exp{-(y + a) mgl A

W(Zij(m): 'a) - w(zij(m), ‘Bﬂ
) (=) = (-b) = Jeney

By Lemma 2.3.1 and the fact that -b < -a <y for each y ¢[0, §*],

we have, for each m = 1, 2, ..., n,

117
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l.b(z.|\](m): .Y) - ll)(Z1J(m), 'a) q)(z(m)’ 'a) - w(Z1J(m)’ 'b)
y+ta b - a -

With this fact and from (2.3.37), we obtain 1 < <=5k <Lzl a) <1,

which is a contradiction. Therefore, Aij(n’ b) [ Aij(n’ a) for all
n>1when b >a>0. This completes the proof of Theorem 2.3.8.

. m
From Theorem 2.3.8, it immediately follows that N Aij(n’ b)
=1

n

m
C N Aij(n’ a) for all m > 1 whenever b > a > 0.
n=1

For each n > 1, Mis T3 eB 1> as i # ], define

sup{a > 0|L1.J.(n, a) < 1k-P£} if{}# ¢,

(2.3.38) D§j(n) -

0 if { } = ¢.

Also, let D?i(n) = 0. From Theorem 2.3.8, if D?J.(n) > 0, then

k -1 2 k -1
Lij(n’ a) < 1 - p* for all aeJ0, Dij(n)) and Lij(n’ b) > 1 = p* for

2
all b > Dij(n)°

For each n > 2, if ™ z—:Bn_l, define

(2.3.39) D?(n)= min [ max D?J.(m)] .

1<m<n T EBm-l

If m; & By_p> Tet ny = maxin|n; €8} and define D2(n) = D2(n,).



119

By the definition of D%(n), for each i = 1, 2, ..., k, {%(n)} is a
decreasing sequence and bounded below by zero. The value D?(n) will

be used at stage n as an estimator of an upper bound of 6(k)1"

Theorem 2.3.9. With Lij(n’ a), n> 1, defined as before, we have

k-1
PQ{Li(k)(n, (S(k)_i) < W for all Tr_i EBn_l - {Tr(k)}

for all n > 1}
(2.3.40) -

2
< PQ{“(k) eS and S(k)i < D1.(n) for all s eBn_ for all n > 1}.

1

Proof: By Theorem 2.3.8, we have

1

k -
P_e{l‘i(k)(n’ a(k)i) <TTpw for all T EBn—l - {Tr(k)}

for all n > 1}

k-1
iP@{Li(k)("’ 0) < T7px and 8, < D

for all . EBn-l - {n(k)} for all n >
(2.3.41)

A\
—
N

2
< Pg{ﬂ(k) eS and G(k)i < max Dij(n) for all s an_

ﬂj €Bn—l

1
for all n > 1}

= 2
Pg{ﬂ(k) €S and 6(k)1‘ < Di(n) for all s EBn-l for all n > 1}.
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This completes the proof of Theorem 2.3.9.
An immediate consequence of Theorem 2.3.7 and Theorem 2.3.9 is
that

2
Pg{ﬂ(k) eS and G(k)i 5_Di(n) for all s eBn_l

(2.3.42)
for all n 3_1} > P*

for all § €Q whenever the procedure P,(H, 8*) terminates with prob-
ability one. This result offers a sequential comparison inference,
with confidence level P*, as follows: simultaneously, at each stage n,
the best population is not eliminated and the separation between each
remaining population, say LIP and the unknown best population is not
larger than the value D?(n) for all n > 1. Another consequence of
Theorem 2.3.7 and Theorem 2.3.9 is that when the procedure P2(H, §*)
terminates, the event CD(6*) is guaranteed with probability at least

P*. We state this result without proof as a corollary as follows.

Corollary 2.3.10. Suppose that wéé(z’ b) < M(b) a.e. (Zij(n)) for
each b > 0 where M(-) s bounded on [a, =) for all a > 0. Then, the
sequential subset selection procedure PZ(H’ §*) satisfies

Pe{CD(G*)|P2(H, §*%)} > P* for all g eq.

2.4. Applications

In this section, we give some examples of the application of the

sequential selection procedures derived in Section 2.2,
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2.4.1. Selecting the Population with the Largest

Normal Mean
Let Tys wees M be k populations and let Xin denote the nth
observation taken from population LI Assume that X1.n has normal
distribution with unknown mean 9; and a common known variance
2

o- =1, fori=1,2, ..., k. Define the measure of separation

between s and ﬂj as Gij = 61 - ej. Then, 60 =0 and ¢§ =

e[k] - e[k_l], and the population with the largest mean is considered
as the best population. For a given &* > 0, s is said to be good if

- * 3 - * 3
e[k] 8; < 6* and bad if e[k] 8; > 8*. For a preassigned value
p* E(%u 1), we wish to derive a sequential subset selection procedure

satisfying Pg{ﬂ(k) €S and e[k] - ei < &* for each ™, eS} > P* for

all 9 eqQ.
n
For each n > 1, define Tij(n) =S - Sjn where Sip = mzl Xim

Let 64 = -6* and Tet 0 < 6, < &*. Then,

; "
(2.4.1) 109 Li\](n, 61, O) = T (Sm - Sjn) - T,
and

8, + &* n(G*2 - 6%)
(2.4.2) log Lij(n’ 85 8,) = — (Sin - Sjn) + i

In order to apply the procedure P1(6*, 61) to this selection
problem, we need to assert that this procedure terminates with prob-

ability one.
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Lemma 2.4.1. For the problem of selecting the population with the
largest mean among k normal populations, the sequential subset selec-

tion procedure Pl(a*, 61) terminates with probability one if

0 < 6§, <

6*
1° 2

Proof: It suffices to show that for any two populations, say ™ and
Tos with probability one, the event E, that either one of them will
be eliminated (in comparison with the other) or both of them are

labelled as good, occurs. Without Toss of generality, we assume that

§
First consider the case that el - 62 >-7%. Define

- K=-1
(2.4.3) T, = m1n{n|L12(n, 61> 0) > 7= p*}'

By the strong law of large numbers,

;-10 L.,(n, 6,5, 0) ~ isl-'e -8 --El >0 a.e. as n » o

n 109 LqpiNs 05 2 (Y17 % "7 -€. :
while

LiogK=L s 0asn>ew Hence, P {T. <} = 1

n 1-p* . > Tet'y y

S
Next, consider the case that 0 <98y - 6, 5_—%a Define

o Kk -1
(2.4.4) T'iJ = m1n{n,Lij(na 619 6*) 2 }
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for i, j =1, 2, i # Jj, and

(2.4.5) T2 = max(T T

12° 21)'

By the strong law of large numbers again,

[

§* - alJ(

Tog le(n, 51, S.) > [el - 92 + 5 §. + &%)/2 >0

1
a.€. as n >
and

&% -

)
i - - 1
log L21(n, 61, 8,) > [92 el + }(61 + §*)/2 >

~nN
o

d.€. as n » o,

Hence, PQ{Tij <o} for i, j =1, 2,1 # J and so, PQ{T2 < w} = 1.

From the above discussion, we conclude that PG{E} = 1, and so,
the sequential subset selection procedure Pl(s*, 61) terminates with
probability one.

In order to guarantee the P*-condition for the event CD(§,),
from Theorem 2.2.5, it suffices to verify the condition (2.2.11).
This can be easily verified.

In the following, two simulation studies have been carried out
to describe the performance of the procedure Pl(G*l, 61). We take

= * = * = = ' =
k=4, P 0.95, § 1.5, 61 0.5, and (el, 92, 635 64)

(0., -1.0, -1.5, -2.5) and (el, ez, 63, 94) = (0., -0.1, -1.0, -2.5),
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1

respectively. Using random normal deviates generated according to
(el, 92, 83, 84), two examples of sequential comparison inference are
given in -Table II.1 and Table I1.2, respectively. 1In Table IT.1,

the final selected subset S = {vl} and in Table II.2, S = {ﬂl, ﬂz}.

If we are content with selecting a good population, then the

sequential selection procedure MP1(6*, 61) can be applied for this
goal. In Tab]e'II.l, the procedure MPI(G*, 61) terminates at stage 4

and selects population T, as a good population. In Table I1.2, the
procedure MP1(6*, 61) terminates at stage 6 and selects ™ as a good

population.

2.4.2. Selecting the Population with the Smallest

Normal Variance

We assume that the random observation X from population ™
has norma] distribution with unknown mean e and unknown variance

2

2 2
o i < S-G[k] be the ordered

i’ for i =1, 2, ..-5 k. Let g

values of c%, cees oi. Let 92 = (cf, cees ci). Define the measure

= —J
of separation between populations s and ms as 6 g —;;Tn Then,
i
$ = [2] and 60 1. The population with the smallest variance is
[l]

considered as the best population.

In applying the selection procedure Pl(a*, 61) to this selection

2 _
i Xim’ Sin -

=N
[t e}

X. = 1
problem, we let Xin m

n
— 2 R
. mzl (Xim - Xin) and define



125

S2

Tij(n) = g%ﬂ- for n > 2. This choice of Tij(n) seems to be a natural
in

one if we have the ratio of variances as the measure of separation.
From the result of Hall, Wijsman and Ghosh (1965), the sequence

Tij(z)’ Ti'(3)’ -..» Can be seen to be invariantly sufficient for

J
2
o5
8.. = 3,
i
i
For a preassigned &* >1, let 6, = E%—and let 8, e(1l, &*).
Then,
12 n-1
248)  Lyytns 5 1 - L T
2.4.6 L..{n, 6., 1) = s
ij 1 61 + Tij(n)_J
(2.4.7) Lyl N GO A
2.4.7 Li:(n, 8,5 8,) = .
ij 1 61 + Tij(nF’ _J

Lemma 2.4.2. For the problem of selecting the population with the
smallest variance among k normal populations, the sequential subsét»
selection procedure Pl(d*, 61) terminates with probability one if

2

&% > 61.

Proof: It suffices to show that for any two populations, say T
and To» With probability one, at least one.of them will be eliminated
or both of them will be labelled as good. Without loss of generality,

we assume that o% g_og.
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o

For the case when 612 = —§-> 8
o

1

. k -1
(2.4.8) N1 = m1n{nlL12(n, 61, 1) > } .

Note that T12(n) is a consistent estimator of 612. Hence, as n » =,
: ( )
) 1+6

1 1 12 . 1 k -1

o 109 le(n, 61, 1) - log 61 s 612 > 0 while ﬁ-log Topr ~ 0

as n -~ ., Therefore, P N < o} =1,
g

For the case when 612_5

. k -1
(2.4.9) Nij = m1n{n|Lij(n, 815 S4) 3_——————}

for i, j =1, 2, 1 # j, and

(2.4.10) N, = max (N

2 12> Noq)-

With the same argument, we can show as &* > 6%, P Z{Nij < o} =1
' o

~

for i, j=1,2,1# jand so P 2{N2 < w} =1,
g

From the above discussion, we conclude that with probability
one, at least one of ™ and T, will be eliminated or both of them

will be labelled as good.  This completes the proof of Lemma 2.4.2.
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In order to guarantee the P*-condition for the event CD(8,) >
we need to verify the condition (2.2.11). This can be done Jjust by

showing that Lij(n’ 61, a) is a nonincreasing function of a for

ae(0, 17.
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CHAPTER III
LOCALLY OPTIMAL SUBSET SELECTION RULES BASED
ON RANKS UNDER JOINT TYPE II CENSORING

3.1. Introduction

Let Tys oves Ty be k (> 2) independent populations where ™ has
the associated distribution function F(x, ei) and density f(x, ei)
with the unknown parameter ei belonging to an interval (a, b) of the
real line. Our goal is to select a subset (preferab]y small in size)
of the k populations Mys ---» ™ that will contain the best (suitably
defined) among them.

In practice, it sometimes happens that the actual values of the
random variables can only be observed under great cost, or not at all,
while their ordering is readily observable. This occurs for instance
in 1ife-testing when one only observes the order in which the parts
under investigation fail without being able to record the actual time
of failure. In problems of this type, one may desire to investigate
decision rules based on ranks.

In dealing with the goal specified above, Gupta and McDonald
(1970) studied three classes of subset selection rules based on ranks
for selecting a subset containing the best among k populations when
the underlying distributions are unknown. When the form of the under-

lying distribution is known but the values of the parameters 61,

i=1, ..., k, are unknown, Gupta, Huang and Nagel (1979) studied some
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lTocally optimal subset selection rules based on ranks. The latter
study Teads to the conclusion that the class of subset selection rules
Ry of Gupta and McDonald (1970) is locally optimal in some sense.
Huang and Panchapakesan (1982) also studied the problem of deriving
some subset selection rules, based on ranks, which are Tocally optimal
in the sense that the rules have the property of strong monotonicity.
A1l the sfudies mentioned above only considered the situation where
the ranks are completely observed.

We now consider a problem as follows: Suppose that there are k
different devices and we want to select the best among them. From

each kind of device, say T;» Ny prototypes are taken for experiment

and the N = n, prototypes are simultaneously put on a life test.

s o
—

i
Due to design reasoning or cost consideration, the experiment termi-
nates as soon as the first r failures among the N devices are observed
for some predetermined value r, where 1 < r < N. Based on these r
observations, we want to ascertain which device is associated with the
largest (expected) lifetime. Since we are only concerned with the
first r failures, we call this censorfng scheme as a joint type II
censoring. In this chapter, our goal is to derive some locally optimal
subset selection rules to select a subset containing the best based on
the ranks under the joint type II censoring.

In the following sections, we assume that the functional form of

the density function f(x, 8) is known but the value of the parameter 0
is unknown. In Section 3.2, problems are formulated according to

whether the sample sizes from the k different populations are equal or
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not. Some properties related to the ranks under the joint type II
censoring are also given there. In Section 3.3, we study the problem
in the case when ng = se==n =n. Following the earlier setup of
Gupta, Huang and Nagel (1979), a locally optimal subset selection rule
R1 is derived. The property of local monotonicity related to the rule
R1 is also discussed. When the sample sizes are unequal, a locally
optimal subset selection rule R2 is derived in Section 3.4. In
Section 3.5, a class of compatible censoring schemes is considered.

We see that the properties of local optimality of R1 or R2 can be
extended to those Tocally optimal rules which are based on the partial

rank configurations censored by any compatible censoring scheme.

3.2. Formulation of the Problem

Let M wees M be k (> 2) populations and let f(x, ei) be the
density function associated with the population s fori=1, ..., k.

Let 6[1] < e 5_e[k] be the ordered parameters of © > Oy - of

10 -
course, the correct pairing of the ordered and unordered ei is unknown
to us. The population associated with e[k] is called the best popula-

tion. Tn case of a tie, one of the contenders is tagged and is called

the best. Let 0 = {89 = (05 ..., 8,)} and 2y = {8 eloy = = 0,3}
Let {Xij’ i=1, ..., ni} be independent observations from m; and let
k
Rij denote the rank of Xij in the pooled sample of the N = J n
i=1

observations. The smallest observation has rank 1 and the largest

has rank N. Let Xy S Sy denote the ordered observations.
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Definition 3.2.1. A rank configuration is an N-tuple A =(Al, cees AN),

Ai e{l, ..., k} where Ai = J means that the ith smallest observation
in the pooled sample comes from ﬂj.

Let L = {A} denote the set of all rank configurations for the

fixed constants ni» =1, ..., k. For each AeL, let Xp = {x =
(xl, cees xN) EXIéé = A}, where x = {x|x = (xl, cees xN)} and é§
denotes the rank configuration of x = (Xl’“"" xN).

Let r be a predetermined integer such that 1 < r < N. Under the
joint type II censoring scheme, only the first r smallest observations

in the pooled sample of the N (Xij’ i=1, ..., n;s =1, ..., k)

are observed. That is, for the rank configuration i

~

n
ey
>
—
-
-
>
=
N
-

only the subvector (Al, cees Ar) is observable. For this preassigned

value r, let Cr be a function defined onLsuch that for each

A= (Al, AN)eL, Cr(é) = (Al, Ar) = A(r). Let L.= Cr(L).
k
Then, L = {A(r)]AeL}. Hence, for each A(r)e L, max(0, r - 7} nj)
J=1
J#i
r
<ry = jzl I{i}(Aj) < min(r, ni) for each i =1, ..., k, and

Kk
Z r. =r. We call é(r) as a joint type II censored rank configura-

tion.
For each A(r)e L., define the set L(A(r)) ={aAe L[Cr(é) =A(r)}.

Let |A| denote the number of elements in the set A. Then,

K IN-T - 2 (ny - ry)
(3.2.1)  |L(A(r))] = 1=1 ,
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(3.2.2) : ) lL(a(r))] = Nz/[jgl nj!].

Let D be the decision space consisting of all the ok subsets of
the set {1, ..., k}. Any subset is denoted by d so that D =
{dld [C {1, ..., k}}. A decision d is the selection of a subset of
the k populations. The fact that ied means that population s is
included in the selected subset if decision d is made. Let §(A(r), d)
denote the probability that the decision d is made if the censored
rank configuration A(r) js observed. Let ai(é(r)), i=1,...,k,denote the

individual selection probability of the k populations, where

(3.2.3)  ay(a(r)) = ] os(alr), d),
dzi

the summation being over all the subsets containing 1.

Definition 3.2.2. A subset selection rule R based on the censored

ranks is a measurable mapping from L. into [0, l]k such that
R(A(r)) = (a (a(r)), ..., o, (A(r))).

Let Pi(g) denote the probability of including the population s
in the selected subset when 0 = (61, cees ek) are the true parameters.
That is, P.(g) = Eqle; (A(r))] where the expectation is over the set

L. Any decision d that corresponds to the selection of the best
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population is called a correct selection (CS). The probability of a
correct selection is denoted by Pe(CSIR) when the subset selection
rule R is applied. i

Let G denote the group of permutations g of the integers 1,..., k.
We write g(1, ..., k) = (g1, ..., gk). Let h denote the inverse of g

and define g(el, e ek) = (ehl’ cees ehk)' For Ny =n, =ese=n =n,
for each pAeL, A(r)eL ., Tet g and § be defined by 9 = (945 ..., 08,)

and ga(r) =(gA;5 ..., 9A ), respectively. Thus, both g and J are

induced from g. Let G = {g} and G = {g}. It is easy to see that

Cr(Eé) = E(Cr(A)). Also, AeL(A(r)) iff Eée]_(?é(r)). Hence,

-~

(3.2.4)  [L(a(r)] =|L(Ga(r))]

for each A(r)eL, and for each Je<G.

Definition 3.2.3. A subset selection rule R on L, is invariant under

permutation if and only if (al(ﬁé(r)), s ock(?é(r))) = g(a(a(r)),
-+ @, (A(r))) for all A(r)eL,, geG and § induced from g.

Let f(x, 91.) be the density function associated with population
Tss with the parameter 0, belonging to some interval (a, b) of the
real line, where -= < a <b <. let Q= {g]6 = (615 ---5 8,)}s

Qg = {8 eszlel =+ =0} and Q. = {g eﬂlﬂi > 9 for all j # i}.

Furthermore, let the density f(x, 6) have the following properties:
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Condition A:

[ (i) f(x, 8) is absolutely continuous in o for every Xx;
(11) the Timit f(x, 6,) = Tim (f(x, ) - f(x, 64))/(8 - o,)
0 60 0 0
0
(3.2.5) | exists for every x, for each eoe (a, b);
(ii1) Tim [ [f(x, 6)]dx =J [(x, 8) [dx < =
66 - -
0

holds for every 6g€ (a, b).

Goal 1: In the case when Ny = eee = n, = n, our goal is to derive an
invariant subset selection rule R, based on the joint type II censored

ranks, such that

[ (i) inf Pg (CS[R) = P* where P* e(%3 1) is prespecified;
Qoeﬂo ~0

(3.2.6) J

(i) Pe(CSIR) is as large as possible for all 6 in a

ne1ghborhood of 80€ 25

Note that for each B9 €5tg> Py (CS|R) will be interpreted as the
~0
probability of selecting a specified population.

Goal 2: In the unequal sample sizes case, we consider the class of

all subset selection rules satisfying Pl(QO) = ees = Pk(go) = P* for
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all 8o U Among those rules, we are interested in the one which
maximizes
k

(3.2.7) y ae Tog Py (Cs]ge 2,

i=1 e=goeno

3.3. A Locally Optimal Subset Selection Rule for Goal 1

In this section, we will derive an invariant subset selection
rule, based on the joint type II censored ranks for Goal 1, i.e., the
conditions of (3.2.6) are satisfied.

For each 8 eQ, A(r) eL ., let Pe(é(r)) denote the probability

that the joint type II censored rank configuration A(r) is observed
under 6. Also, let Po(l), AeL, denote the probability that the

complete rank configuration A is observed under 8. Then,

X

(3.3.1)  Ppe(e) =(n1)* ij f_

N 2 N
e f I f(x s 8y Jdxg eee dxy.

@ Jee g=] %

It is also clear that for each Q(r)eLT,

(3.3.2) P (A(r)) = ) Po(a).
< eL(A(r)) &
Let QO = (60, cees 60) €2y, where eoe:(a, b). By applying a

simple algebraic computation, Pe(é) can be written as follows:

~
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k
= (nl -
(3.3.3) Pyle) = (n)¥[ayleg) + PRCHEE SRS o)

o N 2 N L
where AO(BO) = j_m J_m R j_m jEI f(xj, eo)dxl---de = NT—wh1ch is
independent of 60, and

N o N 2
(3'3'4) A]'(é’ QO’ Q) = J'Zl I-m J-w cee J_oo q(13 J’QO’ Q’ )-S)dx]_...de
A.=1
J
for each i =1, ..., k, where x = (Xl’ e xN) and
3.3.5 q(i,Jj,.0 0,X) = — I f(x .8 I f(x_ .6, ).
0 % % mel o 0 peger M Ay
0 N )
Here, we define T =1, 1T =1 and [f(x.,0.) -f(x.;,8,)1/(6. -6,) =0

j=1 j=N+1 J 1 j’0 1 0

if 61 = 60.

Also, for 80 €5g> we have

k
o (8(r) = {0 1 (agr)].

~

(3.3.6) P
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Now, Tet T(A(r), QO’ ) = Pe(é(r))/Pe (A(r)) and define
2 20

(3.3.7) T*(A(r), 8g) = lim  T(aA(r), 8y 9)
) lte-g -0

where [|6 - o || = max |6, - 0! -
1<i<k !

By (3.3.3) and (3.3.6),

k
_ NI
(3.3.8)  T(a(r), 09-8) = 1+ T——ZK7T—T-A€L(§( N igl(ei‘eo)Ai(é’Qo’Q)'

Thus, if 6 = (el, e ek) is in the neighborhood of go with 0 # eo

for all i = 1, ..., k, then,

(3.3.9)  TH(a(r),0,) ~ 1+ N' z (0,-6

IL(a(r))] AeL(g(r)) 4, %7%)

x  T1im A. (A, 90’ 8).
[1g-ggl]»0 777 707
Under the Condition A, following an argument analogous to a

theorem (page 71) of Hajek and Sidak (1967), we have

(3.3.10) Tim A;(4s 84, 8) = A(A, 9,) = Z B.(0,),
[lg-gglf0 177 707 = O g I

A=
J

for each § = 1, ..., k, where



N
1=I f(xm, 60

(3.3.11) = fi; f_m Tf(x.0

O) 1

1. :
-1 N-
(3-1)1(N-3)1 fo L)Y g, 1, 8,)du

and

)Xm see dX

dX, e+« dX

140

N

N

(3.3.12)  ¢(u, f, 6,) = %(F'l(u,eo),eo)/f(F'l(u,eO),eo), ue(0,1).

That is, there exists an € > 0 such that as 0 < [lg - 8,1 < e,

Ai(é’ QO’ ) is approximately equal to A?(é, QO) for each i = 1, ...

Hence

k
. . N *
B YO W D RCR AU

where

(3.3.14) T?(é(r), 90) = Tizg%?jjT_AgL(g(r)) A?(é, QO)'
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Lemma 3.3.1. Suppose that the density function f(x, 8) satisfies the

N
Condition A. For each 6, e(a, b), Tet V(6,) = T B.(6.) where
0 0 je1 9 ~0
'QO = (60, cees 90) EQO. Then V(@O) = 0 for all eo e(a, b).
Proof: Note that for each 60 e(a, b),
Z : g o XN X2 N
B,(8y) = f f J f(x:,8.) T f(x_, 0,)dX
j=1 9 §=1 ) w0 | 0 N e L L
m# j
o Xy X2 N
=[ f j 2 f(x .,e) T f(x ,eo)dxl-
= 7= -» j=1 m=1
m#j
(3.3.15)

X

N [2 [d N
cee -— 1 f(x s e:[ dX see
e o= =6,

I
1 8
8
]
8

X

4 N Ky
= aﬁ_f_m f cee j-m mzl f(xm, e)dxl ...dXN,e

-0

=0

where the last equality is obtained under Condition A.

Therefore V(eo) = 0 for all 8, e{a, b) since

N 2 N 1
fm J cee f i f(x » 8) Xm cee dXN = §yr Which is independe
~c0 ~Co =0 M= l -

0. This completes the proof of this lemma.

eeedX

oo dX

dXN

0

nt of

N

N
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Lemma 3.3.2. Let § e and let P;(8) = Eglo (A(r))] be the probability
of including population s in the selected subset under 9 by applying

an invariant subset selection rule R. Let G(i) ={g €G|gi=i}. Then

k

P.(9) = )L (a(r))
= A(r)gLr v 1-(ar))]
(3.3.16)
k
e L ON 6(1))]a; (4(r))
where
Y k )
W(a(r), 8, 9y, 6(i)) = AeL(g(r)) geé(i) JZl(ehJ - 8,)
(3.3.17)

- As(8s 85, 98),

h is the inverse of g ¢G(i) and 8y = (60, cees eo) 9y

Proof: By the invariance property of the invariant subset selection

rule R, we have

P.(e)

Eq Lo (4(r))]

- ?F_:_TTT'ggé(i) EgQ[ai(Eh(r))]

=T I ) Egq Loy &(r))1 where = g L ea(i)

(3.3.18)
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= | (A(r))P
(k-1)! ge(z;(i) [é(r%ar #(4(1) gﬁ(ém)]

= 1
— é(r‘)g]_r Ekh-ﬂ'_ é . ng(é(r)ﬂai(g(r)),

geG (1)

Then, from (3.3.2), (3.3.3) and (3.3.18), we obtain

O
-
~~
LD
S
I
>
—
]
e
g
P
o~
1
—
o~
\./-
>
m
[N
1
>
—
-
g
g
-
[{a]
1D
~—~
>
]
Q
-
—
>
Lo
-3
N
g

(3.3.19)

k k
R Lt + (8

e~

)
A 1

AeL(A(r)) geG(i) J

1}
0~
==
-~
—
>
~
)
S
S
+
C
~
ot
S|
=
~~
>
~
S
<D
1D
[ew]
-
o
o
—
S
L=

This completes the proof of Lemma 3.3.2.
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Lemma 3.3.3. Suppose that the density function f(x, 6) satisfies the

requirements of Condition A. Let G(i) = {geG|gi=i} and A;(é, 8y) =
N
mzl B, (85). Then
Am=j
k « -
(3.3.20) geé(i) jzl(ehi—eo)AJ(é’ 8y) = (k-2)1(ke, - U)Ai(é,‘QO)

k
for each 1 =1, ..., k, for each 8 eQ, 8, eQ, where U = } 8 and h
=]

is the inverse of g €G(i) and A eL.

k
* —
Aj(Aa go) - z

~

k
Proof: First note that }
L j

J

which is obtained from Lerma 3.3.1. Now,

*
1 hj - eo) Aj(és QO)

(s B
—
<D

9eG(i) J

k
= T o6, A%(A, 8,)
gee%i) j=1 NI S0

k

AX(A, © .
i L4 %) geé(i) ehil

(3.3.21)

1]
e SO [ o 7
b
al ok
—
>
-
D
o
g
~1
o
[
+
=
- %
—~~
>
v
D
o
-
D
pon
[o=)



145

k k
= Z 3 A, [Ek -2)! :}-+ (k -1)16,A%(4,8,)
#1 m#1
k
= (k-2)1(U-9,) jgl AS(8,85) + (k -1)16.A7(8,8,)
J#i

(k -2)1 (ke -U)A?(A,e

where the first and the last equalities are obtained due to the fact

k
that |} A}(A,eo) = 0. This completes the proof of Lemma 3.3.3.
j=1 ¢ 77

eQ

Theorem 3.3.4. Let 6 €Q be any point in the neighborhood of QO 0

Let Pi(g) = Ee[ai(g(r))] be the probability of including population
s in the selected subset under 8 by applying an invariant subset

selection rule R. Then, under the condition A, for each i = 1,2,...,k,

(k6 -U)N!
(3.3.22) p,(0) = Eeo{[l b TR, QO):[oci(é(r‘))}.

Proof: It is trivial that under the condition A, |A.(A,8

i ~s~0:9)| < @

and IA?(Q,QO)| <o forall i=1, ..., k. It is also clear that

(65 -64)R;(8,84598) = (6. -6,) A%(a,0

j 0) A ~O) if ej = 8- Thus, we assume

1}

that ej # %o for each j = 1, ..., k. Then, by the assumption and

(3.3.10), we can choose € > 0 so small that as ||g - Qoll < € where

116 - 64]] = max |6, - 6,|, we have A, (4, 6., g8) = AL(A, 6,.) for
~0 1<i<k i 0 1'=2 <0° 2 it~? <0
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*
all geG and so (ehj -60) Ai(é’ 85> go) = (ehj -eo) Ai(é’ QO) for all
9eG where h is the inverse of g. Thus, either min 6. -06,] =0
1<i<k 0

or min lei -eol >0, if ||e - QOII < g, we have
1<i<k

I
—
~
]
N
~—
—
=
<D
-—de
1
(e
~—
I=
—
>
-
D
~——

where the last equality is due to Lemma 3.3.3. Then, by (3.3.19) and
(3.3.23), we obtain

P;(8)
k k
nl §n'}
~ E—L L(A(r))]| + k-2)!
A(r‘§ ] NI l r l (k-1)! éeL(%(Y‘)) (
.. * (k05 - VAT (8,80) [a (a(r))
.24
(kei -U)N! 1 .
) EQO{E TTRET LG, L%A(r)) Ai(2.8 )I
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This completes the proof of Theorem 3.3.4.

Now, define subset selection rule R1 as follows:

[ 1 1F THA(r), 80) > c(8y);
(3.3.25) a;(alr)) = 4 o(8)  if THa(r), 0,) - c(8,);
L0 AFTHAM, ) < c(gy)s

where the constants C(QO) and p(QO), (0 < p(8,) < 1), depend on the

parameter eo, and can be determined by

= c(8,)} =P*.

(3.3.26) Py {T7(a(r),80) > c(g)} + p(g())PeO{T’l‘(g(r),go)

81

We then have the following theorem.

Theorem 3.3.5. Suppose that the density function f(x,0) satisfies

the Condition A. Then, the subset selection rule Rl maximizes
Pe(CSIR) in a neighborhood of QO eQO, among all invariant subset
selection rules, based on the joint type II censored ranks, satisfy-

ing 1inf Pe(CS]R) = p*,
QEQO ~

Proof: Without loss of generality, we assume that T is the best
population. Then by Theorem 3.3.4, for any @ er in a neighborhood
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PQ(CSIR) = P (8)
(3.3.27) (kek-U)N]
*
k-1
Since k8, - U = 7} (6, - ej) > 0, then by Neyman-Pearson lemma, we
j=1 ,

conclude this theorem.

Local Monotonicity of the Subset Selection Rule R

1
Let R be a subset selection rule and Pi(g) be the associated

probability of including population ™ in the selected subset for

each i = 1, ..., k, when 0 is the true parameter.

Definition 3.3.6. A subset selection rule R is lTocally strongly

aP. (9)
monotone at point eo aQO if for each i = 1, cevs ky — >0
g a0. =
~T 1859,
aPi(g)
and 39 <0 for all j # j.
J Q=Qo
Note that by definition of P.(8),
Pi(8) = Eglay (a(r)]
(3.3.28) = ; Pe(é(r))ai(é(r))
Alrler =

~

- Po(a) o (a(r))
4<r)§Lr EaL%g(r)) ¢ ~J°‘1 -

where P (4) is defined in (3.3.1).
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Under the condition A, for each j =1, ..., k, we have
3Py (4) N
O\<
5 = ) 8,(8,) x(n))*
J' Q:QO mz]:
Am=J
(3.3.29)

A7(.8) (n)K

where B (8,), Ag(g,go) are defined in (3.3.11) and (3.3.10),

respectively.

Therefore, we have

aP'(Q) k *
(3.3.30) NGO I A(gg)ag(a(r),
i Q=QO A(r)aLr AeL(A(r))
and
3P (9)
3.3.31) —J1 = = (n1)K A%(8,6) |as (a(r))
( ) 393, Q=QO (n é(r)gLr[AeL(g(Y‘)) j'\= ~0]0L1 Alr

Y j#1.

The following lemmas are needed for deriving the Tocally strong

monotonicity of the subset selection rule Rl'

Lemma 3.3.7. Let geG and geG and geG are that induced from g.

Then, for any A eL, A(r)e L., we have
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(1) AGi(8, 9,) = A7(4, 8,) and
(2) Tgi(88(r), 8g) = T¥(a(r), g,).

Proof: (1) By definition of A:(é, 8g)» we have

*
AY(8, 8,)

l
It~z

(3.3.32)

1]
o~
lvs]
—
D
o
~—

i
=

*
Pann

Q|
>
@

This completes the proof of part (1).

(2) By the definition of T}(a(r), 85) and the result of part (1),

we have

T .(3a(r), o) = —L A%. (A, 6.)
91 ) o s @) N1 %
2 (ga, 6,.)
ILBINT Gy Gacry) 91 %

1
(3.3.33) = mAEL(g(r)) Aqgi(94s 85)
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_ 1 *
PRGN égl_(g(r)) Ai (4. 8)

This completes the proof of part (2).

Now, we see that for each i =1, ..., k, A?(é,go) depends on
A only through whether Aj =1 or not for each j = 1, ..., N, and
when A; # 1, then A:(Q,QO) is independent of the value of ;-
Similarly, T?(é(r), QO) depends on A(r) only through whether Aj = j
or not for each j =1, ..., r, and when by # 1, then T?(Q(r), QO)
is independent of the value of Aj' Thus, for the subset selection
rule Rl’ ai(é(r)) depends on'é(r) only through whethervAj =1i or
not for each j =1, ..., r.

Let geG(i). Since g does not change the position of index 1,
therefore, for each A(r) el , ai(ﬁé(r)) = ai(é(r)) where TeG is
induced from g. Now, according to the value of ai(é(r)), the set

Lr can be partitioned into three classes, say,

L. = 1_:-(0) UL;(l) UL:_(p(QO)) where
(3.3.38) L](8) = {4(r) L |0 (a(r)) = 8}

for 8 =0, 1 or p(QO).
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Lemma 3.3.8. Let geG(i) and EEE be the one induced from g. Then

E(L:(B)) =L;(B) for each 8 = 0, 1 or p(QO).

Proof: For each B, let Alr)e L;(B). Then oc].(é(r)) = B and so

o (3A(r)) = B since geG(i). Therefore ?é(r)sl_;(s). That is,
(L] i TL - =1 i
g(Lr(B)) L Lr(B)' Also, g L. = L.. Thus, if gLr(s);Lr(B) for
some B, we then have ?Lr[_ Lr which is a contradiction. Therefore,

gL :'(B))=L:~(B) for each 8 = 0, 1 or p(go).

Lemma 3.3.9. For each fixed i and m i, J#1andm# j, we have

AT(A, 8,) 1o, (A(r))

i
Alr)e L.

(3.3.35)

.y R (8, 00) e (a(r))
A(r)e L1(g) [é“‘%é(r)) " OJ%
r

for each 8 = 0, 1 or p(go).

Proof: Let geG(i) and satisfies that gm =3, gj = m. Then,
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1]
ko]
o~

This completes the proof of Lemma 3.3.9.
The following corollary is a direct application of Lemma 3.3.9.

Corollary 3.3.10. For each fixed i and m #1, J # i, we have

Theorem 3.3.11. Suppose that the density function f(x,0) satisfies

the Condition A. Then, the subset selection rule Rl is locally

strongly monotone at each QO eQO.

Proof: By Corollary 3.3.10, for each m # i, we have

aP.(9) 1 Iz< aP.(8)
20 " k-1 .. 3.
n o= 1% Jg=g
0 3#i 0
(n)* f ) T AN(A,0.) e (a(r))
= . s (e 3
(3.3.38) k-1 L atrier, I;EL(Q(Y‘)) J= ”0:[ v
#i -
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where the last second equality is due to Lemma 3.3.1.

Therefore, it suffices to prove that —g—-Pi(Q) > 0 for

90, -
1 9 90

each €0 €% Now, .

T ,
AMiL, | L(a(r)) T3 (a(r) 8)

) é(r)gl‘r

A%(A, 8,)
AeL%é(Y‘)) v v

(3.3.39)

Wb i Bi(e) gy, (ay)

N
"L BT 1{1}(%‘)]
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= (N-1)! g B.(6,)
() Y-y 521 97
= 0,
N
since } B;(8g) = 0 which is due to Lemma 3.3.1 under Condition A.
j=1

Then, by (3.3.25), (3.3.38) and (3.3.39), we see that

3.3.40 A. (A, 8,) 0. (A >0
| ) é(r)_gLr Ea%é(m ) ~°]a1(”(r))‘

Therefore > 0. Hence, the subset selection rule R, is

= 1
Q'QO ‘

eQn.

locally strongly monotone at each QO 0

Remarks 3.3.12. (1) Note that when r = N, that is, in the complete
rank configuration case, this Tocally optimal subset selection rule

Rl turns out to be the one studied by Gupta, Huang and Nagel (1979).

(2) This locally optimal subset selection rule R, is basedon the weighted

1

1 . .
- 1 j-1 N-3j
rank sum Bj(QO) GoI) T3 JO u (1-u)" Yo(u, f, eo)du where

¢(u, f, 8) = %(F'l(u, 9), e)/f(F'l(u, 6), 6). In general, ¢(u, f, 6)
depends on 6. However, it is independent of 6 if 6 is a location
parameter (see-Gupta, Huang and Nagel (1979)). In this situation,
the value Bj(QO) is independent of 8- Therefore, the two constants
c(QO) and p(QO), which are used to determine the rule Ry, are also

independent of 8o for each fixed p* value.
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(3) Suppose that 6 > 0 is a scale parameter, that is, f(x, 6) =

gh(e(x - p)) for some function h{:). Let 61> 65 > 0 such that

2
- -1 =
0, = 86,. Then, ¢(u, f, 62) =3 ¢o(u, T, 91)° Therefore, Bj(gz)

1 . _ = ¢
g Bj(gl)for each j =1, ..., N, where 9 (055 ---s ei) 9>

i =1, 2. 1In this situation, for each fixed p* value, we have
21 -
c(8,) = 2 c(8;) and p(g,) = p(gl)-

Huang and Panchapakesan (1982) also derived a subset selection
rule, say RHP’ based on the complete rank configurations, which can

be represented as follows:

. *
1 if AY(a, 8y) > V(eg) + D

= * =
(3.3.41) a;(a) = { o if A§(a, 8y) = V(s,) + D
*
0 if Aj(a, 84) < V(ay) + D

where D and p(0 < p < 1) are chosen so that

* * = =
Py (A;(8, 85) > V(Bg) + D} + oP, {AT(a, 84) = V(8,y) +D} = P*

) )
8y % 20 0

(3.3.42) and V(s,) + D > 0.

The rule RHP is always locally strongly monotone provided the con-
stants D and p satisfying (3.3.42) exist. However, as pointed out
by themselves, it is possible that the D and p satisfying (3.3.42)

may not exist. In such a case, the rule R, , selects the empty subset.

HP
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The following example indicates that the rule RHP always selects the

empty subset when p* > %z

Example 3.3.13. Let k (> 2) and n be positive integers and let

-(x-8)

N = kn. Let f(x,8) be the logistic density f(x,0) = e /

X-0),2

[1+ e_( 17, =@ < x <o, c@< § <o, It is clear that f(x,8)

satisfies the Condition A. Then by Lemma 3.3.1, V(eo) = 0 for all
8, eQO. Also, ¢(u, f, 8) = 2u - 1, which leads to equally spaced

scores and

(3.3.43) B;(g,) = 2

1
TN+1)T ~ NF -

Note that Bj(QO) + BN+1-j(90) =0 for each j =1, ..., N.

1

eL, Tet ol = (al "

Therefore, for each A= (Al, eees A 12 e AN

N

1

1 _ s _
where Aj = AN+1-j for each j =1, ..., N. Then A~ eL. By (3.3.43)

and the definition of A?(é, 8)> we have A?(Q, 8,) * A?(él, 0

8g) = 0

0

b a1 * 1
for all AeL, 8, eQ,, which implies that PQO{Ai(Q, QO) >0} <5

for all QO eQO. Hence, for p* > %3 there exist no D and

p (0 < p < 1) such that (3.3.42) is satisfied.

However, for the subset selection rule Rl’ the corresponding
two constants C(QO) and p(go) always exist when p* E(%a 1), and the
rule R1 is always locally strongly monotone which is guaranteed by

Theorem 3.3.11.
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3.4. Derivation of a Locally Optimal Rule for Goal 2

In this section, we also assume that the density function f(x,8)
- satisfies the Condition A of (3.2.5). The selection problem is
studied for the unequal sample sizes case. We consider the class

of rules R such that

(3.4.1)  P(87) = +++ =P, (8,) = P* for all g, ef,.

Among these rules, we will find the one which is Tlocally optimal in

the sense that it maximizes

(3.4.2)

It 17
[

3
T log PQ{CSIQ €Q_i}

1 i Q=QOEQO

The requirement (3.4.1) is reasonable, since for 89 =

(601, e eOk) €Rs By = =00 = B0k = 8g° and in this case, it can
be verified that the distribution of the (censored) ranks is inde-

pendent of the underlying distribution, and so, is also independent
of the common value of the parameter 60.

Note that Pe{cslg eQi} = Pi(Q|Q 891)‘ Then,

I~ )

ab

1

so- Tog P {CS|g e}
i i < 6=

20%%

(3.4.3)

i
-
n
[
U
2D
o
Q
D |ar
vl
-
—
<D
D
m
=0
-
~
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Thus, if a rule R satisfies that Pi(go) = P* and maximizes

5%—-P1(Q[Q EQi) for all 4 =1, ..., k, it also maximizes (3.4.2).
i 0=0 :
220
Now, for any 6 e,
P;(8) = Eglo; (A(r))]
(3.4.4) =T Pa(r))eg (alr)
Alr)eL =~
~ r
= ) ) P, (8)]as(a(r)).
A(r)er, fper(a(r)) &1
With an argument similar to that of (3.3.3), we have
k k
= I -
(3.4.5)  (a) [jr=[1 nj.} y [Ao(eo) s 3Gy oty g @)],

where A,(6,) and Aj(é, 84-0) are defined as before and 8 =

(eo, e eo)sQO. Hence,
P.(6) = | I n.! A (6
T {j=1 g Jémér Ee}yr)) { 0%

k
+ jzl (Gj - GO)Aj(Q, 9> Q)I}ai(A(r)).
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Under the assumptions of Condition A, we have

k
! i
Lq 3] MrgH,EH%MP” !
(3.4.7)

k * :
) [321 ni!} é(r)gLr [IL(a(r)) [T;(a(r), 84)1a

NI Eg [T3(a(r), 83) ay(a(r))].

0

Thus, we define a subset selection rule RZ(A(r)) = (al(é(r)),

-o» o (A(r))) as follows:

{ 3 * .
1 if T5(a(r), QO) > Ci(QO)’

(3.4.8)  a;(A(r)) = { p.(6 if T5(a(r), ©

|
O
—
LD

0 if T7(a(r), @

where constants Ci(Qo) and pi(QO), (0 5_pi(Q0) <1),i=1, ..., k,

are determined such that

(3:4:9) g {T58(r)80) > e;eg)} + o3(8pIng [T3a(0).80) =, (o
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Theorem 3.4.1. Suppose that the density function f(x, 6) satisfies

the condition A. Then, among all subset selection rules satisfying

Pl(go) = eee = Pk(go) = P*, the subset selection rule R, 1s Tocally

. k
optimal in the sense that it maximizes ) 5%—-109 Pe{CS|Q€Qi}
i=1 i =

Proof: This theorem follows immediately from (3.4.7), (3.4.8) and

by applying Neyman-Pearson lemma.

Local Monotonicity of the Subset Selection Rule R2

Let R be a subset selection rule and Pi(g) be the associated
probability of including population ™ in the selected subset for

each i = 1, ..., k, when § is the true parameter.

Definition 3.4.2. A subset selection rule R is locally weakly

3P (9) k ap.(8)
monotone at point Qoeﬂo 1f'*jﬂ;*— >0and § 56 <0
i Jogg =1 %% Je=g,
J#i

for each i = 1, ..., k.

We first note that under the Condition A, Lemma 3.3.1 still
N
holds, that is, Z B.(eo) =0, QO EQO’ in the unequal sample sizes
=1

case.

The following lemma is similar to that of Lemma 3.3.7.

Lemma 3.4.3. (Unequal sample sizes case) Suppose that the density
function f(x, 6) satisfies the condition A. - Then, for each i = 1,...,k,

0 € 9> we have
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(3.4.10) Lo L@ T, 8g) =

g AT(2,80) = 0.
a(rleL, AeL AelL A(r))

Proof: For completeness, the proof is given as follows.

Along the 1ine of the argument of (3.3.39), we have

Lo A8, 8))
A(r)eL, AeL(B(r))

N
= .(6 ' .4 (A,
(3.4.11) J_Z=1 B;(2p) AEEL I3 (85)
N
- (N - 1)!
J (n,-1)f T n!
m=1 ™M
m# i
=0
N
since ) Bj(QO) = Q under the Condition A.
j=1 "

Theorem 3.4.4. Suppose that the density function f(x, ©) satisfies

the Condition A. Then the subset selection rule R2 is locally weakly

monotone at each 90 eQO.
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Proof: From (3.4.7)

oP.(9) k
(.0.12) 5| =[x nt] T ILG)ITH(A0) 8 (400)).
i le=8y Y=l A(r)eL
r
P (9)
Then by (3.4.8) and Lemma 3.4.3, we conclude that 55 >0
i 6=0
< <0

where the strict inequality holds if T:(Q(r), Qo) # 0 for some
A(r) eL.
Next, from (3.4.6), for each i = 1, ..., k, we have

kK 9P, (8)
=1 % ‘9=90
i#1

n.!
1 J

(=N

A% (a, GO{Iai(é(r))
J

1 é(r)eZLr EEL(E(_Y')) &
1

17

1

k _
N A%(n, 8,) as(A(r))
[j=1 Ny } A(r)EZLr léﬂ-(izé(r)) ;A ~o)}a1 A(r

~

1]
—~—
[N
(=N

N A% (A, 04) as(a(r))
=1 g ] é(r)gf-r‘i.éel-(g(r)) j N 0—\a1 =
(3.4.13) = J

SN NI

| A
o
w
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k
where the third equality is due to the fact that '21 Ag(é, QO) = Q
J:

for each A eL, 94 efly-

Therefore, the subset selection rule R2 is locally weakly

monotone at each QO eﬂo.

3.5. A Generalization
In the preceding sections, we studied some locally optimal
subset selection rules, based on the joint type Il censored rank
configurations. We now turn our consideration to the case when a
specified censoring scheme C makes x = (Xl’ cees xN) (or éx)
partially observable. First, we introduce a definition as~f01]0ws:
Let L = {A} denote the set of all rank configurations for the

fixed constants Nps oees nk.

Definition 3.5.1. A censoring scheme C is said to be compatible

with the rank configurations AeL if C induces a partition of L.
It is not hard to see that the joint type II censoring intro-
duced previously is compatible with the rank conf%gurations AeL.
For a compatible censoring scheme C, we denote the mapping as

C(A) = A, AeL, and define the following terms

C

L= 1A | 34eL such that c(a) = 4}

L(a.) = {aer|c(s) = A}
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) be the probability that the

Now, for each 4 eL., let PQ(QC

censored rank configuration 4. is observed when 6 is the true

parameter. Then,

(3.5.1)  Py(8) = T P(a).

Also, for QO eQO, we have

nj!
(80) = S ILa)1-

= x

(3.5.2) p
%o

Let T(éc, QO’ ) = Pg(éc)/PQ (éc)' By an argument analogous

0
to that of Section 3.3, we have
(3.5.3)  T(A.» 8., 8) = 1+ ! If(e 6. )A; (8,6,,0)
=c? <0° < [L(éc)] éEL%éC) j8q 0 0/"iY==0~

Then, under the assumption of the Condition A, we have

daT(A , 6., 8)
: ~c’ =0 ~’| N! *
(3.5.4) ¢ = LT % AZ(A, 8,)
T ey R ey TR0
= NI T*

where
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* - 1 *
(35-5) T'I(éC’ 90) = E@l ASL%A ) A'I(é’ 9’0)
=T

Thus, the Tikelihood ratio function T(éc, QO’ Q) of the censored
rank configuration éc is increasing in ei in the neighborhood of QO

if T5(8.. 8g) 2 0.

Note that T?(éc, 0,) = T?(é(r), QO) if the censoring scheme C

o)
is the joint type II censoring scheme Cr'

Fo]]owihg an argument analogous to that of preceding sections,
we can also derive some .locally optimal subset selection rules based
on the statistics T?(QC, 8y)- We can see that these derived Tocally
optimal subset selection rules have some properties similar to that
of R1 (in the equal sample sizes case) or R2 (in the unequal sample
sizes case), without any further assumptions. With these properties,

it is possible for the experimenter to use a suitable compatible

censoring scheme.
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