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CHAPTER 1
INTRODUCTION

1.0 The Experimental Model and Definition of Precision

The problem of comparing the precisions of several measuring
instruments, or methods of measurement, arises in many practical
and scientific contexts. Miller (1980), for example, considers the
problem of comparing two methods for measuring Kanamycin levels in
premature babies. An example where four instrument - operator
combinations‘designed to measure human lung function are compared is
discussed by Barnett (1969). Grubbs (1973) gives a non-medical
example in which three velocity chronographs are compared. Numerous
other examples occur in educational and psychological measurement
(éee Ltord and Ndvick, 1968), environmental monitoring, and in the
physical and agricultural sciences.

The concept of "precision" must be distinguished from that of
"accuracy"”. Precision refers to the repeatability of measurements
(how close they tend to be to each other), while accuracy refers to .
how close the measurements are to the true value measured. Thus,
accuracy is related to lack of bias, while precision is related to
the size of random errors of measurement. (Synonyms used fn the

psychological measurements literature for precision and accuracy are



"reliability" and "validity", respectively.) An analogy given by
Murphy (1969) may help clarify the distinction between precision and
accuracy. We can regard the measurement situation as being similar to
that of a marksman aiming at a target. If the marksman can place all
his (or her) shots in a rather small circle, then we would call him a
precise marksman. However, the center of the circle may be far from
the bullseye of the target. In this case, the marksman would be
precise, but inaccurate. It is also possible that the marksman

would place all his shots in a very wide circle, but with the center
of the circle exactly on the bullseye. In this case, the marksman
would be imprecise, but might be regarded as being accurate. In this
dissertation, we will be interested in estimating and comparing the
precisions of several measuring instruments, or methods. Finding
precise instruments is typically more difficult than making such
instruments accurate (provided, of course, that the instruments
actually measure what is desired). If an instrument has a fixed bias
(inaccuracy), there are standard methods for a]fgning (rescaling) the
instrument so that it accurately measures the desired quantity.
Reducing measurement variance (imprecision) cannot be accomplished

by rescaling.

Before we formally define the precision of an instrument, we
need to give the statistical model underlying this definition.
Suppose that we wish to measure a quantity u which is a property
of some experimental unit (a person, a physical object, etc.). Each

instrument which can be used to measure this quantity provides a



reading (measurement) y, which is a random variable with mean E(y)

Tinearly related to u, and with a varjance 02. Thus, we can write
y=a+gu+e=zt(u)+e, . (1.0.1)

where e is a random error of measurement with mean O and variance 02.
The bias «, scaling factor (slope) g, and error variance 02 differ from
instrument to instrument, but all instruments have in common the
property that their "true scores" t(u) are linearly related to the
quantity u being measured.

Once an instrument is chosen, we assume that it can be calibrated
(rescaled) to eliminate the bias and scaling factors. If this calibra-
tion is done without error, such rescaling would produce a rescaled

reading

(y-a) = u+ g le=u+ex (1.0.2)

1
* = I
YT

whose true score would be u, and whose measurement error e* would be
var(e*) = 02/82. (1.0.3)

The smaller var(e*) is, the more precise is the (rescaled) instrument.
Since it is customary to think of the precision of an instrument as
increasing when the error variance decreases, a natural definition for
the index of precision (or simply precision) of the instrument is

7 = 1/var(e*) = 0—282.

Now, consider an experiment for comparing p(p > 2) such instru-
ments. We assume that n units are available, with the ith unit having
the true value us of the quantity measured, 1 < i < n. Each such unit

is measured by all p instruments. (Alternatively, if measurement is



destructive or changes the unit measured, we may assume that each unit
can be divided into p homogeneous specimens - one for each instrument.)
Let yij be the reading on the ith instrument when measuring the jth

unit. Then our model is

T=0,1,...,p-1, J = 1,2,...,n. We assume that the random errors of
measurement e].j are mutually statistically independent, and that for
each i (0 < i < p-1) the random variables €75+ -+5€; are identically
distributed with

E(e;5) = 0, var(e..) = 0%, i = 0,1,...,p-1. (1.0.5)

iJ iJ

Note that @y, Bi and o? are the bias, scale factor and error
variance, respectively, of instrument i, i = 0,1,...,p-1. The preci-

sion of instrument i is

i=20,1,...,p-1. (1.0.6)

Note that one instrument is indexed by i = 0. This instrument is
assumed to be the standard or accurate instrument, and will be called
the control. We assume that this instrument has already been rescaled

SO that its true score is u; that is, we assume that
= 1. (1.0.7)
If this is not the case, or if no standard instrument can be identi-

fied, we will regard the true score ag + Bgu of the instrument labelled

0 as being the unknown quantity to be measured. This does not affect



the analysis, although, it does, of course, somewhat affect interpre-
tation of the results. Note that it follows from (1.0.3) and (1.0.7)

that the precision i of the control equals 9y -

In order to state our model in vector-matrix form, let

Y5 = WogYige--¥po1,g) s 85 7 (egyseryee-eepq y)

,%:(a‘la--'aap_‘l)'a r%=(6']’---38p_'])‘-
Then
0 1
. = + .+ s, J=1,2,...,n, .0.
XJ <a> <B>% % i=1,2 n (1.0.8)
v LY
where the vectors gj are i.i.d., with mean vector Q and covariance
. s 2 2 2 s . .
matrix Ze = d1ag(oo,o],...,cp_]). This model is recognizable as a

special case of a linear errors-in-variables regression model (Kendall
and Stuart, 1979, Chapter 29; Gleser, 1981), and also (Theobald and
Mallinson, 1978) as a one-factor factor analysis model. In the
literature on errors-in-variables models, two ways of modeling the
unknown true quantities uj are considered:
(I) The uj's are unknown constants (parameters).
(I1) The uj's are a random sample from a population having
mean p and variance Oi’ and (u],...,un) is statistically-
independent of (g],...,e ).

on

The model described by (I) and (1.0.8) is a "linear functional
errors-in-variables model", while the model described by (II) is a

"linear structural errors-in-variables" model. Since assumption (II)



is commonly adopted in the literature on comparison of instrumental
precisions, we will make this assumption here. 1In addition, we will
make the usual assumptions that the vectors gj have a common p-variate
normal distribution, and that the scalars uj have a common N({y, 05)

distribution. Consequently, the XJ vectors are independent and

identically distributed with

0 1
Y5 MVN(<G> + <E>u’ zy) (1.0.9)

2 1 T\'
;y = I, +(%‘(Q> <Q> (1.0.10)

It should be noted that the model (1.0.8) we have adopted here

and

is parameterized somewhat differently than that of Theobald and
Mallinson (1978). The model of Theobald and Mallinson does not
distinguish a control instrument (and thus treats all scale factors
Bs> 0 <1 < p-1, as unknown), but assumes that 05 = 1. One constraint
on the parameters is necessary to identify the parameters of the
Tinear structural errors-in-variables model when p > 2 (two con-
straints are needed when p = 2). Theobald and Mallinson's formulation
has the merit (when no standard instrument exists) of treating all
instruments symmetrically, but at the expehse of creating a standard-
ized true value (i.e. 05 = 1) which is not necessarily the quantity we
wish to measure. Our formulation is both more appropriate for the
many situations where a standard instrument exists (and in which a

change of instrument is desired only if some other instrument is

clearly more precise), and also expresses all parameters’ in natural



units of measurement. Additionally, by allowing 06 to be unknown
(and estimated), information is obtained concerning the efficiency
of the experiment used to compare the instruments; such efficiency is
known to increase with 05. Indeed, it is well known that a well
designed comparative calibration experiment should utilize units for
which the corresponding true scores u; vary as Qide]y as pbssib]e
over the range of values where the instruments will be used. Thus,
if 05 is small, clear comparisons among the instruments will be
difficult, while if 03 is large, differences in precision among
instruments will be more apparent. This is not to say that similar
information cannot be obtained from the Theobald-Mallinson model,
since their factor loading xi corresponds to the quantities 9B
in our model, so that Ag = o, However, we feel that our parameter-
ization expresses this information in more natural terms.

J Since we will compare precisions mLo= 0528§ by taking ratios
ni/ﬁj, it does not matter whether we compare s and R or nioﬁ and

2

LECNE The quantities Ty T Wioﬁ are the squares of the precisions

Aio;] defined in Theobald and Mallinson (1978). As they remark,
1

the term "precision" can be applied equally well to Aic; or to

_ .2 =2
< >‘1'O1' .

However, since an instrument's precision conceptually
should be independent of the value of oﬁ in the experiment used to
measure that precision, it seems more appropriate to call s the
precision of instrument i. We will call the quantities T; the

relative precisions of the instruments. This terminology seems to

accord with standard usage (see Cochran, 1968; Thompson, 1963).



1.1 The Case p = 2: History and Summary of Results

The comparison of two instruments is a problem which has
received a good deal of attention over the years. Consequently,
a complete Tist of references would be excessively cumbersome to
reproduce. We therefore summarize only results most closely related
to our own contributions.

When p = 2, unique maximum 1ikelihood estimators for the parame-
ters of the model (1.0.8) do not exist, since the parameters of
this model are not identifiable. The usual resolution of this
difficulty is to impose a functional constraint on the six parameters
Ws aps Bys 05, og, o%, although various alternative approaches
(grouping the data, use of instrumental variables, replicating
measurements for each instrument on each unit) have been proposed
(see Moran, 1971).

The most common constraints imposed on the parameters are:

(a) to specify the value of one or both of the residual

variances, cg or o%,

(b) to specify the ratio 0;208 of the residual variances,

(c) to specify By = 1.

S specified (or, equivalently, L specified)

Constraint (a), with o
is meaningful in practice in cases where we have considerable
experience with the control (standard) instrument. Alternatively,
we might be able to specify the value of the relative precision

9 T 03062 of the control. This last situation would be the case,

for example, when we had used the control instrument many times



previously on the same population of units as used in the experiment
modeled by (1.0.8), with repeated measurements taken on each unit
used. In this case, a standard model II ANOVA methcd exists (see
Cochran, 1968) for forming an exact 100(1-v)% confidence interval
for 0 If such an interval is narrow enough, we would be willing
to assume that 0 is known. Although confidence intervals for cg
are also obtainable from such data, these intervals are not exact,
and consequently one would probably require much more data before
feeling confident that cg was sufficiently well estimated to be
assumed known.

Constraint (b) is commonly adopted in textbook discussions of
errors-in-variables models. The special case o% = cg has some
practical appeal in situations where the source of measurement
errors for both instruments is assumed to be the same (but the
instruments are thought to measure u on different scales, i.e., B1
is not necessarily equal to one). Examples of such an assumption
occur in psychological testing, geophysical measurement (see Gleser
and Watson, 1973), and in engineering (where measurement error is
often assumed to result mainly from visual errors in reading the
scale).

Constraint (c) has been frequently used in industrial and
agricultural examples, where it can be assumed that all instruments
measure the unknown u on the same scale (8. = 1). This special

;
case of the model (1.0.8) has been studied by Thompson (1962, 1963),

Cochran (1968), Grubbs (1948, 1973), Maloney and Rastogi (1970),

and others.
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Finally, we can assume that instead of knowfng OS or 0% (as in
constraint (a)), we are able to obtain independent and consistent
estimators 88 and 8% of og and 0?, either from prior experience with
the instruments, or by repeated measurements by each instrument on
each unit in the context of the experiment described in Section 1.0
(see Thompson, 1963; Cochran, 1968). Using 83 and 8?, we can estimate
(and pretend that we know) OS or 0? as in constraint (a), or we can
estimate (and pretend we'know) 0{208 as in constraint (b). However,
it is possible that the amount of information in the data used to

? may be of the same order of magnitude

form the estimators 85 and &
as the amount of information in the data of the experiment described
in Section 1.0. Consequently, errors in these estimators can result
in additional errors in our estimates of the precisions (apart from

those inherent in the data %]""’X ), and our inferences concerning

n
the precisions must take account of such additional variation in our
estimates of my and -

Thus, in Chapter 2, we consider the following special cases of
the model (1.0.8) when p = 2:

(1) the ratio R = 0;205 of the error variances is known,

(2) the slope By is equal to 1,

(3) the relative precision Ty of the control instrument is
known,

(4) there exist independent consistent estimators of og and o%.

In each such case, we discuss estimation of the precisions ™ and ™

(and also of the relative precisions 0 and r]), and derdive both a
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test statistic for comparing 0 and " and a confidence interval

for the ratio na]n] of the precisions. We also evaluate the power
function of our tests at alternatives M= (1+A)n0, A > 0. In the
case By = 1, our test statistic is identical to that proposed by
Maloney and Rastogi (1970), and by Grubbs (1973). When By = 1,
Thompson (1963) has obtained a joint confidence region for 0 and
- Our results for the other three cases appear to be new (when
R==0-§cg is equal to 1, our test comparing 0 to G is equivalent to
testing the null hypothesis that 8? < 1.) Even in the case By = 1,
we are able to state some properties of the test comparing L to LB
that have not previously been mentioned, and our tables of the exact

and approximate power functions of the test may be helpful to

investigators planning comparative calibration experiments.

1.2 The Case p > 3: History and Summary of Results

When p > 3, the model (1.0.8) is identifiable, and no constraints
on the parameters are needed. This model was used by Mandel (1959),
for the analysis of inter-laboratory round robins, by Mosteller (see
Cochran, 1968) for ratings of individuals by different judges, and
later by Barnett (1969), who used it in comparing four instrument-
operator combinations designed to measure human lung function. An
equivalent formulation of the model, in factor-analytic terms, is
given by Theobald and Mallinson (1978).

Since the u, are not known in these examples, both Mandel and
Mosteller suggest using a least squares method to estimate the
parameters by treating y,j = p’] ?E;yij’ the average over all

instruments, as uj. Because the maximum likelihood estimators for
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the parameters of (1.0.8) have no closed form for p > 3, Barnett
suggests using conéistent method-of-moment estimators for the
parameters. Alternatively, Theobald and Mallinson (1978) reparameterize
the model (1.0.8) as a factor analysis model with one factor, so that
maximum likelihood estimators can be found by using a computer
algorithm for factor analysis.

In Chapter 3, we discuss estimation of the parameters for the
model (1.0.8), and derive the asymptotic joint distributions of
the maximum 1ikelihood estimators of the precisions L EREEEL R aqd‘
of the ratios of the precisions w],...,wp_], respectively. Using
these resuTts, we find joint confidence regions for the ni's and for
the wi's, respectively. We also attempt to apply a type of rule
originally suggested by Paulson (1952) for choosing the largest mean
among the means of p independent normal populations to here select the
most precise instrument among p instruments in large samples.
However, our rule is not applicable because of the dependence of the
large-sample variances and covariances of the statistics used upon the

unknown parameters 9o ¢],...,w To overcome these difficulties,

p-1
it seems necessary to impose some constraints on the parameter space.
Thus, in Chapter 4, we consider some special cases generalized
from the special cases we discussed for p=2. They are as fo]]ows}
(1) the error variance ratios R],...,Rp_] are known, where
-2 2

Ri = g5 9

(2) the slopes 81”"’Bp-] are all equal to 1,

(3) the relative precision T4 of the control instrument is known.
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In each of cases (1) to (3), we discuss the estimation of the
parameters. We also use the test statistics derived in Chapter 2
for comparing each instrument with the control as the basis of a
decision rule for selecting the most precise instrument. Each such
procedure is of the type considered in Chapter 3, and satisfies the
P5 requirement. That is, the probability of selecting the control
as the best is at jeast Pa, where P6 is a predetermined number, when-
ever the control is actually at least as precise as any other
instrument. We also attempt to bound the probability of correct
selection for these procedures from below. That is, we seek a
lower bound for the probability of choosing one of the (p-1)
instruments as the best when that instrument is actually more precise

than the others (including the control). However, this problem

appears to be very complicated and remains unsolved at present.
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CHAPTER 2
ESTIMATION AND COMPARISON OF THE
PRECISION OF TWO INSTRUMENTS

2.0 Introduction

In the two instrument case (p = 2), the model (1.0.8) considered

in Chapter 1 becomes the following:

Y03 0 1 €03
2 S . §=1,...,n,  (2.0.1)
Y13 . 6 €15

~<
1l
it
-4
o

where Uypseoosly is a random sample from a normal distribution with

s

. 2
mean p and variance e and €15---18

e = (er’e1j) » 15 an indepen-

R
dent random sample from the BVN(O,diag(gS,o$)) distribution. Here, o,

Bs s 02, OS, o% are unknown parameters. We refer to instrument 0O as

u
"the control",

In this chapter, we are concerned with the problem of comparing

2

the precisions Ty T 062 and M= 820{ of the two instruments. The

relevant hypotheses can be formulated as
O: TT-I i TTO, H-': TI'.’ > ﬂ0~ (2.0.2)

Thus, H] is the hypothesis that instrument 1 is better (more precise)

than the control.
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As noted in Chapter 1, the model (2.0.1) is not identifiable
unless a constraint is placed on the parameters. InSections 1 through

4, respectively, we will consider the following cases:
(1) R= oizog is known,

(2) g=1,

(3) 9 = ﬂooﬁ, the relative precision of the control, is known,

2

(4) there exist consistent independent estimators 88 and 81 of

OS and o%, respectively.

In each of the above cases, we discuss estimation of the parameters

of the model, with particular attention to forming point and confidence
interval estimators of the ratio (no)—]n] of the precisions i and -
We also derive test statistics in each case for testing (2.0.2), and
obtain power functions for our tests. For case (2), some of our
results were anticipated by Grubbs (1948), Cochran (1968), Maloney and
Rastogi (1970), and Thompson (1962, 1963).

2.1 The Case Where R Is Known

This case has been widely discussed in the econometric and
biometric literature, particularly the situation where R is known to
be 1 (o5 = o%). MNote that

1. g%,
0
Thus, (2.0.2) can be equivalently stated as

2 : Re? s 1. (2.1.1)



16

It is well known (see Moran, 1971) that the maximum likelihood
estimators of the free parameters «, 8, U, cg and 05 can be expressed

: n
in the following form. Let yi =n7! )

J
00 So1 : Yoj ~ Yo\ /Yoj - Yo

s -

].Yij’ ]=0,]3 and

wn
0

e~

01 1 I\ - Y15 -

Further, let d] and d2’ d] 3_d2, be the eigenvalues of
1 0
(. )
0 R

2 2
(RSq7-Sgg) * [(RS11-Spg)” + 4RSy4]

Then = 90’ and

|

N

a = y-l It Byoa B = ZRSO] )
d, - d
~2 1 2 ~2
L S (2.1.2)
u 1+R82 0 2

By the invariance property of maximum likelihood, the maximum

tikelihood estimators of my» mp and ﬂaln] are

~2
-~ ] ~ _ Rs Aoy pal
'TTO dz, TT-] EE—, (TT-I/TTO) RB . (2.].3)

The exact distributions of these estimators can be obtained from the
known joint distribution of B and d2, but are too complicated to be
of much help. It is known that E[8|* = = for t > 1, so that the
mean and variance of %&]%] are infinite. Further, although E(%O)
exists when n > 2, it can be shown that E(%O) > mgs SO that %0 has a

positive bias. Although no results have been published for the mean _
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and variance of %], we conjecture that both such moments are
infinite. Despite these results, there is evidence in the literature
to show that the maximum likelihood estimatcrs (2.1.2), (2.1.3), are
good point estimators of their respective parameters, particularly
when 7y = 06205 is large. We remark that the maximum 1ikelihood

estimators of the relative precisions g and Ty are

-1

~2, -1
B R _ RE%(dy d]—])'
0 uo ]+R§2 1 u 'l ]+Ré2
Since 16111 = "6]“1’ the maximum 1ikelihood estimator of TB]T] is

the same as that of n6]w1.

Since the large sample (n » «) joint distribution of the estimators
(2.1.2) is known, standard techniques of analysis can be used to
obtain asymptotic joint confidence regions for any collection of these
parameters, and also for (ﬂo,w]), or for (10,11). A11 such regions
for vectors of parameters (e.g. for (no,ﬂ])) have ellipsoidal form
with centers equal to the maximum likelihood estimators and shape
determined by a consistent estimator of the asymptotic covariance
matrix of the estimators. For individual parameters, large sample
confidenée intervals can be obtained centered at the maximum likelihood
estimators. In the rest of this section, we concern ourselves with~
the methods of forming confidence intervals for n61n], and for testing
HO and H], which are appropriate in samples of moderate (as well as

large) size.
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Our method is analogous to that used by Pitman (1939) and Morgan
(1939), and applied by Maloney and Rastogi (1970) in Case (2) of the
model (2.0.1). Thus, let

L L
2 VRN /Yo5\ /Yot Ry
= 1 = L ;jz],Z,-.-,n-
Note that (2.1.4) is an observable nonsingular (1-1 onto) transforma-
tion of the data, so that no information is lost by this transformation.
The vectors (vj,wj)', 1 < Jj <n, are a random sample of size n from a

bivariate normal distribution with mean vector (uv,uw)' and covariance

matrix C given by

1 e
(byom,) = (u+ (REB+T)u, o + (REB-1)u),

g o] 1 L
AT o 5 1+ R\ /1 + REg\'
C= = 201, *+ o

L 1 ’ (2.].5)
0°2 u REg-1. REg-1

vw  ww

respectively. Hence, the correlation coefficient °vw of v and w is

(R82—1)TO
oo " . (2.1.86)
/(1-R82)213 + 41y(1 + Re%) + 4
where 9 = oazoi. The hypotheses (2.1.1) are equivalent to
HO: pvw_<_0, H]: P > 0. (2.1.7)

It is well known that a good test statistic for testing the hypotheses
(2.1.7) is
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where LA is the sample correlation between v and w. In terms of

the original data (yost]j)s 1 <3 =<n,

1
(n-2)2 (RS +-S~n)
T - o 00 (2.1.8)
2RE|S|?
A size v test of the hypotheses (2.1.7) has rejection region:
Reject HO ifT> t (2.1.9)

where tv is the 100(1-v)th percentile of the t distribution with n-2
degrees of freedom.

Although (2.1.9) is known to be the likelihood ratio test (LRT)
of the hypotheses (2.1.7), and also a uniformly most powerful
unbiased (UMPU) test of size v for these hypotheses, what properties
does this test have as a test of the hypotheses (2.1.1) in the context
of the model (2.0.1)?

Theorem 2.1.1. Under the assumptions of the model (2.0.1), with

R = OSO]Z known, the test (2.1.9) is a LRT of the hypotheses (2.1.1),

and is also the UMPU size v test of (2.1.1).

Proof: We have already noted that (2.1.4) is an observable nonsingular
transformation of the data, and that (2.1.1) and (2.1.7) are equivalent

hypotheses. We now show that the transformation

2 2
(U, a, B, 003 OU) - (Uva Uwa OVV’ OWW’ va)

defined by (2.1.5) defines a nonsingular mapping from the. parameter

space
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2 2 2 2
Q= {(Ua Oy 8’ OO, OU): - ® < U, asB < @4 00 _>_ 0, Ou ?_ O}
to the parameter space
* = . - o [}
Q {(UV3 UW’ OVV’ wa; va)- < llva Uw < @, OVV, OWW > 0,
|o [2 <o, 0o }.
W' — Tvviww

The assertions of our theorem will then follow from the invariance
of LRT and UMPU tests under nonsingular transformations of data and
parameters.

To see that (2.1.5) is 1-1 onto, note that for given (u

Vv? Uw: O.VV’
S va) in o*, the inverse image (u, a, B, og, 03) of this point
under (2.1.5) is defined by
= % (ayu)s = % Lt )-8 (0w )]
u ? UV )Jw s 2 Uv Uw UV Uw 3
2 _ 1. 1., 2,2 &
op = 7 AinlC) = 7 oy ro, )-Lo -0, ) 40y, F,
1
2 [(Ovv'gww)2+4°3w]§
o = s
u 2(1+Rg?)
where
2., 2 3
- [(ovv—oww) +4ovw]2+20vw
= T
(04O
Note that oé >0, oﬁ > 0 as required. This completes the proof. OO
We now consider the power function of the test (2.1.9) against
alternatives H]A defined by
- ;
RR™ = 1+a, A > 0. ” (2.1.10)
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15 States that na]ﬂ] = 1+A, A > 0. Note that it follows from

(2.1.6) that

That is, H

AT
o = 0 . (2.1.11)

ww 2 =
[(ATO+2) +810]

The power function of the test (2.1.9) is known to depend on the

parametersuv, Wy Oyv® Oww® © only through Pyw® It is also known

W
that the power of the test increases with Oy’ However, we see from

Vv

(2.1.11) that P vw is a function not only of &, but also of the relative

precision 0 of the control instrument.

Lemma 1. If P\ is given by (2.1.11), then

(1) »

w is strictly increasing in A for rixed 9

(2) O vw is strictly increasing in 74 for fixed A.

Proof: Observe that

30y _ 210[(A+4)10+2] .
B [(arg+2) 2481172
and
prw i 2A[(A+2)T0+2] o 5
T 3/2 :

0 [largr2)%+8r,]

Theorem 2.1.2. For fixed v, n, A and 9 the power of the test

(2.1.9) against the alternative Hya is given by

G(v,8,75.n) = f(rlp(A,TO))dr, (2.1.12)

8

where
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L =[n-2+ tz]-%t
v v?

Frlo) = 17 (n-2)(1-p2E 1 (1222 () £ cosh wepry = (0D g,
’ (2.1.13)
and p(A,TO) = P is defined by (2.71.11). For fixed v, G(v,A,TO,n) is
strictly increasing in each of the arguments a, g N, when the

remaining arguments are held fixed.

Proof: Note that

G(v, 8, 1g, n) = P{T >t} = Pir, > L},

Let r=r . The probability density function (2.1.12) for r is

given by Graybill (1976, p. 392). The fact that for fixed v, a,
T2 the function G(v, A, s n) is strictly increasing in n is well
known. The remaining monotonicity assertions follow from the fact

that P{rvw > L}, for fixed L, n, is increasing in p_ , and from Lemma 1.00

W
It follows directly from (2.1.11) that for fixed o > 0,
lim p._ = 0.

TO+O
Consequently, for fixed v, A, n, it can be shown that

inf G(v, &, 14, N) = v.

>0 0

0=
We see that in order to insure that the test (2.1.9) has a specified
power against H, , 1y must be bounded below (TO 3.t6) by a positive
number 16. That is, a lower bound to the relative precision of the

control instrument must be known.
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The cumulative distribution of r,

P(r < r*) = F(r*|n,p),

has been tabulated by F. N. David (1938) for p = 0(0.1)0.9, n = 3(1)25,
50, 100, 200, 400, and r* = -1(0.05)1. However, the tables are not
easy to find. In order to evaluate the performance of the test
(2.1.9), we have recalculated the power of the test (2.1.9) for
different values of Tge M and A. Tables Al and A2 show the power of

the test (2.1.9) for v = 0.05, t, = 1.0, 2.0, 4.0, 6.0, n = 10(5)50,

0

A = 1.0 and 2.0 respectively.
From Table Al and A2, we can see that when both 4 and Ty are

small, the power of the test is fairly low. For a better power, it

is necessary Lo increase the sample size n.

Table Al. The power of the test (2.1.9) for v

0.05, o = 1.0.

n

T 10 15 20 25 30 35 40 45 50
0

1.0]0.1675 0.2227 0.2739 0.3220 0.3679 0.4171 0.4522 0.4933 0.5274

2.010.2684 0.3749 0.4688 0.5512 0.6230 0.6846 0.7377 0.7826 0.8205

4.010.4376 0.6054 0.7285 0.8163 0.8776 0.9193 0.9474 0.9661 0.9783

o o o o

6.010.5679 0.7521 0.8623 0.9254 0.9605 0.9794 0.9895 0.9947 0.9973
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Table A2. The power of the test (2.1.9) for v

[

0.05, a = 2.0.

) n 10 15 20 25 30 35 40 45 50
0

1.0 0.3321 0.4663 0.5779 0.6694 0.7435 0.8011 0.8488 0.8825 0.9130

2.010.5475 0.7311 0.8449 0.9128 0.9519 0.9739 0.9861 0.9927 0.9962

o o O

4.0]0.7867 0.9278 0.9769 0.9929 0.9979 C.9994 0.9998 1.0000 1.0000

6.010.8914 0.9773 0.9956 0.9992 0.9999 1.0000 1.0000 1.0000 1.0000

When n is sufficiently large, and p = 0, the distribution of T

W
is approximated by that of a standard normal random variable. There-
fore, the cutiing point in (2.1.9) becomes z, instead of t, where z,
is the 100(1-v)% percentile of the standard normal distribution. For
P vw # 0 and large n, the distribution of T also approximates to a
normal distribution. To evaluate the power of the test (2.1.9), we

need to find the mean and variance of this asymptotic normal distribu-

tion.

Theorem 2.1.3. For fixed v, A, t, and a sufficiently large n, the

0
power of the test (2.1.9) against the alternative H]A is given by

[ 91(t]a,my)dt, (2.1.14)
z

AV,

where g](t|A,nO) is the probability density function of a normal

-1

1 2
distribution with mean (n-2)2p(]-p2) 2 and variance (1—p2) , Where

p = p,, is defined in (2.1.11).
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Proof: By Theorem 4.2.6 in Anderson (1958), vn (r-p)/(]—pz) is
asymptotica11y distributed according to N(0,1). Thus, using the
result 6a. 2 (iv) in Rao (1973), we find that the asymptotic
distribution of T is normal with mean (n—Z)%p[l—QZJ_% and variance

(1-02)"1.  For fixed a and tgs P = by, is defined in (2.1.11). o

After we compare the probabilities calculated from the exact
distribution of r and the probabilities computed by assuming T is
normally distributed with mean and variance shown in Theorem 2.1.3,
we find that the approach of T to normality is reasonably fast. For

n > 100 the approximation is accurate to five decimal places. We have

calculated the (approximate) power of the test (2.1.9) for v = 0.05,
n = 100(100)500, 19 = 1.0, 2.0, 4.0, 6.0, 4 = 0.5, 1.0. The results
are shown in Table A3 and A4.

Table A3. The power of the test (2.1.9) for v = 0.05, A = 0.5, and a
large n. ;

n
0 100 200 300 400 500

1.010.37477 0.59225 0.74412 0.84424 0.90745
2.010.64361 0.885398 0.96715 0.99126 0.9978]
4.0]0.90020 0.99354 0.9997 1.0000 1.0000
6.0} 0.973541 0.9997 1.0000  1.0000 1.0000
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Table A4. The power of the test (2.1.9) for v = 0.05, o = 1.0, and a
targe n.

T 100 200 300 400 500

1.0 0.78958 0.96538 0.99521 0.9994 1.0000
2.0 0.97507  0.9997 1.0000 1.0000 1.0000
4.0 { 0.999 1.0000 1.00000 1.0000 1.0000
6.0 1.0000 1.00000 1.00000 1.0000 1.0000

The last question we consider now is to obtain a confidence
interval for the ratio n]n6] of the precisions e T of the two
instruments. Note that n]wal is equal to Rsz. We first consider a
confidence region for R%s, thcn from this region derive a confidence
region for RBZ. The confidence region for R%B proposed independently
by Creasy (1957) and by Williams (1969) has the advantage that the
region for R%B is free from the unknown parameter - Let r(R%B) be
the sample correlation coefficient between RBy]i + Yoi and Y15 - BYgio
i =1,...,n, and let F],n-Z(“) be the 100(1-v) percentile of the F
distribution with 1 and n-2 degrees of freedom. The Creasy-William

1
(CW) confidence region for R%g is then
1 2.1 __] :
CH o= (REg:  (n-2)r(RZB)[1-r"(REE)T™" < Fy | ,(V)}. (2.1.15)

In terms of the original data (in, y]i), 1 <1 < n, we have

[-5 - (REg)2 + (RES..-RZS_)REg + S..1°
01 1 00 01

(R e) [1-r (Re6) T = ; 3

(2.1.16)
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Substituting (2.1.16) into (2.1.15), we obtain the following

inequality:
(s2.-¢) (REp)? - 2. (RES..-R2S,. ) (REg)3 + [(RES..-REs )2
01 B 01" > 00 11 00
_ 252 -2c1(REB)2 4 25 (RS, -R7ES. )(REg) + (S2.-¢) < 0, (2.1.17)
01 01'R">13 00 017°¢) =05 e h.
where
¢ = (n-2)" (5.5 -S2)F (v) (2.1.18)
11°007°01/F 1 ,n-2'V7- -1

The four roots of the equation obtained by setting the left side of
(2.1.17) equal to 0 are

3 3 3 2 32 2 5
(RES.1-R2800) + [(RES,1-R=S,0)" + 4(s5,-0) F

A] = .
2(Sqy * v/c)
b gt 5o s )24 a2
o (R S]]—R SOO) + [(R 511—R SOO) + 4(501‘C)]
2 s
2(501 - V/c)
s gt b pEs )24 a2
3 2(sgq - /o)
b nbs ) -t rFs 02 a(2. o)
o (R S]]—R SOO) - [(R S]]-R SOO) 4(50]‘C)]
4 - /__ . (2.].]9)
2(501 + /c)
It is easy to check that the order of the four roots A], AZ’ A3,
1 R
A, which depends on the values of Sy + Jc, So1 - /¢ and RES]1—R “Sh0°

are as follows:

A, < A4 <0 <A, <A,, if SO1 > /¢,

3 1 2

A, <A, <0 <A, < A4, if S, < - /c,

1 2 3 01
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i o2 z -% 2
A2 < A4 <0 < A3 < A], if 501 < ¢, R S]]~R SOO > 2<C—SO1)

oj4

> 0,

1 ~L 2 L
< ¢, RRS,,-R'2S_ < -2(c-Sz,)?

A S117R =300 o1

<Ry <0< hy< Ay, if 52 < 0.

1 4 3 01

2 2
When SO 00)

1
jmaginary. Solving (2.1.17) with respect to REg, we obtain a 1-v

1 -1
1<¢ and (RQS]]—R 29 < 4(c-SS]), all the four roots are

1
confidence region for Reg:

1
RZB € (A39A4) U (A-I,AZ), if SO] > /E,

1
Rg ¢ (A,,A,) U (Ay,A,), if S

1272 327 1 -/c,

0

1 i
R6 € (AguAg) U (==,A)) U (A=), if S5 < c,
(2.1.20)

RES. . -RES 5 2(c-52.)F
1 00 01)%»

1 . 1
RRB € (A4,A3) U (—m,A]) U (Az,w), if SO] < C, R?Sn

B
2

< —2(c—Sg1) .

1
Note that the maximum likelihood estimator of R®g can be expressed

as

(R -z : TR 2
2501 i

0

which is known to have the same sign as 501' When SS] > ¢, as can be
seen from the definition of A] and AZ’ the values of A] and A2 also
have the same sign as 501‘ In fact, we can show that if Sg] > ¢, the
interval (A],Az) covers the maximum likelihood estimator R%é of R%s.

2 1 1 : 2 1
We can also show that when 501 < ¢ and (R?S1]-R SOO) > Z(C-SO]), R2R



29

belongs to (—w,Az) and (A],w) for 501 < 0 and SO] > 0, respectively;

1
while for 82 < ¢ and (R2S

01
(—w,A]) and (Az,m) for S]2 < 0 and S]2 > 0, respectively. If we only

3 2 &
]]—R SOO) < '2(0'50]) , R°B belongs to

choose that interval which covers the maximum likelihood estimator of
R%B as our confidence interval for R%B, the coverage probability of
this modified C-W region will be Tess than 1-v. However, as pointed
out by Jolicoeur and Mosimann (1968), when |p| is large, where p is the
correlation coefficient of Yo and Yis the coverage probability of the
interval containing R%é is very near to 1-v. The square of the popula-
tion correlation coefficient p of Yo and Y1 is increasing in 0 Hence,
we conjecture that when 0 is large, choosing the interval shown in
(2.1.20) which covers the maximum likelihood estimator R%E_as the
confidence interval for R%B will have coverage probability close to v.
The modified CW region for R%B (that is the interval which covers

1
REg) is as follows:

0 <A, < g < Ays i Sy > VS,
1
Ay < RPg < A, <0, if Sy < -vc
1 X 1 -1 2 1
0 <Ay <Rp<w, if0<Sy < yc, RES11-R2S4g > 2 (c—SO])Q,
1 ) 1 L 2\
-0 < RBB < A2 <0, if -V/c < SO] < 0, stn-R 2500 > 2(C—SO-|)2,
i . L = 2k
0 <Ay <RB <o, if0<Sy < /c, RES 1-R™2Syq < -2(c-S57)%,

1 1 -1 2 1
- < REg < Ay < 0, if -V/c < Sg1 < 0s st]]—R 2500 < -2(c-S54)=.

1
From the above modified CW region for Reg, we obtain the following

confidence interval for RBZ:
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A? < Re? < Ag, if Sy > /e
2 2 2 .
A2 < RRg" <« A1, if SO] < =/c
2 2 . L 2 L
Aj < R8” <=, if 0 < So1 < /c, Res 11-R 2SOO > 2<C_SOT)2’
2 2 _ - 2 \L
Ao < R8% <@, if -/c < Sg7 < 0s s Sy97R =Sy, > 2(c- sm)2
A2 <RE® <@, ifO0 <S.. < VC, RS, -RES < -2(c-52.)
2 ’ 01 » ROy 00 < "4\
2 2 . 1 -1 2 \%
Al < ReS <=, if -/C < Sgp < 0, RS, -RESy, < -2(c- Sgq)?-

This confidence interval (which can be infinite in length) is defined
1
in the usual way from the confidence region for R2g; that is,

2. 2 _ 2 L . . x
{Rg": Rp™ = x~, x in confidence region for R®g}.

2.2 The Case Where g = 1

For g = 1, the model (1.0.8) is known to be a variance component
model. As can be seen from the definition of the precisions Tis the
hypotheses (2.0.2) are equivalent to
Hot ob < b, Hp: ol > ol (2.2.1)

As usual for a variance component model, the estimators of the
variances sometimes take negative values. The estimation problem has

been considered by Thompson (1962), Grubbs (1948) and Cochran (1968).

It is known that if m1n(S]], OO) 501 > 0, the maximum likelihood
estimators of og, 05 and o% can be expressed in the following form:

2 _ -2 ~2

9% ~ 200 ~ 201° °1 7 *11 7 So10 9y 7 Sor- (2.2.2)
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Hence, the maximum likelihood estimators of m,, my and ﬂ]na] are

00 701 11 701 11 701

The exact distribution of %1%6] can be obtained from the joint

. . . 3 2 -1 1 .
distribution of 811.0 = S]] - 501Soo= 501566 and SOO’ but is too

complicated to be useful. However, in large sample cases the joint

distribution of the estimators 88, 8% and aﬁ

is multivariate normal
(see Anderson, 1968). Thus, the asymptotic joint confidence region for
'any collection of these parameters (og, oﬁ and o%), or for (ﬂO,n]),
can be obtained by standard methods. A1l such regions for collections
of parameters, and all confidence intervals for individual parameters,
have their centers equal to maximum likelihood estimators.

For testing the hypotheses (2.1.1), the method used by Pitman
(1939) and Morgan (1939), and applied by Maloney and Rasotgi (1970)
is appropriate in both small and large sample cases. The test
statistic is derived by transforming the original data (y01’ y]i)’
i=1,...,n, into new data (v?, w?), i=1,...,n. The transformation
is almost identical to that of (2.1.4) except R is equal to 1 here.
Thus,

v¥
J

5
—
—
<
[

ij + y]j
= = s 3= T, (2.2.4)

Y13 ~ Yoj

w¥
J
Then the vectors (v§, wg)', 1 <j<n, are a random sample of size n
from a bivariate normal distribution with mean vector (“C’ u;)' and

covariance matrix g* given by
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A
2 . 2 2 2 2
9 + op + 4g oy - 9
g* = , (2.2.5)
2 2 2, 2
9 "~ 9 % T %

respectively. Hence, the correlation coefficient pcw of v* and w* is

2
0
1 - 2
o]
p* = R (2.2.6)
v 2\2 2 2
0 0 0
1+ > + 4 ) 1+ 5 17
o 91 9

where 0 T 06202 Note that the hypotheses (2.2.1) are equivalent to
HO: ptw >0, H]: pcw < 0. (2.2.7)

The test statistic suggested by Maloney and Rastogi (1970) for testing
the hypotheses (2.2.1) is

1 1
9\ _0)\2 -
-, (n-2) rcw i (n-2) (511 SOO)

s (2.2.8)

e

D )ZE 2 (511505758, )F

w 11700 ~01
where rcw is the sample correlation coefficient, which is known to bek
an appropriate test statistic for the hypotheses (2.2.7). A size v
test for the hypotheses (2.2.7) is as follows:

Reject H, if T* < - t,s (2.2.9)

0
where t_ is the 100 (1-v) percentile of the t distribution with n-2
degrees of freedom,

It is known that the test (2.2.9) is the LRT, and alsoc the UMPU

size test, for the hypotheses (2.2.7) in cases where the covariance
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matrix C* of (v*, w*)' is unrestricted. However, observe from
.2. hat ariances o i
(2.2.5) that the v c W Oww and covariance S of v, w

are required to satisfy the inequalities

Oyxyx 2 Oppx 2 IOV*w*l .

It can be shown that the likelihood ratio test statistic for the
hypotheses (2.2.7) under these inequality restrictions agrees with

the unrestricted LRT statistic whenever the sample variances va’

Sww and covariance va of v and w satisfy the inequality restrictions;

that is, when

Since

Tim S, = 0.,
NSRS R N

with probability one as n » =, it follows that the restricted LRT

is asymptotically equivalent to the test defined by (2.2.9). That
is, the test (2.2.9) is asymptotically equivalent to the LRT for the
hypotheses (2.2.1).

The test (2.2.9) can easily be shown to be an unbiased level v
test of the hypotheses (2.2.1) - see Theorem 2.2.1 below. However,
it is possible that there may exist a test of (2.2.7) of level v
which is unbiased for the restricted parameter space defined by the
inequalities on v’ %’ O mentioned above (but biased when Oy
um® O vw is unrestricted), and which has greater power than (2.2.9)
for some alternative to HO. That is, the test (2.2.9) need not be the
UMP unbiased level v test for the hypotheses (2.2.1). Indeed, no such

UMP unbiased test may exist. However, the fact that this test is
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asymptotically equivalent to the likelihood ratio test of (2.2.1) can
be used to show that it is asymptotically (as n » =) UMP unbiased
level v,

In discussing the above properties, we have assumed that the
relative precision Ty of the control instrument is unknown. However,
in practice, some information (perhaps in terms of bounds on ro) is
usually known about the control instrument. Indeed, if T Were not
sufficiently large, the control instrument would Tikely not have been
of previous interest, and thus hardly could serve as a standard for
comparison to instrument 1.

Keeping this fact in mind, we now investigate the power function
of the test (2.2.9). We will demonstrate that this test, despite its
good properties mentioned above, has the somewhat disturbing propefty
of having a power function which, for a fixed alternative to HO’ is
decreasing in the relative precision T of the control instrument.

It follows from this property, which does not seem to have previously
been noted in the literature, that the more precise is the control
instrument, the larger must be the sample size n of an experiment
designed to have a specified probability of detecting that another
instrument (instrument 1) has superior precision.

Let the alternative H

A to H, be defined by

1 0
2
°0
—=1+4,8>0. (2.2.10)
[¢]
1
That is, H]A states that w]na] =1+ 4, 8>0. Following from

(2.2.6), we have
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-A
p* = > (2.2.1])

W L) ¢ a() (200)r P

It is known that the power function of the test (2.2.9) depends only

* o while p* i rn i i f A and .
on P’ hi P 17 tu s a function o T

Lemma 2. For fixed v, n, A and g the power of the test (2.2.9)

against the alternative H,, is decreasing in o for fixed A and

14

increasing in A for fixed -

Proof: It is easy to see that p;w in (2.2.11) is increasing in 4
for fixed o (o > 0) and decreasing in a for fixed - It is also
known that the power function of the test (2.2.9) given by

6*(v, B, 19, 1) = PLT* < -t [o¥ ), (2.2.12)

is decreasing in ptw. Combining these two results, the Lemma now

follows. O

Theorem 2.2.1. For fixed v, n, A and T the power function of the

test (2.2.9) against the alternative H1A, G*(v, A, ro,'n), is equal to

o0

{f(rip(A,rO))dr, (2.2.13)
where L and f(rlp) are defined in Theorem 2.1.2, and p(A,TO) = -p;w is

defined by (2.2.11). For fixed v, the minimum of G*(v, a, 9 n) is v
when ptw = 0, while the maximum of G*(v, A, T n) is achieved when

o(a, TO) = pye where

A
°u = 735 (2.2.14)



Proof: Note that
* = - = -

G*(v, A, 9 n) P{Y‘vw < L!pcw} P{Y‘VW > L| pcw}.
Following Theorem 2.2.1, G*(v, by T n) is equal to (2.2.13). From
Lemma 2, we know that the minimum and maximum of G*(v, a, g n) are
achieved at g T and T T 0, respectively, for fixed A. However,

- _ . _ _ A .
i and 9 T 0 give ptw = 0 and ocw = - TEae respectively. Thus,

the theorem follows. O

For fixed v = 0.05, we have calculated the upper bound of the

power of the test (2.2.9) for A

H

1.0, 2.0, n

10(5)50, and the

power of the test (2.2.9) for n = 10(5)50, T = 0.2, 0.4, 0.6,

A =1.0, 2.0. The results are shown in the following tables.

Table A5. The upper bound of the power of the test (2.2.9) for
v = 0.05.

"o10 15 20 25 30 35 40 45 50

1.010.2473 0.3437 0.4299 0.5070 0.5758 0.6362 0.6894 0.7358 0.7758
2.010.4602 0.6328 0.7557 0.8404 0.8974 0.9348 0.9591 0.9746 0.9846

Table A6. The power of the test (2.2.9) for v

0.05, o = 1.0.

10 15 20 25 30 35 40 45 50

0.210.1885 0.2547 0.3159 0.3729 0.4265 0.4761 0.5226 0.5657 0.6054
0.410.1597 0.2107 0.2580 0.3027 0.3454 0.3858 0.4245 0.4613 0.4960
0.6 10.1423 0.1842 0.2230 0.2580 0.2952 0.3289 0.3617 0.3931 0.4232
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Table A7. The power of the test (2.2.9) for v

0.05, o = 2.0.

0 10 15 20 25 30 35 40 45 50

0.2} 0.3162 0.4439 0.5518 0.6419 0.7163 0.7766 0.8254 0.8642 0.8949
0.4 0.25171 0.3494 0.4371 0.5152 0.5846 0.6453 0.6987 0.7448 0.7845

0.6 0.2747 0.2938 0.3665 0.4332 0.4946 0.5503 0.6012 0.6472 0.6885

From Table A5, we can see that the maximum of the power is
relatively small even when o < 0.6. A rule of thumb mentioned by
Thompson (1963) suggests that if the instrumentation of an experiment
is to be effective, 0 should be > 100. Note that the power of the
test (2.2.9) is decreasing in 9 thus, for a o > 100, the maximum
of the power of the test (2.2.9) would be very small. Hence, we
conclude that although the test (2.2.9) is appropriate for testing
the hypotheses (2.2.1), the test is very insensitive for detecting
the difference of the precisions when n < 50. It is well known that
the power increases with n. In order to improve the power of the test
(2.2.9) for a large Tgs it is necessary to increase the sample size n.

For a large n, the asymptotic distribution of the test statistic
T* defined by (2.2.8) is known to be a normal distribution. As a
direct consequence of Theorems 2.1.3 and 2.2.1, we can obtain the
power of the test (2.2.9) for a large n. These results are summarized

in the following theorem.

Theorem 2.2.2. For fixed v, 4, o and a large n, the power of the

test (2.2.9) is given approximately by



oo

£ gz(t[A,TO)dt,

Y
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(2.2.15)

where gz(t]A,ro) is the probability density function of a normal

1 1 -
random variable with mean (n—2)2p(1—p2) 2 and variance (1—p2) ], and

= %
p Dvw

For v

is defined by (2.2.11).

= 0.05, we have used Theorem 2.2.2 to calculate the power

of the test (2.2.9) for n = 100(100)500, Ao = 1.0, 2.0, © = 0.2, 0.4,

0.6, 1.0, 5.0, 10.0.

The results are shown in Table A8 and A9.

Table A8. The power of the test (2.2.9) forv = 0.05, A = 1.0, and a
large n.
n

) 100 200 300 400 500
0.2{ 0.86003 0.98717 0.9989 1.0000 1.0000
0.4] 0.75652 0.95175 0.99185 0.9987 1.0000
0.6 0.66892 0.90310 0.97495 0.99405 0.9987
1.01 0.54116 0.79659 0.91697 0.96731 (0.98824
5.01 0.22150 0.34471 0.45271 0.54695 0.62785
10.0} 0.155202 0.22661 0.29198 0.35296 0.40998

Table A9. The power of the test (2.2.9) for v = 0.05, A = 2.0, and a

large n. .

n

T 100 200 300 400 500

0.2 0.99184 1.0000 1.0000 1.0000 1.0000

0.4 0.96317 0.9993 1.0000 1.0000 1.0000

0.6 0.91743 0.99579 1.0000 1.0000 1.0000

1.0 0.81117 0.9729 0.99673 0.9997 1.0000

5.0 0.34658 0.55046 0.70045 0.80554 0.87645

10.0 0.22679 0.35395 0.46485 0.56088 0.64281
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From the above two tables, we can see that for a large T0» the
test (2.2.9) is still not very powerful for 100 < n < 500. This
suggests that for a large 0 (i.e. when the control instrument is
effective), to obtain a specified power (say .95) for using the
test (2.2.9), a very large sample is needed.

Instead of testing the hypotheses (2.2.1), we might consider
obtaining confidence regions for the precisions. A joint confidence
region for 9 and T has been found by Thompson (1963). Here, we

consider the confidence interval for n]nél. Note that

-1 . -1 2-2
™M™ 1% 9091

= R.
From the model (2.0.1) with g = 1, rescaling the data Y14
1 ,
i=1,...sn, to ng]i, i=1,...,n, gives
Yoi 0 1 €01

= + 1+ Ju, +

1 L 1 i 1 ,izl,...,n.
R2y11 ok Re Rze]i

Note that €04 and R%eH are independent with equal variance cg. It
is thus easily shown that Yoi = Y14 and Yoi + Ry1i are uncorrelated.
Hence, denoting by r(R) the sample correlation coefficient between
these two variates, we know that (n—2)r2(R){1—[r(R)]Z}'] has the F
distribution with degrees of freedom (1, n-2). It follows from this
result that we can construct the following 1-v confidence region fof

R:
R (-2 PR (r(R)PTT < Fy (03, (2.2.16)

where F, n~2(v) is the 100(1-v) percentile of the F distribution with

(1, n-2) degrees of freedom. Actually, since we know that R > O,
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our region is the intersection of (2.2.16) with the half Iine
[0 s°°) .

In terms of the original data (yo, y1), r(R) can be expressed as

(Spp~Sp1) = R(S11-5¢7)
Y'(R) = 7 T s
[(Sqy * Sgg = 25g7) (R7Sqq + 2RSpy + S5) I
and hence
L [(SanSaq) - R(S1q-S.1)7°
PRIO-(r(R)PT = 220 L0 (z2a7)
(1+R)™(S1509~507)

Substituting (2.2.17) into (2.2.16), we get the following inequality:

0517597 2] = 2RL(Sq-507) (877507 e + [(Sp97Sq)%-e] < 0,
(2.2.18)

where ¢ = (n¥2)'](S]]SOO—S§2)F],n_z(v). The two roots of the equation
obtained by setting the left side of (2.2.18) equal to O are
1
_ (Sgp=Sg1)(S47=Sg7) * € + E1S14#505-25 |
2
(S17-5g1)" - ¢©

and

i
) (Spn-S 501) +c - c2|511+500-25

01)(511- ol

>
(S1175g17" - ¢

00

Consequently, the 1-v confidence region for R defined by the intersec-

tion of (2.2.16) with [0,») is as follows:

. 2
(1) B, < R < By if (S]]—SO]) > ¢ and k] > k2,

2
. . 5
(2) 0<Rx B], if (ST]-SO]) > C, Ik]l < kZ’
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(3) 0 <R<By, R>By, if (Sq-5;

. 2
(4) R > B2 >0, if (511_501) < C, [k]} < k2

(5) no interval for R, otherwise, where

ky = (Sgg=S017(511-5¢7) * ¢

1
E|S, + Sqq - 25

=~
f

2 00 11 O]l'

2.3 The Case Where the Relative Precision T of the Control Is Known

As discussed in Chapter 1, it is sometime reasonable to assume
that 9 is known. For example, the control instrument may have
previously been used many times on the same population of units as
used in the experiment modeled by (2.0.1), with repeated measurements
taken on each unit used. In this case, an exact 1-v confidence
interval can be formed by a standard method. If such an interval is
narrow enough, we can assume that 4 is known.

Thus, assume that Ty is known. Note that "iﬂ61 = T]TB]. Thus,

the hypotheses (2.0.2) are equivalent to

o (2.3.1)

2 -1

. -1 -1 .
When T, is known, and 501500511 5_10(1+T0) , then the maximum

0
1ikelihood estimators for the model (2.0.1) are the following:

A . -1
W= Ygs @ =Yy - BYgs B = SpS(THrgltyg s

~2

2 s S1a2 1.2 2 -1
u

- -1
00T0{17g) s g = SgolT¥Tg) ™75 07 = 195415 (7o)
(2.3.2)

Hence, the maximum likelihood estimator of the relative precision ™ is
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-1
0)70
- (]+TO)T

~

_ =2
T] =B

g

2 ..z (I
u

0" = — - (2.3.3)
Y‘ R

0
where r = 501(511522)_% is the sample correlation coefficient
between Yo and ¥i- Note that %1 is a function of r and - Since
T is a known constant, the distribution of %1 can be obtained from
the known distribution of r.

We might think of using %] as the test statistic for testing the
hypotheses (2.3.1). However, because %] is increasing in rz, an

equivalent test is as follows:

Reject Hy 1if AR cg, (2.3.4)

where c3 > 0 is chosen so that the test (2.3.4) is of size v.
In order to determine the value of Cgs We need to know the
relation between p and (T],TO), where p is the population correlation

coefficient of Yo and Yy It is easily shown that

2
Bo,
p = . (2.3.5)
2 2y, 2 22
v/<UO ¥ ou)(cl T B Gu)
Note that in terms of T and L 92 can be expressed as
2 _ oY '
p = (]+T0)(]+T]). (2.3.6)

It is apparent that p2 is increasing in g for fixed g Since g is
a known constant, the hypotheses (2.3.1) can be equivalently stated as

Ho: R 58, Hy: 2 53, | (2.3.7)

where



43

8g = . (2.3.8)

It is known that if o satisfies the following condition:
P{r > cgor r< -C3|p = 60) = v, (2.3.9)

where 8 is defined by (2.3.8), then the test (2.3.4) is the LRT, and
also the UMPU size v test, for the hypotheses (2.3.7) in cases where
the covariance matrix Ey of (yo, y])‘ is unrestricted. However, the

covariance matrix zy is restricted by the model (2.0.1). To see this

. fact, first let

For any point (000, 991> 001)’ the inverse image (8, og, o%) of this
point is defined by
2 _ 12 2 - -1
o = ogol1*tg) s 97 = oyy = ogiogp(THglTy s
B =g O—lT_](]+T )
01°00°0 0’

12

. 2 2 . 2 _ -1 -
The requirement that 9 > 0, 9y > 0 restricts o~ = 043971907 to be

less than or equal to TO(]+T0)']. However, the known constant 9 i;
positive, so that ro(]+r0)—] < 1. Hence, the test (2.3.4) need not be
a LRT for the hypotheses (2.3.1).

It can be shown that the 1likelihood ratio test statistic for the

-1
o) o
agrees with the LRT statistic whenever the sample variances SOO’ 511

hypotheses (2.3.7) under the inequality restriction p2 < (T+1
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and covariance 501 of Yo and ¥q satisfy

2

re = s2 ]

01 511 S22 = TlT*eg)

Since Sij is a consistent estimator of 052 i,j = 0,1, it follows that
the test (2.3.4) is asymptotically equivalent to the LRT for the
hypotheses (2.3.1). Later, we will see that the test (2.3.4) is an
unbiased test of size v with Cq satisfying the condition (2.3.9).
However, for similar reasons to those mentioned in Section 2.2.,

the test (2.3.4) is not necessarily a uniformly most powerful

unbiased test. .

For fixed v, n and TO,‘the value of C3 which satisfies (2.3.9)

can be obtained from the probability density function of r. Tables

A10 and A1l provide the values of Cg for v = 0.01, 0.05, 9 = 1.0,
2.0, 4.0, 6.0, n = 10(5)30, 40, 50.
Table A10. The value of Cq for v = 0.05.
n
™ 10 15 20 25 30 40 50

1.0| 0.83228 0.77802 0.74438 0.72095 0.70337 0.67816 0.66064
2.0f 0.8974 - 0.86194 0.83948 0.82361. 0.81158 0.79425 0.78216
4.0 0.94229 0.92126 0.90778 0.89813 0.89078 0.88007 0.87244
6.0{ 0.9599 0.94467 0.93481 0.9277 0.9222 0.914 0.90802
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Table All. The value of ¢, for v =0.0]1.

3

n .
k 10 15 20 25 30 40 50

1.0 | 0.90039 0.84766 0.81177 0.7854 0.76514 0.73511 0.71387

2.0 | 0.93982 0.90649 0.8833 0.86621 0.85278 0.83276 0.81836
4.0 | 0.96558 0.94629 0.93292 0.92297 0.91504 0.90344 0.89514
6.0 | 0.97498 0.96027 0.95013 0.94244 0.93622 0.92639 0.91864

From Tables A10 and A1l, we can see that the value of Cq is

increasing in o Thus, the greater the relative precision of the
control, the harder it is to reject the null hypothesis. For fixed
n and o the value of C3 decreases with the Type I error v. The
value of Cq is decreasing in n for fixed T and v.

We now investigate the power of the test (2.3.4). Let the

alternative H]A to H, be defined by

0

'n17r(—)1 - T]T6] =1+a, 2>0. (2.3.10)

From (2.3.6), for fixed A and T,

2 (1+A)Tg
p = 5 (2.3.11)
1+ (2+A)r0 + (]"’A)TO

It is known that the power function of the test (2.3.4), given by

Power(p) = P{r > cyorrc< —C3‘p}, (2.3.12)

is symmetric about p = 0 and increasing in [p|, and hence in pz, for
fixed Cg- It is easy to see that p2 is increasing in A for fixed 0

and also increasing in T for fixed A. Thus, we now know that for



46

fixed v, the power of the test (2.3.4) is increasing in a for fixed
n and o and increasing in g for fixed A and n. The power function

is also known to be increasing in n for fixed a, T

We have calculated the power of the test (2.3.4) for v = 0.05,

s = 3.0, 5.0, n=10(5)30,40,50, T T 1.0, 2.0, 4.0, 6.0. The

results are shown in the following tables.

Table Al12. The power of the test (2.3.4) for v = 0.05, o = 3.0

n
"o 0 - 15 20 25 30 » 40 50
1.0 1 0.13160 0.16951 0.20450 0.23751 0.26917 0.32967 0.38635
2.0 | 0.14222 0.18629 0.22720 0.26590 0.30301 0.37286 0.43702
4.0 | 0.14895 0.19738 0.24234 0.28530 0.32638 0.40407 0.47615
6.0 | 0.15473 0.20772 0.25807 0.30677 0.35426 0.44533 0.52850

Table A13. The power of the test (2.3.4) for v = 0.05, A = 5.0.

m 10 15 20 25 30 40 50

1.0 | 0.15512 0.20592 0.25297 0.29721 0.33931 0.41820 0.48983 "
2.0 | 0.16630 0.22380 0.27714 0.32725 0.37473 0.46207 0.53940
4.0 | 0.17316 0.23529 0.29281 0.34718 0.39840 0.49246 0.57559
6.0 | 0.17947 0.24663 0.30978 0.36971 0.42670 0.53111 0.62051

From the cases we have computed, the power of the test (2.3.4) is

increasing in 1, for fixed v, n and A. However, the test (2.3.4) is
0
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rather insensitive in detecting the differences of my and w, for n < 50

1
as can be seen from the tables. For a better power, increasing n is
needed.

It is known that the asymptotic distribution of r2 is normal

with mean p2 and variance 4n—]p2(1—p2)2

s where p2 is defined in
(2.3.6). As a direct consequence of this result and (2.3.9), we can

show that if Cq satisfies the following condition:

2
2z 1, (1+21,) T
A e = (2.3.13)
n= (]+TO) (]+TO)

then the test (2.3.4) is of asymptotic size v.
Similar to the proof of Theorem 2.1.3, it can be shown that for a
large n, the power of the test (2.3.4) against the alternative H]A

given by (2.3.12) can be approximated by

IZ 93(x|A, TO)dX,
€3
where cg satisfies (2.3.13) and g3(x[A, TO) is the probability

. . . . 2 .
density function of a normal random variable with mean p~ and variance

4n']p2(1—p2)2, and p2 is defined by (2.3.11). Using this result, we

have calculated the power of the test (2.3.4) for v = 0.05, A = 3.0,

5.0, t, = 1.0, 2.0, 4.0, 6.0, n = 150, 200(100)500. The results are

0
shown in Tables Al4 and Al5.
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Table Al4. The power of the test (2.3.4) for v = 0.05, Ao = 3.0, and a

large n.
n
B 150 200 300 400 500
1.0 | 0.78665  0.87890  0.96391 0.99002 0.9974
2.0 | 0.828917  0.91883  0.98413 0.99721  0.9996
4.0 | 0.84524  0.93514  0.99068 0.9989  1.0000
6.0 | 0.84892  0.93959  0.99231 0.9992  1.0000

Table A15. The power of the test (2.3.4) for v = 0.05, A = 5.0, and a
Targe n.

150 200 300 400 500

1.0 | 0.87893 0.95787 .99350  0.9991  1.0000

2.0 | 0.92652 0.97651 . 99807 1.0000 1.0000

4.0 | 0.93636 0.98266 .99991 1.0000 1.0000

o O o O

6.0 | 0.93853 0.98472 .9993 1.0000 1.0000

Turning now to the problem of finding a confidence interval

for naln], note that since T is assumed to be a known constant, and

w]né = 11161, finding a confidence jnterval for n]ﬂa] is equivalent to
finding a confidence interval for r]; First, let us consider a
two-sided 1-v confidence for p. For fixed v and n, and the observed
sample correlation coefficient r, a two-sided 1-v confidence interval
given by Graybill (1976, p. 400) is

bg <o < bys : (2.3.14)
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where bO and b] are the values of p that satisfy (2.315) and (2.3.16)

respectively,
r
{f(rlo)dr =1-3 (2.3.15)
r
{ f(rlp)dr = 5. (2.3.16)

From the interval forp in (2.3.14), we therefore obtain a 1-v

confidence interval for p2, that is

bg §_p2 §_b$, if by > 0

0 <p’ < max(bg,bf), if by < 0 < b,
2 2 2 .
by < p” < bys if by < 0. (2.3.17)

Substituting (2.3.6) into (2.3.17), we obtain a 1-v confidence

interval for r]:

: ;
3 5 < T < 3 5 if bO > 0 and
TO(]+TO) - bO TO(]""TO) - b]
b% < TO(]"*'TO)-],
o) b
. 5 < T < - 5 if b] < 0 and
TO(]+TO) - b] TO(]"”TO) - bO

b(z) _<_ T0(1+T0)*‘l Py
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2
b .
0 o 2 -1 2
T b2 2Ty <, if bO >0, b0 < TO(]+TO) < b],
0 0 0
bZ
1 . 2 -1 2
(e T S g2 =T Ty <00 by <) < by,
0 0 1
max(bg,bi)
0 <1y < - 7~ 1f by < 0 < b, and
TO(1+TO) - max(bo,b])
-1 2 .2
T0(1+TO) > max(bo,b]).
However, if b0 and b] have the same sign and ro(1+r0)—} i.min(bg,bﬁ), or

- 2 .2 .
if bO <0 < b1 and TO(1+TO) 1. max(bo,b]), then there does not exist an

interval for F

2.4  The Case Where Consistent Independent Estimators of og and 0%

Exist
In this section, we will assume that in addition to the data

(yoi, y]i), 1 < i < n, modeled by (2.0.1), we also have estimators

88 and 8? which are independent both of the vectors (yoi, y]i),

1 <1 <n, and of each other. We also will assume that

-122

2 -
o v N, Gixni’ i =0, 1. Note that as N> Ny > =,

lim 5% = o§, i=0,1,

with probability one.
Such independent consistent estimators of ag, o? are usually

obtained in practice in one of two ways. First, we could have data

(i) + K=1,...,r..3 3 =1,...,m

Yigk =% T ByY; &5k ij
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from past independent experiments on instruments i = 0, i = 1.

Here, yijk is the kth measurement on unit u§]) obtained by the ith

instrument, where the units u§0) and u§]> are not necessarily the

same, but are obtained from the same population. For fixed i
(i = 0,1), the true values u§1) are assumed to be i.i.d. N(u, oﬁ)
and independent of the measurement errors eijk’ where the eijk are

i.i.d. N(O, 0?). In this case,

P
o: =N, (Yisp = Yo
i T 527 k=T ijk iJ

2 - .
)6, Yis = riso ) yijk’ i=0,1,

are known to be independent, with

2 22 1
n.os voox. » Ny = ) (r..-1).
i in, L= R

Alternatively, in place of the experiment modeled by (2.0.1),
we could actua]1y have data yijk obtained by taking, for both instru-
ments, an equal number r, r > 1, of repeated observations on each
unit. If we assume that errors of measurement are independent over
both units and rep?ications, our model for the data is

0 1 e

= + u, + s k=1,...,r, J = 1,...,n,
Yijk a B

Y03k
ik

where the uj are ici.d. N(w, 03) independent of the vectors
(erk’ e]jk)" and

€03k o L2 -2
are i.i.d. BVN(Q, d1ag(oo, 0])).

&3k

In this case, a sufficient statistic for the parameters is
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Sl _ -1 B 2
ij - 2 y]Jks Wy = n (r-1) jz1 Z (y13k y13) ,» 1=20,1.

y

Note that the means y.. follow the model (2.0.1) with of - r']af, while

ij
~ w 2

=._l
°% T 7 nir- ) Xn (r-1

are consistent (as n - «) estimators of 0?, i = 0,1, independent of

Yij 1<Jj<n,i=20,%L

In both of the above cases, it is possible to write down the
likelihood function, and maximize this likelihood function with respect
to the unknown parameters. However, the maximum likelihood estimators
are complicated functions of the data, and a computer algorithm is
required to obtain such estimators.

Instead, in this section we take a simple, but possibly less

2 2

efficient approach. Using 8? and Gg, we estimate R = 0; 90 by

R = 8;283, and treat R as if it were the true value of R, thus

reducing the problem to that treated in Section 2.1. We then consider
the (asymptotic) properties of the resulting procedures as n » «,
assuming that the gquantities "o and n also tend to infinity as n » =.

Assume that the limits
i=0,1, (2.4.1)

exist and are both positive. We can identify four cases of practical

interest:

Case 1: t, = t1 = w,
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Case 2: t, < wo, t, = a,

0 1
Case 3: tO =, by <o,
Case 4: tO’ t] <

It is intuitively obvious that in Case 1, the error involved in
assuming that R = R is (asymptotically) negligible when compared to
other sources of errors in the estimation procedure, so that the
results in Section 2.1 are directly applicable. It is hard to
imagine Case 2 occuring in practice, since this would imply greater

knowledge of (or experience with) instrument 1 than with the control

instrument. However, in such a situation, we could assume that

o? = 8% with only negligible error. Case 3 is certainly possible
in practice, and in this case we can assume that US = 88 with

negligible error asymptotically. After switching the roles of the
instruments in Case 2, so that instrument 1 becomes the "control",
both Case 2 and 3 reduce to the consideration of the model (2.0.1)
where the error variance og of the "control" instrument is known.
There is a modest literature on estimation of the parameters of
such a model (see, for example, Kendall and Stuart, 1979, and also
Moran, 1971). From this literature, tests and estimators for
n]n61 can be obtained. However, this model will not be considered
further here.

The last case, Case 4, seems to be of greatest practical merit.
It is likely to be the case that some prior experience with both
instruments has been obtained, but that the estimators 83, 8% are

based on data for which the degrees of freedom Ng> ™ aré of the
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same order of magnitude as the sample size n of the experiment modeled

in (2.0.1). (In this circumstance, it is also likely that 0 < t] <1,
where t, can be any number in the interval (0, »). Of course, a

fifth case, where’t0 or t} is equal to 0, is possible, but for this case,
asymptotic analysis as n > = is not appropriate.) Alternatively, 68

and 8% can be obtained from the replicated extension of the model

(2.0.1) discussed above, in which case ty = ty = r-1.

Letting R = & and using the result of Section 2.1, we estimate g

2
and %, by
~ ~ 2 ~ ;—, «
- - X
. (RSyy=Sgg) *+ L(RSyy=Spq)™ + 4RSG F - 5  dY-d3
B = _ Lol- 2 (2.a.2)
2RSO1 T+Rp

respectively, where d? and d§, dT 3_d§, are the eigenvalues of

1 0
(),
0 R

Then we can estimate the ratio y = n1ﬂ6] of the precisions Tos T of
the instruments by

2%, (2.4.3)

b= B
Since we are only interested in forming a confidence interval for y
and testing the hypotheses (2.0.2), that is, HO: <1, H]: v > 1,'
the estimation of the other parameters, for example (no,ﬂ]), will not |
be discussed here.

Because R is a consistent estimator of R, and S is a consistent

estimator of
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Boy, oy T 8 U
as n - «, it is straightforward to show that @ is a consistent
estimator of y. If we use ¢ as the test statistic for testing the
hypotheses (2.0.2), then the test is

Reject HO if ¢ > ¢y (2.4.4)

where c4(> 1) is chosen so that the test (2.4.4) is of asymptotic
size v. Since the statistic § has no well known finite sample

distribution, we discuss the asymptotic distribution of .

Theorem 2.4.1. Assume that 8? N n;]cfxﬁ_,

1

i =20,1. Then, the

b
asymptotic distribution of n®(y-y) is normal with mean 0 and
variance equal to E] and E2 for tO = t] = « and tO’ t] < @,

respectively, where ti is defined by (2.4.1), and

1

4(1 + 1y +y)
E] = >
0
2701+ 2eg v )
E2 = E] + 5 (f— + -t-). (2.4.5)
(1 + y) 0 1 :

Proof: Call g in (2.4.2) B(R). Note that

L ~n9 L o~ a0 A -
n? (REZ(R) - Re%) = mB[R(8%(R)-p2) + ReZ - Re?]

1i
=

=
[

1l
X
—
™ >
—
Xy e~

(R-R) (8°(R)-8%) + g2nZ(R-R). (2.4.6)

1o~ - 1o~ nD Lo~
2 2(R)-g%) + 82r2 (R-R), .
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and
L .~ 1 ~, 0 ~ 1 ~
n?(g(R)-8) = n?(B(R) - B(R)) + nZ(B(R)-B)
AR 1. 1A
~ 28(R) 0 (R-R) + n (5(R)-8) ,
R 1R=R
S—Zy
where
28(R) 1%
o 2 1+y°
aR R=R BTOR
S:
Zy
Hence
1. 2 1 1o 1
e (y-v) =~ (87 + 5)n° (R-R) + n?(B(R)-8).

BTOR

1A 1.

It is known that n?(R-R) and n®(g(R)-B) are independent, and the
1L o~

asymptotic distribution of n?(g(R)-g) is normal with mean 0 and

variance R—]réz(l + (1+w)10). Using the fact that the asymptotic

2

L. . .
distribution of nﬁ(oi - o?) is normal with mean 0 and variance

1 -
20?, i = 0,1, we obtain the asymptotic distribution of n?(R-R) is

2,,-1

(tg
N

results above, we obtain the asymptotic variance of me (y-v) as

normal with mean 0 and variance 2R + t;]). Combining the

shown in (2.4.5). O

Before we determine the value of c, such that the test (2.4.4)

4
has an asymptotic size v, we need one more lemma.

Lemma 3. For fixed e and a large n, if Cq > 1 and v < 1, then

P(@ > c4) is increasing in y.
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Proof: Note that for a large n,

1 C4'¢
P{x>n2(——_1_—~)}, if t0= t-l = o,
B
P(y > ¢y) =
L C4"‘P
P{x > nz(——l———)}, if tO, t.l < o,
B

where x is a standard normal random variable. For fixed 9 it is
easy to see that E] and E2 defined in (2.4.5) are increasing in .

Thus, for Cp > Tandy < 1, P(J > c4)_is increasing iny. O

From the above lemma, we therefore know that under HO: po< 1,

for fixed T and a large n,

ma x P(@ > c4) = P(@ > c4|w = 1).
p<l
Note that when y = 1, E, = 4162(

1 ]+2TO) and

E, = 2f62[2(1+2TO) + (]+r0)2(t61 + t{])]. We summarize the result

2
so far in the foilowing theorem.

Theorem 2.4.2. For fixed 9 and a large n, if c4 satisfies the

conditions

sz -1 1
= 2 .
C4 1+ "—r—]g TO (] + 2‘(0) s (24.7)
Lo
Zz 1 2, -1 . -1\
= <
S 3 [2(1+27y) + (Vo) "(tg + 7)1, (2.4.8)

for ty = t; = = and ty, t; < =, respectively, then the test (2.4.4)

has an asymptotic size v.
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However, as can be seen from (2.4.7) and (2.4.8), the value of

s depends on the unknown parameter T However, the unknown parameter

Ty can be consistently estimated. Note that when ¢ = 1 (r] = ro), oi
- 1
is consistently estimated by (R SS])E. Thus,
S am200 <2 £\ ~aov=1,02 (3
9 T 9 (R SO-I)2 = (UOO]) (501)3 (2.4.9)

is a consistent estimator of 0 when 1T T If we substitute %O for
T in (2.4.7) and (2.4.8), standard large sample theory shows that the
results of Theorem 2.4.2 still hold.

Another test statistic which can be used to test the hypotheses
(2.0.2) is the T statistic defined by (2.1.8) with R substituted for

R. Call this statistic T(R), thus,

1 -
. (n-2)2(RS++=S.n)
T(R) = ——g— g 007  (2.4.10)
2RE |5 |2

The results in Section 2.1, suggest that if we use T(ﬁ) as the
test statistic for the hypotheses (2.0.2), the rejection region for

HO should have the form

Reject Hy if T(R) > ¢ (2.4.11)

5,
where the value of Cg (> 0) is chosen so that the test (2.4.11) has
an asymptotic size v. Since the proof of the asymptotic distribution-

of T(R) given in Theorem 2.4.2 is very similar to the proof of Theorem

2.4.1, we omit the proof.

-1272

Theorem 2.4.3. Assume that 8? v s ot i = 0,1. Then, the

- 1 1
asymptotic distribution of (T(R) - nzp(1~p2)2) is normal with mean 0
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and variance equal to E3 and E4 for tO = t] = « and tO’ t] < e,
respectively, where t. is defined by (2.4.1),
By = (1-09)7,
L2+ 1)) o5+ 17T)
By = B+ g QEENeE) (2.4.12)
and
(w"])TO
o = (2.4.13)

Vlkw-1)zrg + 4(w+1)10+4

Since we know that p is increasing in ¢ and also that (1—p2)2
is increasing in p for p < 0 (y < 1), and since it is easy to show
that the second term of E4 is also increasing in ¢y, it follows that

E3 and E4 are increasing in y. We therefore know that for a large n,

ma¥ P(T(R) » c5) = P(T(ﬁ) > cslw = 1).
<

Note that y = 1 gives p = 0.

Theorem 2.4.4. For fixed 1o and a large n, if ¢y satisfies (2.4.14)

and (2.4.15) for tO = t] = » and ty t] < w, respectively,

€5 = Zs (2.4.14)
; () T
C5 = Z\) 1 '*‘?‘—(-]—@—O—)- N (2.4.]5)

then the test (2.4.11) has asymptotic size v.

From (2.4.15), we can see that when tO’ t] < o, the value of Cg

depends on the unknown parameter - As mentioned before, if we
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substitute avconsistent estimator of 0 for 9 in (274']5)’ then the
result in Theorem 2.4.3 still holds.

Since the asymptotic distribution of @ is known in Theorem 2.4.1,
using a standard technique, we can obtain an asymptotic 1-v confidence
interval for y. A 1-v asymptotic confidence interval for ¢ is as

follows:

~

~ 1 - -1 ~ _ _
{y: w—nézv/zE] <Y<yt ‘zv/zE]}, for tO = t] =,

~ 1 ~

L ~ 1 ~
. _n 2 = ©
{v: y-n Zv/ZEZ <y <y+tn ‘zv/zEZ}, for tg» ty <=,

where

. ap(1 + 1 +9)
E —

L 22y v )P
E, = B, +
(1+9)°

11
(if'+ E“)s

[ew]

and %O is another consistent estimator of 9 except %0 defined by
(2.4.9). For example, we can choose

- 82 8'2,
0 u 0

-2

where 8§ is defined in (2.4.2), then %0 is a consistent estimator

of -
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CHAPTER 3
ESTIMATION AND SELECTION PROCEDURES FOR
THE PRECISION OF P(> 3) INSTRUMENTS

3.0 Introduction

Let our model be the same model we considered in Chapter 1:

ij 0 1 0j
Y a B e . 0 1
_ 13 N + L Y BN = + u.te., (3.0.1
3 . ) : j i'Rg
: : . : & §
Yp-1.3 *p-1 Pp- ®p-1.3
J=1,...,n,

where each Xj is a p-dimensional vector of observations, o and g are
unknown (p—])—dfmensiona] vector parameters, uj is a random variable,
Sj is p-dimensional vector of errors, and p is the number of instru-
ments.

We assume thét Upseenslp is a random sample from a normal
distribution with mean y and variance oﬁ, and that the ej's are an
independent random sample from a p-variate normal distribution with
mean vector Q and unknown covariance matrix Xe = 0139(08’0$s---’05_1)-
We refer to instrument 0 as the "control".

As mentioned in Chapter 1, if p = 2, the model (3.0.1) is not

identifiable without an extra constraint on the parameters. In this
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chapter, assuming that p > 3, we consider the problem of comparing

-2

the prgcisions, 0 ﬂ],...,np_], of p instruments, where Ty = %

_ 2 =2
and mT Bici s

i=1,...,p-1. Because the model (3.0.1) is
identifiable when p > 3, no parameter constraints are required.

This model was used by Mandel (1959), for the analysis of
inter-laboratory round robins, by Mosteller (see Cochran, 1968),
when a number of individuals are rated by different judges, and in
a slightly different notation by Smith (1959). Since the u, are

not known in these examples, both Mandel and Mosteller suggest using

- .1 Pl
y ; =p 1 Z yij’ the average over all instruments, in place of “j
) i=0
as the independent variable in a classical regression model. Having
obtained estimators of the parameters using least squares, Mosteller
compares the relative precisions of different judges based on the
2 2872)—]

resulting estimators of 0?8; . Note that (Ui ; is our definition

for the precision of the ith instrument. Because 9'j # uj, bias is
introduced into the estimators through this approach, requiring ad hoc
adjustments to be made to produce asymptotic consistency. The
properties of the resulting estimators do not seem to have been
explored.

For the model (3.0.1) with p = 3, the maximum likelihood
estimators of the parameters have a closed form. However, for
p > 3, the maximum likelihood solutions for the parameters are
not explicit. Barnett (1969) therefore presents some consistent

moment estimators of the parameters. Alternatively, Theobald

and Mallinson (1978) reparameterize the model (3.0.1) as'a factor



analysis model with one factor; in this case the maximum likelihood
solutions may be found by using a computer algorithm to carry out
factor analysis.

The asymptotic properties of the maximum likelihood estimators
of the parameters have been widely studied. It has been shown that
the maximum Tikelihood estimators are consistent and that the
asymptotic joint distribution of these estimators is normal. For
references, see Lawley (1953), Anderson and Rubin (1956), Jennrich
and Thayer (1973), Joreskog (1969), and Lawley (1976). Fuller,
Amemiya and Pantula (1983) have given an explicit expression for
the covariance matrix of the limiting joint distribution of thé
maximum 1ikelihood estimators of the parameters.

In Section 3.1, we discuss the estimation of the parameters.
Based on the results of Fuller et al (1983), in Section 3.2, we
derive the asymptotic joint distributions of the maximum likelihood
estimators of the precisions L EEEEELRE and of the ratios of the
precisions w],...,wp_], respectively. We also find joint confidence
regions for the “1'5 and for the wi'g respectively. In Section 3.3,
we attempt to use a rule originally suggested by Paulson (1952) for
choosing the largest mean among the means of p independent normal
populations to here select the most precise instrument among p
instruments in large samples. However, difficulties arise with the
asymptotic joint distribution of the statistics used, so that the
rule is not applicable. To overcome these difficulties, imposing

some constraints on the parameter space seems to be necessary.

63
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3.1 Estimation of the Parameters

It is known (see Barnett, 1969) that when p = 3, the maximum

likelihood estimators have the following explicit form:

_ 2
KT Yo oy = 312 301°02°

@y =Yy - By Yo 0p T Yy - By Y

-1 -1

By = So2 %120 By 7 Sp1 Sy
~2 ~2 ~2 _ 22 A2 A2 _ 2.2
90 = Sp0 ~ Tyr 071 T Syp 7 By 94s 95 % Sy - Boo, (3.1.1)
where
- 1 n 0 TRLO - -
= S, S.. = VI Y (Y U
y; =n ké]y”( jj = m iZ] J.Z](yu yi) (¥ - ¥5)

i,J = 0,...,p-1.
For p > 3, the maximum likelihood estimators of u and o have the

usual forms

Yo-

w0

BT Yge o &5 Ty - B
The maximum likelihood estimators of the remaining parameters satisfy

the following equations:

where

1 1
a -2 . ~2 ~2
z <,\> < R ) o + Diag{on,...,o _ ).
y 3 8 u 0 p-1
It appears from (3.1.2) that there is little hope of obtaining

explicit closed form expressions for the maximum Tikelihood estimators

when p > 3.
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As mentioned in Chapter 1, Theobald and Mallinson (1978)
reparameterize the model (3.0.1) such that oﬁ =1, Bo is not equal
to 1T but equal to Ag T 9y, and B corresponds to Ay = B0,
i=1,...,p~-1. That is, their model is

Yoj 0 2o
e..
0J
LN T e Y Bt R PO i=1er
. J : ] b 3 b
. : . e .
P"1 )J
Yp-1,j 1 *p-1 (3.1.3)

where f?""’fn are an independent random sample from N(n, 1) where
n = o;]p. The model (3.7.3) is known to be a factor analysis model
-with one factor, and the maximum likelihood estimators may be obtained
- by a computer algorithm (for references, see Joreskog, 1969, Lawley
and Maxwell, 1971).

Instead of finding the maximum likelihood estimators of the

parameters of the model (3.0.1), Barnett (1969) presents a set of

p-2 alternative estimators of Bis namely

N _ -1 . . .
81(J) S'IJSOJ’ 1 ]3-"!p]:\]¢09 T,

and a set of-% (p-1)(p-2) alternative estimators of 05, namely

- -1 : - 1. 3
o )jk = SOJSOijk’ js k= 1,...,p-1; J # k.

Correspondingly, there is a set of p-2 estimators of each s each
having the general form &ij
set of estimators of each o?, each having the general form

=Y - Bi(j)yO' There will also be a
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2

~2 . YA ~ s =
o5 Sii Bi(j)(cu i i=1,...,p-1.

i(3)
Corresponding to each (Sﬁ)jk, there is one estimator for cg, that is

. -2 ) .
(oo)jk = SOO - (ou jk» J = Tyeeasp=1, J # k.

In his paper, Barnett also considers the possibility of combining

the alternative estimators of each parameter, that is,

- ~2
B: = J  AiBi., o° = ; Ha (07 )c0s
i 70,1 JTid u 57k Jk¥u’jk

where the Aj and Mk are chosen to minimize the asymptotic variances.
However, the complicated dependence of variances and covariances of
the sets of Bi—estimators and oﬁ—estimators on the unknown parameters
2 2 2 i .
B]""’Bp—]’ UO,...,cp_], and 9, precludes the possibility of optimal

use of complete sets in general.

3.2 Asymptotic Joint Distribution of the Maximum Likelihood Estimators

of the Precisions

Let

S N ~ ) ~o '\2 "2 "2 1
g = (B];---:Bp_]) s Y = 0]’~-~scp_]a 00)

be the (vectors of) maximum likelihood estimators for

- ) _ 7.2 2 2y,
B = (B],---,Bp_]) s Y = (01""’0p—]’ 00) .

respectively. Also, let

2

o% = (o§,...,o

2 4
p-1)"

For notational convenience, we adopt the convention that for any

— 3
vector t = (t],...,tr) ,
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4
s _ t 0
Dt = d1ag(t],...,tr) = 2.
0 t
r
Thus, D = diag(s 6 ), D, = diag(c%,...,0% 1)
b1 B 'l""’ p_] bl 02 ],"', p_] 3
o 2 2 2 .
DY = d1ag(o],...,op_1, oo), etc. The symbol 0 will be used to

represent a scalar, a zero vector, or a matrix of zeroes; the
dimensions of such a vector or matrix will always be clear from
the context.

Fuller et al (1983) have considered a generalization of
the model (3.0.1), in which us is a k-dimensional vector of normal
variables and 8 is a r x k matrix of unknown parameters. They have
shown that the asymptotic joint distribution of the maximum likelihood
estimators is multivariate normal, and have given an explicit
expression for the covariance matrix of this asymptotic distribution.
When k = 1, r = p-1, their results can be simplified into the following

form.

Theorem 3.2.1. Under the model (3.0.1),

PR\, 0 Veg Yay

/n - MVN . R
R 0 .
S VBY VYY

where
VBB = W + PVYYP . VB = —PVYY,
C1 . L 2.
W = 7 (] +HT )(D2+OOBB ):
9y 0 o
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1 -1
" 22 o)
p
i} i} _ -2 2
H = _Z w1, wp =1, 9 T 9 9y
i=1
v _=2pQq ' ,
YY Y Y
and Q = ((Qij)) is defined by
wiq)j’ i # j’
2 _
HQ;5 =
(H‘wi)z, i= js
for 1,j = 1,2,...,p.

We here are interested in the maximum likelihood estimators of

T = (n],...,wp_],no) s = (w],...,wp_])',
_ =2 - =2,2 _ -1 . _
where Ty T 99 0 Ty ¥ 81, wi =Ty Ty i=1,...,p-1. By the

invariance property of maximum likelihood, the maximum 1likelihood

estimators of = and ¢ are

n_ ae242 a2 A2 a=24,
T o= (o] 81""’0p—] 6p-1’ g )
(3.2.1)
N ne2a242 a2 A2 A2y,
Y = (U] UOB]a---aUP_]GO Bp_]) >
respectively.
It follows from (3.2.1) that
) Dé + D8 0-1(« | DB 0 ZD_]D_](A |
L B-8) - > AYTY )
0 52 o 1/ Y Y
(3.2.2)
- ~2 =1/ 2,-1 -1,
- = ~ + - - - - =
b= v = op(Dy DB)DGZ(B 8) GODaZDB(Ds’ 8D, " (y=v)-
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Since g and y are consistent estimators of g and v, respective]y,
the following lTemma is a direct consequence of Theorem 3.2.1 and
(3.2.2).

Lemma 1. Under the model (3.0.1),

la-r) 5 MUN(O, AMA! + (A

A 1P—B])Vyy(A]P—B1) ),
and
~ L | ]
/n(h-y) > MUN(O, A WA, + (AP-Bo)V.  (AyP-B,) "),
where
- (2071p o) 5 2.1
Ay = (207 2 D,.0)', A, = 200D" 208,
_ %2 02 - 2 1
By = -(D” 2 B,0)', B, = oD 20 (D , B)D
Note that
] _2 - ¥ - —] 1
AHAY = 4072 (1+(Hr,) ])(DW +oam'), AMAY = 4T0‘(1+HTO) (D, ).
(3.2.3)
AP-B, = LDV, L= (1+o2)D - (0,m) (3.2.4)
1 1 vy ? HTO T HTO 3he e
AP-B, = (1 + c2)D ,-y)D"! (3.2.5)
2775 I e

Theorem 3.2.2. Under the model (3.0.1),

4
2
%

(1+ )0+ an') + 20Q7 L"),

) L
/n(m-7) ~ MVN(O, T
To

and

MVN(O,

¥

R(i-v) (e 0, + ')

TO ]

w200+ g0, 00T 0, ).
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Proof: The stated results follow directly from Lemma 1 and (3.2.3)

through (3.2.5). O

The expressions for the asymptotic covariance matrices, cov(ﬁ)
and cov(y), for = and ¢ are rather complicated. The principal
complication is the dependence of these matrices on Q-l, which is

difficult to write in explicit form. One exception is the case p = 3,

where
¥ 0 0
-1 H 2 !
Q = EE;JE 0 Vo 0 + 1313, (3.2.6)
0 O H

where ]3 = (1, 1, 1)'. When p > 3, inversion of Q is best left to a
computer,

Let

var(@]) cov(@iaﬁj)

<>
~—

]
-

cov(

cov($ys95) var(i q)

p-
that is, var(@i) is the variance of the asymptotic (normal) distribution
of @i, and cov(@i,ij) is the covariance between @i and @j in the asymp-
totic (bivariate normal) distribution of @i and &j. When p = 3, it
follows from Theorem 3.2.2 and (3.2.6) that

var(&i) = %6-(1 + -

1
NEUERTIERETY)

)wi(Hw,-)

w?(l + wi)2 (3.2.7)
byy . 7 o

2
U

+ (14— PO+ ug + wy)
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and

cov(¥ysb,) = %—-(1

1
+ Yoqv
0 ro(1 T wz) 172

2
To(-l + ¢] + wz)

+ (] + )2(] + w] + wZ)(] + ¢1+¢2 - w1w2)'

(3.2.8)
Note that var(@]) not only depends upon P> but also upon vy and T°
and that var(&]) can be arbitrarily large when either by~ 0
(instrument 2 has small precision relative to the control) or g™ 0
(the relative precision of the control is small). Similar remarks

hold for var(@z). Also note that cov(@l,iz) > 0 when Vo < 1.

Similar remarks can be made for var(@i) when p > 3, and var(%i)
when p > 3. That is, the asymptotic variances of the maximum 1likeli-
hood estimators of the precision T, OF of the ratio vy = nina], is
enlarged by inclusion of any imprecise instrument in the experiment.

To construct joint confidence regions for the n;'s or the wi's,

i
respectively, we need the following theorem.

Theorem 3.2.3. (¥idak, 1967). Let X = (Xy»---5X,) be a vector

of random variables having a k-dimensional normal distribution with
zero means, arbitrary variances o%,...,ci, and an arbitrary correlation

matrix R = {pij}. Then, for any positive numbers CyseeesCpo

P([X]l iC],...,IXkl < ck) > P(lXi[ f—Ci)'

-t
Inh=ax
—
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Using Theorems 3.2.2 and 3.2.3, we have

- 1.
p-1 rf|m.-m.]| p-1 nalwi—ni[

P( N {~———1774Lg;,5 hi}) > 0 P(_“—__ff_‘ﬂr‘i_hi),
i=0 [var(n].)]d i=0 [var(ni)]ai
Lo . L .
p-1 e |y.-y.| p-1  n*ly.-y.|

P(N {—1t<g})> 1 P(—"—-T+<q.).

i=1 [var(@i)]g — i i=1 [var(@i 12 !
Let

h, =17 , i=0,...,p-1,

g]-=z Py .iz-l’ov-,p—]’
where

20, = 1=(1-v) /P,
(3.2.9)

2v, = ]_(]_V)]/P-]’

and Za is the 100(1-a) percentile of a standard normal distribution.

Then
o Goonh [varGa P st [arGOED) 50
;10 {m-n zv][var(ni)]_ <y <mtn zv][var(ni)]—}) > 1-v,
: (3.2.10)
P(irl] {ps-n ZVz var(p)F < gy <y + n~z\,2 var(v;)F1) > 1-v,

where var(n,) and var(y.) are obtained by substituting 7 for =, o for y
1 1 v NUoR, "

u °0 0
matrices of = and §, respectively, in Theorem 3.2.2. The resulting

and ¢ for ¢, in the formulas for the asymptotic covariance

100(1-v)% simultaneous confidence regions
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7 - n'%zv1[v5r(%i)]% R n_%zv][vér(%i)]%,
i=0,1,....p-1, (3.2.11)
and
L ~ N 1 L n 1
by - zzvzfvar(wi)lz <Yy < byoton 2z\)zfvéw(wi)]",
i=1,....p-1, (3.2.12)

are rectangles centered at the maximum likelihood estimators.

The regions (3.2.11), (3.2.12) are based on the maximum modulus
method of forming simultaneous confidence regions (see Seber, 1977,
Chapter 5). Alternatively, we could use the Scheffe method to con-

struct confidence ellipsoids

n(Gi-m) ' [eov() TV (5-71) < x (3.2.13)

n(f-v) ' [cov(H) 17 (5-v) : (3.2.14)

iA

Xp-1,v

2
p
2
p
for m and y, respectively, where XE y is the 100(1-v) percentile of

b

the Xa distribution. Although the Scheffé method permits construction
of simultaneous confidence intervals for arbitrary linear combinations

§ %
d.T.:s
i=0 ' =1

which they give for the individual ”1.3 or wi's are wider than the

a;¥;s of the elements of =, v, respectively, the intervals

corresponding intervals obtained from (3.2.11), (3.2.12), respectively.
Since, only the individual ™. or b; are usually of interest in

applications, the maximum modulus regions (3.2.11), (3.2.12) are likely
to have greater practical usefulness than the Scheffe regions (3.2.13),

(3.2.14).
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3.3 Selecting the Most Precise Instrument

In this section, we discuss a procedure for selecting the most
precise instrument of p instruments, giving instrument O the special
(preferred) role of the control instrument. We attempt to use a
method originally proposed by Paulson (1952) for choosing the normal
population (with known variance 02) with the largest mean His when
one population (population 0) is given favored treatment. Paulson's
approach has two components:

(I) The choice of a region A in the sample space such that

P,(A) > P* for all y for which H.: > max p
u 0 0" 0= G
holds. If the data falls in the region A, we state that

i

the control population 1s "at least as good" as the other
populations;

(IT) The choice of a (permutation invariant) partition
B],...,Bp_] of the complement A® of A, and the minima]l
sample size n such that

Pp(Bi) 3_P?, for all p such that My 3_?;? patA
for all1 i = 1,2,...,p-1. If the data falls in Bi’

we say that population i has the largest mean.

The constants Pa, P¥, 0 < P§s P¥ < 1, and 4 > 0 are specified in

advance. Since population 0 plays a favored role, P6 is usually

chosen to be large (e.g. P6 = 0.95, 0.99).

Here, instead of comparing p population means Hys i=20,...,p-1,

we wish to compare the precisions LR EEEEELNS! of p instruments.

To compare means, Paulson let the region A defined by
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_ - - 1
{X: max (X-‘XO).i xo(2/n)?}, and defined the regions B. as
1<i<p-1 ' !
c — v o 5 _ v % 5 .
AT LR-X, > ?;? (Xj-XO)}, where X = (XO’X1""’Xp-1) is the vectOf
of sample means, and X is a specified constant. When comparing

precisions, it seems more appropriate to use the ratios @i = ﬁ.no
in place of the differences Xi - XO in defining the regions

A,B],...,Bp_]. Alternatively, we can use

Ln 4, = Ln %1 - 2n %O'

Since our conclusions are the same for both approaches, we will
illustrate them by using the former approach. Hence, the rule we
will use is the following:

(I) Let A= {t: t = (t ot 4), max t. < Al

'I’-n. p_] ]ii-ip-] ] -

If § € A, then say that the control instrument (instrument 0)
is at Tleast as precise as the other instruments.
(3.3.1)

(I1) Let B, = A¢n rt: t. > max tj}’ If ¢ ¢ B., then say that
j#i
instrument i is the most precise instrument, i = 1s...,5p-1.

The constant A defining the region A must be chosen to satisfy

Pe(@ € A) > PS, for all 6 = (8', v', 02)' such that max vy, < 1,
= u X i =
1<i<p-1
(3.3.2)

where Pa, 0 < Pa < 1, is a specified probability. Recall that the

model (3.0.1) is parameterized by 8' = (8],...,Bp_],0%,...,0§_],03,05).



76

Because the exact joint distribution of @ is intractable, we will
use large sample approximations. Note that from Theorem 3.2.2,
(3.3.1) and (3.3.2), we have

1 1
2(y . 2 (-
n=(x-y;) n? (A wp_1)‘>

P(J}GA)“@ T T Ty e ey N T
Lvar (vy) F° [varo(wp_])]2

(3.3.3)

where ¢Z(z) is the joint c.d.f. of a MVN(C, =) distribution,

vare(ii) is the variance of the asymptotic (normal) distribution of

~

Y

52 1 <1 <p-1, and R = R(8) is the correlation matrix of the

asymptotic (p-1)-variate normal distribution of §. When
Pq =...= ¥po1 = 1, and A < 1, it is easily seen from (3.3.3) that

A ]
Pe(‘lJ € A) < ‘DR(O:05~--’O) f_"z"s

and that Tim Pe(@ € A) = 0. Consequently, if we wish P6 3_%—(or, for

oo

very large n, if we wish P6 > 0), we must require that A > 1.

Now fix n large enough so that the approximation in (3.3.3)

holds. Recall from Section 3.2 that the covariance matrix cové(@) of

1
the asymptotic distribution of n®(j-y) depends upon Tq aS well as

LARTERRL AN Indeed

oy oA, L . 2,200 0N (D . -u):
covg(§) = = (1 + ) (D, + ww') + 201 + =)%(0,, 0)Q” (0, -4)",
0 0 HTO .
(3.3.4)
where Q depends only on y. Fix y such that max ¥ < 1 and take
1<i<p-1
T > 0. Note from (3.3.4) that
. 2 ~ _l ' _8___ - -1 - '
11m0 tgoovg(b) = g (D + wy') + 2 (D, -¥)Q (D, -v)'.
’L’O‘+ N
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Consequently as L 0, the asymptotic correlation matrix R of ¥
converges to a fixed correlation matrix R*, while since x > 1 > vy

- -2
and vare(¢i) =150 > e,

Aoy
lim ————— =0, i=1,...,p-1.

1q*0 Lvar (§.) F

<=

Thus, for fixed x» > 1, fixed Ypoeees¥
lim P_{3 € A} = 0.,(0,...,0) < % (3.3.4)
TO*O G R =2

Therefore, unless 0 is known to be bounded from below, it is not

possible to find a region A of the form defined in (3.3.1) which

satisfies (3.3.2).

Even if we know the value of g (but use the maximum likelihood
estimator y of y for the case where Tg is unknown), it is still not
possible to find x to satisfy (3.3.2) when P5 > %n To see this,
consider the case p = 3. Here, it can be snown from equations
(3.2.7) and (3.2.7) that if we fix T and let vy > 0, Vo = 1, then

vare(@]) >0, vare(iz) ~ =, and corre]e(@],iz) ~ p*, where

1T+
p* = 0 > 0.

T
[rg + 4y + 2F

Consequently, for x > 1

. - ) B
Tim Pe(‘b € A) - ¢R*(m’ O) = _2'3
‘P]“’O
wz“"]

where
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] p*
R(
p* 1
The same result holds (by symmetry in the indices) when vy = 1

Yy > 0. For p > 3, setting any by = 1 and taking wj -0, j#1,

we have vare(@i) > @, vare(@j) +~0,J#1, and

i 0 = @© o e e o = l
Hm Po(p € A) = opyle,. . ,=,0,0,. .0 ) 5

The above results demonstrate that if either the relative
precision T of the control, or the precisions relative to the control
of one or more of instruments 1,...,p-1, are not known to be
bounded below by positive numbers, then it is impossible to find a
region A of the form in (3.3.1) which satisfies (3.3.2) for Pa >-%.
Since a region of the form A seems to be the most intuitively reason-
able way of implementing Step I of Paulson's method using the

maximum 1ikelihood estimators ¢1""’@p-1 of Yyaeeest the problem

p-1°
seems to lie with the properties of these estimators. If one.looks
at the form of the covariance matrix of the asymptotic dfstribution
of the maximum likelihood estimators g, y in Theorem 3.2.1, it can

be seen that T affects the variances of the elements of g, but not
the variances of the elements of v. If 1 is small (all other
parameters being fixed), the variances of 61,...,ép_] are large. On

the other hand, the variances of 8%,...,82_1,83 are affected by

P
2

. , . "2 -
Ypsenesb If by > 1, wj -0, j # 1, the variances of oF and 9

p-1°
can be arbitrary large.

It is thus apparent that in order to find a region A of tne

form in (3.3.1) which satisfies (3.3.2) for P§ > %, we should try to
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avoid including poor instruments in our comparison. However, we
often do not know in advance whether any poor instrument has been
included in our experiment. In this case, one might decide to utilize
as few instruments as possible to estimate the precisions of each pair
of instruments. As discussed already, the minimum number of instru—v
ments needed to make fhe model (3.0.1) identifiable is 3. Barnett
(1969) suggested estimating the parameters for p instruments by using
method-of-moments estimators obtained from arbitrary groups of
three instruments. However, Barnett's estimators for the parameters
are the maximum Tikelihood estimators for p = 3. As we just pointed
out, if any poor instrument has been chosen, the region A in (3.3.1)
cannot satisfy (3.3.2) for Pa > %u Hence, without any prior knowledge
about the instruments, using Barnett's estimators for y in the proce-~
dure (3.3.1) in place of the maximum likelihood estimators based on
all p instruments still fajls to achieve the P6 requirement.

If we compare two instruments at a time, using only the data
from these two instruments, then the parameters are not identifiable.
Consequently, restrictions are needed on the parameters. However,
some extra information can be obtained from the full experiment to

estimate a few key parameters (for example, T Provided both the

O)'
sample size n and the number p of instruments are large enough, we

might be willing to assume that the key parameters are known. In
Chapter 4, we will discuss use of Paulson's type of selection proce-

dure in three special cases: (1) when the ratios R],...,R of

p-1

measurement error variances are known; (2) when the slopes B],...,Bp_]

are all assumed to be equal to one; and (3) when 0 is known.



80

CHAPTER 4
ESTIMATION AND SELECTION PROCEDURES FOR THE
PRECISIONS OF P (> 3) INSTRUMENTS IN SPECIAL CASES

4,0. Introduction

The model we consider in this chapter is the same as that of

Chapter 3:

ij 0 1 er
Yqs o B e..
yj = ]J = 1 + ! UJ + -]\] (4‘-0'])
v : : :
p-1, “p-1 "p-1 ®p-1.3
0 1
= + us + g5 J=T1,...5n0,
2 8

where %j is a px1 vector of observations, 9 and g are unkrown
(p-1)x1 parameter vectors, and &5 is a px1 vector of errors. We
assume that (u],...,un) is a random sample of size n from a normal
distribution with mean y and variance cﬁ, and that the %j's are an
independent random sample from a p-variate normal distribution with
‘)

mean vector O and unknown covariance matrix Lo 7 diag(og,...,op_],.

We refer to instrument O as "the control".
In Chapter 3, we have considered the problem of comparing the

precisions no,...,ﬂp_] of p instruments to choose the most precise



81

instrument when there are no extra constraints on the parameters.
However, difficulties arose with the asymptotic joint distribution
of the statistics used, so that the rule originally suggested by
Paulson (1952) was not applicable. In this chapter, we will consider
some special cases:

-2

_ 2
(1) R],...,Rp_] are known, where Ri = 050 s

(2) Bysee-aBy_q are equal to 1,
(3) T = 03062, the relative precision of the control, is known.

In each of cases (1) to (3), we discuss the estimation of the

,» and use the statistics derived

precisions LICRRELISS or wl,...,wp_1
in Chapter 2 for comparing each instrument with the control in
procedure (3.3.1) to choose the most precise instrument. A1l such
procedures satisfy the Pa requirement. We also attempt to evaluate the

Tower bound for the probability of correct selection for these proce-

dures. However, the problem is too complicated to be solved at present.

4.1 The Case Where R],...,Rp_] Are Known

This case has been extensively studied by many authors,

especially with all the Ri equal to 1 (US = 0% =...= OS“])' As

noted in Section 2.1, for each i, i = 1,...,p-1,

=i

i 2
— = B.R.'
TTO 11

Thus, comparing the precisions, no,...,np_], is equivalent to

comparing 1, B%R],...,BS_1RD_].
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It is known (Lawley, 1953, Theobald, 1975) that the maximum

likelihood estimators of the parameters s By M og and 05 can be

n
expressed in the following form. Let }1 _— y Yij i=0,1,...,p-1,
J=1

and

yOJ - yO yOJ - yO '
nf yy5 -y Yyi =Y
1 1
s= (s =g 00 T v
j=1 . :
To-153 - ¥, Yp-1,5 7 Yp-1

i, = 0,...,p-1.

Further, let d],...,dp, d; z_dé >...> d_, be the eigenvalues of
1 0
S
where DR= Diag(R]é...,Rp_]) Then 4 = Ygs

~

Gi = yi - BTyO’ 1= ]s 3p']:
(4.1.1)

(p-1)d E d E d
p-1)dy- | d, i

2 Tz | 2 _ =2 !

%y p-1 2 » 9 p-1"7
(p-1)(1+ 7 65R.)

1=
.1 . 1
and (1, 81Rﬁ,.--,8p,1Rg_])' is the eigenvector corresponding to the

1 0
eigenvalue d] of S< >. By the invariance property of maximum
0D
R
Tikelihood, the maximum likelihood estimators of L ERRREL N and

ﬂ]nal 30 e ,Trp_-lfral are
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i=T1,...,p-1. (4.1.2)
Although these estimators are known to be consistent, their exact
distributions are intractable. However, if a large sample is
available, then from the known asymptotic joint distribution of
these estimators, asymptotic joint confidence regions for any
collection of these parameters and also for (no,...,ﬂp_]), or for
(TO,...,Tp_]), can be obtained by standard techniques. A1l such
regions for the parameters have ellipsoidal form with centers equal
to maximum likelihood estimators and shape determined by a consistent
estimator of the asymptotic covariance matrix of the estimators. Ini
the rest of this section, we concern ourselves with the procedures
to select the most precise instrument.

As mentioned in Section 3.3, if we use the maximum likefihood
estimator @i = %1%61 derived in Section 3.1 as the statistic for
comparing s and A in procedure (3.3.1), we cannot determine the
value of A such that the procedure (3.3.1) satisfies the Pa
requirement when the parameter space is unrestricted. Here,
assuming that R],...,Rp_1 are known, the maximum likelihood estimators
@1 of by are expressed explicitly in (4.1.2) and the covariance matrix
of the limiting distribution of these wi's is much simpler. The
procedure we use here is almost identical to the procedure (3.3.1)
except @1 = %i%él now are defined in (4.1.2).

When the R, are known, it is known (Amemiya & Fuller, 1984)

1

L . 1.
. . - - 3 - 2 _ - )
that the limiting distribution of n (R2(3] B)""’R%-](Bp-] Bp-l))

—
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is multivariate normal with mean vector Q and covariance matrix

given by
1 1
[ p11 —%”F?l] (Ip—l * DEBB'Dﬁ)
(1+ 7 Re5)T0 O
i=1
where
Dp = diag(R],...,Rp_]).

The 1imiting joint distribution of the wi's can be obtained

directly from this result and the result 6a.2(iv) in Rao (1973),

22

since @1 = RiBL, 1= 1,.p-T.

1

Theorem 4.1.1. Assume that Ri are known. Then, the limiting

L .
distribution of ne(w]—w],...,¢pu]-¢ )' is multivariate normal

p-1
with mean vector Q and covariance matrix equal to

s+ )0, + '),
HTO 0
where
Pi1
H=1+ Ps o
i=1 !

We need one more theorem to determine the value of A.

Theorem 4.1.2. (Slepian, 1962) Let X = (X1,...,Xp) be distributed

according to N(0, ), where © is a correlation matrix. Let

L = ((Oij))’ T = ({z,;)) be two positive definite matrices with

N

= = s 2
oj3 = 149 = 1 and O35 2 Ty for all 1 # j. Then



holds for all a = (a],...,ap)'.

From Theorem 4.1.1, we can see that forn large,

- p-1
PLomax gy <Afy; <1 1< i <p-Thm PLN (M 2 b))y, <
1<i<p-1 i=1
1 <1 <p-1},
where
L.
nz(ll’-i‘ll)]') .
M. = i=1,...,p~1,

]
Tl e (14 )
HTO 0

85

(4.1.3)

have a multivariate normal distribution with zero means, variances

equal to 1 and correlations

) bivs g
eUioy) = )

and where
1
nz()“"l’.i) .
by = 3 ] -, 1 =1,...,p-1.
2+ v (1 + )R
2 T i i
HTO 0
When by Tee.s ¢p-1 =1and » < 1, it is easily seen from

(4.1.3) and (4.1.4) that

p-1 p-1

A
o
~—

<

]

i=1

p-1

],]iif_p—]}<P{.ﬂ (MiiO)}<

) ]#Ja ]i1ajip-]a

and that lim P{ O (M, < b.)|y, =1, 1 < i <p-1} = 0. Consequently,

N> i=1

if we wish P8 3_%3 we must require that A > 1.
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Note that p(Mi,Mj) is independent of T4 for any i,j. Thus, the

correlation matrix of the Mi's is independent of - Since

» 0,

NE P

; and Var(@i) > as T

0

Tim bi =0, i=1,...,p-1.

T >

0
Thus, for fixed A > 1, fixed A RERRRL <1,

p—1 p‘] 1
Hm P{n (M < b:)jw., < 1,1 <i<p-1}y=P{Nn (M < 0)} < 5
0 =1 7T T
0
Therefore, unless Ty is known to be bounded below, it is not possible

to find a 1 such that the procedure satisfies the P6 requirement.

Lemma 1. Assume that 9 2 c0(> 0), where <y is a known constant.
For » > 1 and ¢],...,¢p_] < 1, the minimum of by is achieved when

by = 1, wj =0 for J # 1 and 9 T COf

Proof. It is easily seen that from (4.1.4) that b, is increasing in

Ty for fixed wl,...,wp_] and increasing in wj, J# i, for fixed o

and ¥y k # 3. While for fixed o and wj, j# i, bi is decreasing in

i To see this, taking the derivative of bi with respect to Pi» We
have
1
b g2 -1
Y T
i P Dy e ) P
HTO 0
Oy ) LO20,) (L + 1) = (1) 17
i i H 2 T i i’ 2.2
T 0 H ™t
_ 0 0
2L+ Dw (14 4172
H 0
0
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Since

p-1
142, w (14) (“Zwi)“*jzz]wj) - v (1)
H 7 H2 2 R H2 2 >0
0 0 5

ab.
i

and » > 1, by < 1, thus, < 0 and bi is decreasing in wi. The

.i
Lemma now follows. O

From Lemma 1, we can see that for each i

n%(x—l)

inf b.

i -2 -1
2(c= + 2¢, )

w],...,wp_]fj 0 0

0 =

(4.1.5)

T -
2

Since p(Mi’Mj) is nonnegative for any i,j, applying Theorem 4.1.2,

we have
p-1 p-1
P{ﬂ(M.<b.)llp.<],]<j<p—]}> ]'[P{M.<b.|xp.<],’l<j_<_p—]}.
i=p 1T 1T T Ta=1 T T OT T -

(4.1.6)
Under the assumption that T 3_c0(> 0), combining (4.1.3)

(4.1.5) and (4;1.6), we therefore get

. p-1 -1
P{ max $; <A} > T P{Mi <2 'n

1<i<p-1 ! i=1

E oy + 2c-) b
A—])(cD + 2C0 ) =3,

Thus, if T 2 c0(> 0) and
A =1+ 202z [c"2 + 2c—1]§
v*¥-r0 0 >

where
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then the procedure satisfies the P6 requirement.

From the above discussion, we see that when the Ri are known,
and we use the maximum likelihood estimators @i defined in (4.1.2)
as the statistics for comparisons, we are unable to determine the

value of A to insure the procedure satisfying the Pa requirement,

P5 3_%3 unless a lower bound to the relative precision 1y of the
control instrument is known.
Instead of using the MLE @i = %1%6] as the statistic for comparing

m. and Ty, We have another statistic TOi for comparing s and n

i 0
where
_2\= -
- (n-2) (Risi' SOO) (4.1.7)
0i .5 2 F 1
2R5(S545007S04

From the discussion in Section 2.1, we know that for comparing the

precisions ms and 0 of instrument i and the control, if TOi is

sufficient]y large, we would agree that instrument i is more precise
than the control. This suggests modifying the procedure (3.3.1) as
follows:
Procedure: If max T,. < A,, then select the control as the
1< 01 — "1
<i<p-1
best, (4.1.8)

If max TO' > A], then select the instrument i
1<i<p-1

which has the largest Toi value as the best,

where x] is chosen so that the procedure (4.1.8) satisfies the PS

requirement. To determine the value of Ays We need to know the

asymptotic joint distribution of TOi'
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Theorem 4.1.3. Let TOi be defined by (4.1.7). Then the asymptotic

L 1
. e Y _o2y-z -
joint distribution of (T, - (n-2) o, (1 o]) ""’TOp—1

1 L
(n-2)2pp_](1—p§_]) 2)' is multivariate normal with mean vector O and
covariance matrix H = ((hij))’ where
(p.~-1)t
o. = o . (4.1.9)
[(1-9;) 5 + a(1+y, )5 y+a]
N 2\~1
h.” - (]"Q.‘) s
. -3/2 “3/2, Broo 2y . 2
his = 801+ (1y)r] [1+ (1+wj)rO] {rgL{T-05) (7 wj)
# (D) w01+ e (otn) + oy (1oy,)
ViThi Wy VRS A RS ity
+ (0 (1=p) + 209, +ps) + 1200 + 6] + <2[(p2 + b2)
J J 17 7] 0 i J
+ 9(w1+wj) 1305wy + 13] + bray, + byt 2) + 4,
and
T B1Ri = niné s i# 3, i,3=1,...,p-1.

Proof: Note that for every i, i = 1,...,p-1,

L
(n-2)=r.
T .= 1
01 5 ?
1—ri
where
. Ri311 500
T OL(R.S,.-S.)° + AR.(S..S ~SE)F
317300 85413007501

Using a Taylor series expansion, for every i = l1,...,p~1,
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1
b2
Togm(n=2)%e;(1-p3) =~ - ;)3/2 Lag;/n(Sgg=ogg) * 2917n(Sg-904)
—-p'
;

1
o]

+ a../ﬁ (S..-o..)],

ii ii i
where
2
0i ER) - 2 2 2 3/2 ¢
00{s=x  onl(1-9,)"tg + 4(1+y; )t +4]
= 2
- ar; i 431.R1.(lp].-])r0
i 3Snslex 2 2 3/2°
0i1S Zy 0100[(]—w1) 9 * 4(1+¢1)T0+4]
(4.1.10)
2
L ar; _ 2{[(1+w1)r0+2](1+r0)—2wir0}
21 3S. . e 2 2 2 3/2°
iq S«Zy oi[(1—wi) 9 * 4(]+wi)ro+4]

From Theorem 4.2.4 in Anderson (1958), we know that the limiting

1
. . . ] s
distribution of n3(800-000,501—001,5 S S )'odis

0379037337933
multivariate normal with mean vector Q and covariance matrix

§1i7% 4

Z_ij =
L, 2 -1 2 -1 2 7
2(]+T0) 281T0(1+TO) 2Ri wiro ZBjTO(1+TO) ZRj ijO
22
Wiy woy BiByTo{1+2tg) 28;857g
4
O 3
0 -2 2 2 2 222
symmetric 2R72(1+w.r )2
i (RS KO
(4.1.11)
where
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_ 1 2
w]k - Rk [] + (]+wk)T0 + ZWkTO],

- -1 ..
Wop = BkRk TO(1+wkTo), k =1,3.

Thus, for i # j, 1,j = 1,...,p-1,

a0 403j
12, 232 ] 0 0
B _ 2,-3 -3
hij COV(TOi’ TOj) = (]—pi) (1—pj) . Zij . . (4.1.12)
29
0 a]j
0 a2j

The hij shown in the theorem is obtained by plugging in 3gi> 3yi»
3555 50 315 353 and Zij defined in (4.1.10) and (4.1.11) into
(4.1.12). That the asymptotic variance hii of TOi equals (1—p§)f]

is a direct consequence of Theorem 4.2.6 in Anderson (1958). O

From Theorem 4.1.3, we know that for a large n,

P{ max Toi 5.x1|wi <1, i=1,...,p-1

1<i<p-1
(4.1.13)
p-1 )
~ P{ig] (Xj < 25) vy =1, 1 = 1,...,p-11,
where
L 2,-%
Toj'(n'z)doi(]‘pi) 2
Xi = IS s i=1,...,p-1,
(1-05)72

i

are standard jointly normal random variables with correlations
_é _% . ...
Q(Xiaxj) = hii hjj hij: 1 # Js 1, ]’---:p_]:

and where
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1 . .
b = X](]-p]?)e— (-2)%05, 1= 1,...,p-1. (4.1.14)

oji~

Observing hij’ we can see that when wi, ¢j <1, hij is positive

for any i,j. Applying Theorem 4.1.2, we have

p-1 p-1
P{,-Q1(X1' <oy < T T i <p-1) 2 RN 2ilvy < 1
(4.1.15)
1
Lemma 2. For fixed 19, 1f 0 < Ay o< (n-2)2, then for each i,
inf 2. = A4,
‘Pif_l ! 1
Proof: Note that Vs < 1 gives Ch < 0. Since
oL . “Aq0
3 ! = ]211 - (n—2)2,
p1 []'91']2
azz. -
i 1 <0
thus, the minimum of 25 should occur either at Py = -1 or oy = 0.

1

However, 0 equal to -1 or 0 gives Qi equal to (n-2)° and A],
1

respectively. Because A] < (n-2)2, the minimum of %5 is achieved when

0s =0 (ory; = 1). O

Combining (4.1.13), (4.1.15) and the result of Lemma 2, we thus

have the following theorem.
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1

Theorem 4.1.4. For a large n, if A=z where v¥ = 1—(p*0)p“},

then the procedure (4.1.8) satisfies the P6 requirement.

To evaluate the probability of correct selection (CS) for the
procedure (4.1.8), that is the probability of choosing one of the
p-1 instruments as the best when that instrument is actually more
precise than the others (including the control), let py and Po
denote the true numbers of instruments with v < 1 and vy > 1,

respectively, so that Py + Py = p-1. For convenience, assume that

v <Y, Seee<p oy For a fixed o > 0, assume that

Yo_q = max(1, wp_2)+A,

p-1
that is, instrument (p-1) is more precise than the others including
the control. Thus, for fixed A and Y1 the probability of correct

selection (CS) is given by

p-2
P(CS) = p{<TOp-] > A1) n (iQ](TOp_]—Toi 2_0))|¢] 5""§-¢p] <1<
wp]+] 5,..5_wp_], and wp_] = max(],wp_z) + A}.

Note that the probability of correct selection depends on the unknown

integer Py and y For simplicity, we assume that Py = p-2, that

p-2°
is only one instrument (instrument p-1) is more precise than the con-

trol. Then we have

p-2
op1 > ) 0 (1§](TOD-T'T0" 20y sy < T

P(CS) = P{(T

¥ =1 + a}.

p-1
Let
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VA

1t
—

i op-1 ~ TO]’ i=1, sP=2,
= (4.1.16)
Zp—] T0p—1
Thus,
P(CS) = P{Z] Z.O’---’Zp_z > 0, Zp—] 3_A]|w] i"'f-wp—Z <1,
wp_] = 1+a}. (4.1.17)

If all the Zi's are mutually positively correlated, then

p-1
P(CS) > n P{Zi Z_O}P{Zp_] > vq} by Theorem 4.1.2, and each
i=1

probability in the product can be evaluated separately by its own
distribution. Unfortunately, at present we can only show that Zp_] is
positively correlated with each Zi’ i=1,...,p-2, but not that Zi and
Zj are positively correlated, i # j, 1 < i, j < p-2. The following

lemma shows that Zp_] is positively correlated with Zi’ i=1,...,p-2.

Lemma 3. Let Z, be defined in (4.1.16). For a large n, if vs <1,

T <i<p-2, bpo1 T 1+a(> 1), then Cov(Zp_], Z;) >0, 1 <1 <p-2.

Proof: From (4.1.16) and Theorem 4.1.3, we have

Cov(Zp_],Zi) = Var(TOp_]) - Cov(T Th:) = h

op-1°T0i) = Mp-1,p-17Mi,p-1°
From the definition of hp-],p-1 and h]’p_1,
o -3/2 -3/2
ho-1,p-17N,po1 = 87 (1H(hp) )rg) ™ 21+ (g )eg) ™ 21+

p
1
2

; 3 2 2
(]+¢p_'|)'f0) (]+<]+\U1)T0) /2[(]"4’[3_]) T0+4(]+‘bp_])10+4] - k.i,p_]}s

where
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_ 4 2 2 ? 2 3
ki,p—] = TO[(]‘¢D_])(]‘¢1) + (wp_]'wp_])(wi-wi)] + TO[Swp—]wi(w

2 2
g qOup )+ ug (eeg) = 2ty q) + 12ugw g + 61+ gle(vite, )

p-1

+ 9(wi+wp_]) + 13w1wp_1 + 13] + 6T0(wi+¢p_]+2> + 4,

Since wp-l =1 +a>1>0y,,

—3/2( -3/2

-1
ho1,p-1N5,p-1 2 8 (1+(1+¢p_1)ro) T4y, )7g) {2(1 +

2
(]+W1)TO)2[(1'WD_])2TO + 4(]ﬁpp—])TO“l:l - kisp']}'

After simplification, we obtain

2 22
201+ (1)) L=y ) T0+4(1+¢p_])10+4] - ki po1
- 4 3 2
= 31, + a3y + 3,70 + a]ro + 4,
where
ay = 10¢i + pr_] + 12,
_ 2
az = 6¢i + 3y Pp_] + 23¢1 + 3¢p_] + 13,
ay = 02 (5my.) +p (302 - Gy, - 3) + 9yl + 17y, + 6
3 wp_] by Wp_] by by by by s
a; = wz (5p.+3) + ¢ (—311;2 - 9y, - 4) + 3w2 + 4y, + 1
4 Tp-127M p-1 Vi i i i

It is clear that a; and a, are positive. In the following, we show

that ag and a, are nonnegative.

Since

2

2 2 2 _ a8 3
(3¢i-4w1-3) - 4(5‘¢1)(9w1 + 17¢1 + 6) - 9wi + 72¢1 + 21w1

- 37wi-21 <0
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and 5-¢i > 0 for Py < 1, thus aq > 0. Taking the derivative of

ay with respect to Yys we have

%

. =6u; (v

2
p_1—1) + Swp_] - 9¢p_] + 4,

2
We can show that 5¢p_] - 9wp + 4> 0 for wp—1,> 1 and

< 1 if]<wp_]<2

- 2 -
67 (50 1 - Sy (v, -7 -

> 1 if \pp_.l>2
Thus, if wp_] > 2, a, is increasing in b that is, the minimum of a,

occurs when v; = 0. 3, = (3¢p;]-1)(w 1) > 0 when Vs = 0. If

p-1"
.. . . -1/p. 2
1<wp_] < 2, a, is increasing in y, when y; < 6 (Swp_] - 9wp_] + 4)
. . . -1/c.2
(wp_]—T), and is decreasing in Y; when g, > 6 (5¢p_]—9wp_]+4)(4p_] 1)
Hence, the minimum of a, occurs when p; = 0 or by = 1. When by = 1,

]-]) > 0. The Lemma now follows. O

When p = 3, the lower bound to P(CS) in (4.1.17) can be obtained

using Lemma 3 and Theorem 4.1.2, that is,

P(CS) P{Z2 > 2 and Z1 z_Olw]

IA

1, by = T+a}

|v

PIZy 2 Mylwy = T#3PLZy > O]y < 1, 4, = T*a}. (4.1.18)

Given Yy = 1+a, the asymptdtic distribution of 22 is normal with mean

o] o

2\ -% . 2y-1
(n-2) p2(1-92) 2 and variance (1-p2) , Where

-1
0y = ATO[AZTS + 4(2+A)10+4] 2. Further the asymptotic distribution of

1 1 1
Z] is normal with mean (n—2)2[p2(]—p§) 2 - p](]—p$) 27 and variance
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h22 + h]] - Zh]z, where h11, h22, h]2 are defined in Theorem 4.1.3.
Note that the two probabilities in (4.1.18) still depend on the

unknown parameter -

4.2 The Case Where Broce.sB Are Equal to 1

p-1

As mentioned already in Section 2.2, when all the slopes B, are
equal to 1, the model (4.0.1) is known to be a variance component
model. The precision m, of instrument i is equal to 0;2. Thus,
choosing the most precise instrument is equivalent to choosing the
instrument with the smallest measurement error variance.

Grubbs (1948) takes the average of Sij(i # 3, 1,3 =0,...,p-1)
2 2 _ o -1, -1 PRl p;]
to estimate o, namely o~ = 2p (p-1) Yy ) S.., and lets
u u L& s~ 1]
i=0 j i
8? = Sis - 55, i=0,...,p~1. As is usual with estimated components
of variances, the resulting estimators sometimes take negative values.
For p = 2, these estimators are maximum likelihood estimators if they
are positive. However, when p > 3 the maximum likelihood estimators

S""’°§~l and 05 are more complicated than 8?, and have no

of ¢
closed form.

When the covariance matrix of a multivariate normal distribution
is an unknown linear combination of given matrices, Anderson (1968)
provides an iterative a]gbrithm for finding the maximum likelihood
estimators of the parameters and discusses the asymptotic properties

of these estimators. For the model (4.0.1) with the B all equal to

1, the covariance matrix zy of Y3 is equal to
o



98

£, = )} o5 G,
Y o4z 1V 1

where G, (i = 0,...,p-1) has 1 in the (i+1)st diagonal position

2 2 .
d 1sewh » G = 11! = . H s
and zeros elsewhere b 1p D and op 9, ence, applying the
algorithm suggested by Anderson, we can calculate the maximum

e . ~2 ~2 ~2 2 2 2
11ke11hoodest1matorscO,...,cp_] and o of 902291 and o .

u

It has been shown by Anderson (1968) that the asymptotic joint
distribution of n%(ég - og,...,ég_]—cs_], 85—05)‘ is multivariate
normal with mean vector 0 and a covariance matrix C whose inverse
¢! has %-tr 2;1612;]Gj as its (i+1, j+1)th element, 0 < 1,j < p-1.
Thus, joint confidence regions for any collection of these parameters
can be obtained by standard large sample techniques.

We now consider, for this special case of model (4.0.1), the
problem of choosing the most precise instrument. For p = 3 with
8] = 82 = 1, Grubbs (1973) treats two of the instruments as standard
instruments and fhe third instrument as a néw instrument, and applies
the test statistic, that is T* defined in (2.2.8), suggested by
Maloney and Rastogi (1970) for the two-instrument case to compare
the measurement error variance og for the third instrument with the
average measurement error variance, 2'](03 + o?), of the two standards.

In Section 3.3, it was shown that the procedure (3.3.1) was
not applicable without some extra constraint on the parameter space;
in Section 4.1 we showed that even assuming that R],...,Rp_] are
known, the procedure (3.3.1) based on the appropriate maximum

likelihood estimators of w],...,wp_] can be applied only when a lower
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bound to 0 is known. Here, assuming that the slopes B; are all equal
to 1, the asymptotic joint distribution of the maximum likelihood
estimators for w],...,wp_] can be obtained from the known asymptotic

2

joint distribution of 88,...,8p_], but the covariance matrix of this

asymptotic distribution is too complicated to be of much help. Conse-

quently, as in Section 4.1, we use another statistic T*

Oi for comparing

s and > namely, the statistic

1
(n-2)2(S.:-Sn)
TE, = LA (4.2.1)

_ z
205545007504

introduced in Section 2.2.

From the discussion in Section 2.2, we know that for comparing

the precisions, s and s of instrument i and the control, if TSi is
sufficiently small, we would decide that the instrument i is more
precise than the control. Thus, we modify procedure (3.3.1) as
follows:
Procedure: If min T61 > X,, then select the control as
1<i<p-1
the best; (4.2.2)

If min T*. < A,, then select the instrument
. 0 2
1<i<p-1

which has the smallest T value as the best,

where Az is chosen so that the procedure (4.2.2) satisfies the P5

requirement. Similar to the proof of Theorem 4.1.3, we obtain the

asymptotic joint distribution for the statistics T*

o4 in the

following theorem.
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Theorem 4.2.1. let Tai be defined by (4.2.1). Then the asymptotic

joint distribution of

N’H

o=
o

2 ' z 2\=%1\,
(g1 - (120 23 0-(NIZTg, - (-2x (- 62 D))
is multivariate normal with mean vector 0 and covariance matrix
V = ((Vij))’ where
l-wi
p]’? = 2 ‘2,[___, (4.2.3)
- 2y-1
Vi = (-9,
_ o-1 -} L -3/2 -3/2,
Vi =8 3% (04 )g) (T+(T+ 5)7) Lijo
3,202 2 2 2,22
Lig = Broluiuy twguy + wies ougug) ¢ olaviey +
2 2 2,2
TCugey + ugug) + 3(uih]) + 7005 + (v +e5)41) +
2 20+ gl 2, + 5(y.+y.)+2
Tolwivy *+ Wiugt vyt vs 8bi05 *+ 5(wy*y)+2)
+ wiwj + wi + wj + 1
and
b =5 o}l = sl #1351, el
From the above theorem, we know that for large n,
PUomin TE > e <1, 4= 1,01
1<i<p-1 01 VARS!
p-1 (4.2.4)
%P{ﬂ(X*<a.)|w.<], i=1,...,p-1}, ’
j=1 1= i =
where
% 2\~
“Tgi + (1-2)703(1-(p3)%) 2 :
X* = T R TR
‘ (1-(p1)%)
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are standard jointly normal random variables, and
2.5 L .
a; = -2,(1- (p¥)%)% + (n-2)? p¥, 1= 1,...,p-1. (4.2.5)

It can be seen from Theorem 4.2.1 that the correlation coefficient
p(X?, X;) between X? and X; is nonnegative for any i,j. Applying
Theorem 4.1.2, we obtain

p-1 p-1
PN (X¥<a )|y, <1, 1 <1 <p-1} > 1 POXF < agfw, < 11, (4.2.6)
i=1 i=

. 2
Lemma 4. For fixed 9 if -(n-2)= < Ay < 0, then for each i

inf a. = -x,.
¢1§J i 2

Proof: Note that when v <1, p?lz 0. As in the proof of Lemma 2,

we can show that the minimum of a; should occur either at p? =0 or
1

p? = 1. When p? is equal to 0 and 1, a. is equal to -i, and (n-2)%,

i 2
1 .
respectively. Since Ay < (n-2)2, the minimum of a, is equal to =Ay- 03

Combining (4.2.4), (4.2.6) and the result of Lemma 4, we obtain

the following theorem.

1
p-1

Theorem 4.2.2. For a largen, if Ay = ~Zv*, where v* = 1-(P6) ,
then the procedure (4.2.2) satisfies the Pa requirement. O

To evaluate the probability of correct selection (CS) for the
procedure (4.2.2), for simplicity, we assume that only one instrument

is more precise than the control. For convenience, assume that
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W max .. For a fixed A > 0, we assume that

-1 iep-

<1, 1=1,...,p-2.

In this case, the probability of correct selection is given by
p-2

PCS) = PU(TE 1 < 2,) N ( ﬂ][T 0p-1"Toi < O0Dlvy <1, 1 <4 < p-2,

bpop = 143 (4.2.7)

However, when i = 0, 1 <i < p-2, TOp-] and TOp-1°TOi are negatively

correlated. To see this, note that

(Ta ] T6 ] TB = Vp_]’p—]-yi ,D—] .
p-1° 0p- i T
Vot p1 Mgy p1 * Yy - 2V D F
- 8 ](]+(]+¢ ) O] 3/2(1+(]+¢ )t O]-S/ZN
I (4.2.8)
[wp Vp-1,p-10p-1,p-1 * Vi - V5 o-1)¥iup F
where
N 2¢%(1+(1+ Yt )%(1+(1+ ) )3/2((]+ )2 + 4 (1+ Je)
1 Yo-17"0 Y1t ¥p-1 ¥p-11 1770
| 1
) wz—lLi,p—l'

It can be shown that the denominator of (4.2.8) is finite when vy = 0

and Vpo1 T 1+A. However, when v = 0,

- z 2 2 2
N = '4’%_][(3%)_] + 4‘1’p_]+])T0 + (ll)p_-l + 5y 2)t yp +1] < 0.

p- 1

* 0 »
Thus, for Vs <1, v = T+, TOp 1 and TOp 1 TO1 are not positively

p-1
correlated. To evaluate the lower bound of the probability of correct

selection for the procedure (4.2.2), we need more work to find the

* *
Tower bound of the correlation coefficients between TOp E and TOp 1 T01

* *
and TOp 1 TO , respectively.
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4.3 The Case Where the Relative Precision 0 of the Control Is Known

As discussed in Chapter 1 and in Section 2.3, in some situations,
it is reasonable to assume that T is known.

Assuming that T is known, for the two-instrument case, the
maximum likelihood estimators for the parameters have been shown in
Section 2.3. However, the maximum likelihood estimators have no
closed form for p > 3. It is worth noticing that the ordinary
regression estimator 501568 of B; converges to sir0(1+10)—1. Therefore

the quantity éi = (1+TO)16]SOi86é, i=1,...,p~1, is a consistent

estimator of B -

Instead of finding the maximum likelihood estimators for the
parameters, we may consider other consistent estimators motivated by
the maximum likelihood estimators for the case p = 2. These consistent
estimators are as follows:

e T T -1
W= Yge i T Y5 7 ByYgs By = (MTg)TySo4500s

2 12 1 -2 2000 DI
oy = SpoTolMTg) s ag = Spgltrrg) Ts of = S44-503Sgg(T+rg)Ty
Hence, we estimate by = TiT6] = ﬂiné] by @1, where
A (141,)772
.~ 0’%0
S , (4.3.1)
1 i 0 Y‘—Z - (]“’T )T-]
i 0’0
e = o1 i=1 p-1 (4.3.2)
T 50054

To compare the precisions s and i (or T and TO), using @i as

the statistic, we would agree that instrument i is more precise than
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the control if @i is sufficiently large. However, since @i is

. . . 2 . .
increasing in rys an equivalent procedure is as follows:

Procedure: If max r.
1<i<p-T
the best, (4.3.3)

If max r? > A3, then select the instrument

1<i<p-1
which has the largest r; as the best, i # 0,

?_5 A3, then select the control as

where Ag (> 0) is chosen so that the procedure (4.3.3) satisfies

the P6 requirement. Using a proof similar to that of Theorem 4.1.3,
we obtain the asymptotic joint distribution for r?,...,r§_1.

Theorem 4.3.1. Let r? be defined by (4.3.2). Then the asymptotic

' L
joint distribution of ne(rﬁ—si,...,rg_]-dg_]) is multivariate norma]
with mean vector 0 and covariance matrix C = ((Cij))’ where

2
52 - YiTo
.2 2,2
3 (4.3.4)
%% Eyj

C.., =
2 s
1] (]'\"To)q’(]ﬁpiro) (]+wj1.0)2
- .3 2
Eis = To(4¢iwj+2(wi+wj)+2) + r0(4¢i¢j + 6(¢1+¢j) +8)
+ T0(4(w1+¢\]) + ]0) + 4,

As a consequence of the above theorem, for a large n, we have
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(4.3.5)

1A
-+
~—
<

< 1, 1 =1,...,p-1},

where

8.
N, = , = 1,...,p-1

are standard jointly normal random variables, and

1

L 2
< -

¥ (hg-6%)

f. = L9 i= 15-'-ap_]- (43.6)
T [as?(1-68)°F

i i
It can be shown that the (asymptotic) correlation coefficient

p(Ni’Nj) between Ni and Nj is equal to

I () [(y1g) (1) (1 ()7 (1 (149 ) ) F
(4.3.7)

C—J‘%ﬂ“

| A

Note that p(Ni,Nj) is nonnegative for any i,j, 1 < i,j < p-1.

Applying Theorem 4.1.2, we have

p-1 p-1
P{n (N, < f.)lw, <1, 1 <d <p-1r> mP{N, < f .|y, < 1}. (4.3.8)
R A == e R B AR
Note that 6? defined in (4.3.4) is increasing in ;. Thus, 0 < 4, <1
. 2 2 -2 2 _ _ .2  _ 2 -2
gives 0 < ¢ < to{T+ry) =, When 5y =...= 8p-1 = 1o(T+ty) 7, and

Ay < T§(1+TO)‘2, it is easy to see from (4.3.5) and (4.3.6) that

p-1 p-1
PO (N, < Ff)Jw, =1, 1 <i <p=11 < P{n (N,
i=1 ' T - i=1

[T

< 0)} <
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Consequently, if we wish P6 3_%3 we must require that Ay > rg(]+r0)—2.

Since the probability that max r? < 1 1is equal to 1, if x3 > 1, then
1<i<p-1

P{ max r? > A3} = 0.
I<i<p-1
Thus, if we wish the probability of correct selection to be greater than

0, Ag is required to be less than 1. We therefore require that

2 -2
r0(1+ro) <Ay < 1.

Lemma 5. Assume that T (> 0.5) is a known constant. For

T>2g> TS(]+TO)—2, PN, < f.[0 < w; < 1} is decreasing in Vs

1

Proof: If 1 > 0.5 and A5 > rg(mo)‘z, then a3 > g. Taking the

derivative of f1 defined in (4.3.6) with respect to 6?, we have

of.
1 _ -1 2\-3/2 2\-2 2\2 2
5 = 7 (85) 77 7(1-65)70(s) 7 + (1-315)65 + 251
38}
Since ¢ < ap < 1, (1-312)2 = @, = (92.-1)(1a1) < 0, thus
9 3 > 3 3 3 3 ? ’
2,2 2 3t 2 . . .
(65)° + (1-30,)65 + A, > 0 and < 0. Because §; is increasing
i 3771 3. 86? . i X

j
in Vi fi is decreasing in Wy - The Lemma now follows. 0O

_ . _ L 2 -2
Note that vy = 1 gives fi = ﬁa[x3-ro(1+r0) ][210(]+21
—3]-1

o)

(1+ro) We summarize the results in the following theorem.

Theorem 4.3.2. Assume that 9 (> 0.5) is a known constant. For a

2(]+T )—2

large n, if x, = 9

L - ’
3 +n zzv*[210(1+2r0)(1+10) 3], where

0
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1

vk = 1-(P6)p_], then the procedure (4.3.3) satisfies the Pa

requirement,
Proof: Directly from (4.3.5), (4.3.8) and Lemma 5. O

In practice, the instrument chosen as the control usually is
known to be a reasonably good instrument from previous experience.
A rule of thumb mentioned by Thompson (1963) suggests that if the
instrumentation of an experiment is to be effective, 9 should be
> 100. Thus, assuming that e 0.5 seems reasonable.

To evaluate the probability of corréct selection for the proce-
dure (4.3.3), for simplicity, we assume that only one instrument is
more precise than the control. For convenience, assume that

Yoo T max . Thus, for a fixed A > 0, assume that
P 1<i<p-1

wpﬁ] = T+a; s < 1, i=1,...,p-2.

In this case, the probability of correct selection is given by

P(CS) = P{(rg_] >g) 0 (0 [r2 -r% > 0D |y,

From Theorem 4.3.1, the covariance of rg_] and rg_] - r? is
given by

2 2 2y - 2 2 2y _
Cov(rp_],rp_]—r.) = Var(rp_]) - Cov(rp_],ri) =

i “p-1,p-1"%,p-1

2 2 2
_ Wp_]TO{4(]+TO)(]+w1T0) (]+(]+wp_])'f0) “wlTo(]'*"Pp_]To)E] ,p_‘l}
3( )2 )

4
(-H'To) (]'hpp_‘lro) ]+W1TO
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We find that when b = 0.5, v

p-1 " 1+4a >3 and o > 10, the
covariance is negative. Thus, we know that rg_] and rg_] - r?,

1 <1 < p-2, are not positively correlated. The problem of finding
a lower bound for the probability of correct selection for the proce-

dure (4.3.3) appears to be very complicated.
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