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ABSTRACT: Two classes of shock-models (i) threshold type and (ii) nonthreshold
type are considered, where it is assumed that the shocks arrive over time according
to a mixed Poisson p}bcess. These models arise in reliability theory for the

study of life distributions and certain reliability propertiés-of a system. The
present paper deals with the problem of nonidentifiabilit} among the members of

the family of distributions that each model generates for ce}tain‘observable
quantities. The two families of distributions generated by the two models are

also compared for their mutual nonidentifiability.

l. INTRODUCTION: When it came to stochastic modeling in live situations, Neyman
was much concerned about the problems of nonidentifiability of probability distri-
butions arising in their study. Oﬁe of his early works; where he encountered

the problem of nonidentifiability was his joint work with Dr. G. E. Bates in

1952 ([2],[3]) on the theory of accident proneness. This being the case, it was
felt quite befitting to choose such a topic for the present paper dedicated to

his memory. Here we shall be mainly concerned with problems of nonidentifiability
in particular reference to cef%ain existing stochastic models in the area of

reliability theory. -

* To appear in the Proceeding volume of Neyman-Kiefer Conference held at the
University of California, Berkeley, during June 1983.

These investigations were supported in part by the U.S. National Science
Foundation Grant No. MCS - 8102733.
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In order to study a natural random phenomenon arising in a 1TVe~sTtuatiqn;
often an attempt is made to idealize the underlying stochastic médhanism;'Whi]e
still trying to keep it close enough to reality and then construct a stochastic
model based on this mechanism. As a result one usually ends up with a family
of distributions of the observable 'random quantity' X, generated through a set
of unknown 'parameters'. Let this family of probability measures corresponding

to X, as given by the stochastic model, be represented by

) Q= {Pe9 0 e @} s

where o is a labeling parameter taking values 1in an apprbﬁyiate set 0. Here X
cﬁu]d be a random vector or the realization of a stochastic.process ovér a fixed
time 1ntervé1, etc., as the case may be._251m11ar]y the possible values of the
parameter ¢ could be over a class @ of vector-valued functiens or over a subset
of k-dimensional Euclidean space, etc. The following definitions are standard

and have been adopted here from [17].

DEFINITION 1. Based on the random quantity X, the family Q’Of'diétrfbuffoﬁé

is said to be identifiable if the members of o are distinct for distinct 's.:

e

Otherwise we say that it is nonidentifiable. .

Again it is not uncommon to try to explain the Same observable random
quantity X, through more than one stochastic model, each based on its own set of
underlying assumptions and on possibly different mechanisms. Each then generates
its own family of probability distributions for the observable quantity X in

question. Let -
Qs = {Pe y B0: € 91}9 1= ]923

1 . 1
1

bertwo such families corresponding to two different stochastic models.



DEFINITION 2. Based on the random quantity X, the family Q] is said-to be non-

identifiable with respect to the family 92, if for each 61 € 0 there exists

8, € 9, such that Pe =P , S0 that 91 C:QZ. If however Q] = 92, we say that

2 2 1 65 .

91 and 2, are completely mutually nonidentifiable. Again, Q] and 2, are'said to

be partially mutually nonidentifiable, if 24 N 2, is nonemty and i§1a proper sub-

set of each a., i=1,2. Finally, if @, 09, is emty, the families @, and @, are

said to be mutually identifiable based on the random guantity X.

The probiem of nonidentifiability of distributions of observable variables
in stochastic-modeling is of fundamental importance. As was pointed out through
examples (see [17], [19]), this problem is typically much{more acute than is
u;ua11y thought of or looked into, or even reported. If ;;.Thg‘qther hand such
‘a problem dbes exist, it needs to be invg;tigated first, before the model is put
to any practical use for the purposes of predictions. Otherwise, as indicated
by Clifford [5] through numerical examples in his case, one may arrive at quite
conflicting predictions by using them. Thus it is important to watch for the
presence of a nonidentifiability problem and when present it appears that there
are two courses open in eliminating it. The first one is by cutting down the
size of the original family, if possible. This is possible, for iastance based
on the past experience, if one can conveniently know apriori tge“vafues of some
of the parameters or some acceptable relations among them, one may be able to cut
dbwn the size of the family, with the hope that the reduced family poses much
less of the problem. The second course is to Took for another observable random
quantity Y and then enhance the original family of probability distributions to
consist now of the joint probability distributions of X and Y hopi;g that the
new enhanced family has 1es$ or no problem of nonidentifiability.

The present paper attempts to study from the point of view of nonidentifiabilitys
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two fairly general classes of stochastic models for life distributions in the éreé'
of reliability theory. These models or special cases thereof, have been the subject
of extensive study in recent literature in this area (see [1], [6], [10], [11]).

It is appropriate to mention however at the outset that we shall not be concerned
here at all about their validity for one live situation or thgfothgr. In the next
section we introduce these two models with their relevant details. While sections

3 and 4 deal with the problem of nonidentifiability of distributiéns,arisﬁng

within each model separately, section 5 deals with the mutual identifiability

aspects between the families of distributions generated by the two models.

L3

2" THRESHOLD AND NONTHRESHOLD TYPE RELIABILITY MODELS: The .two classes of models

N

we shall be concerned with may conveniently be referred to as (¥)~thresho1d type
models and (ii) the nonthreshold type mbdé]s, both are meant for the study of Tife
distributions and certain reliability properties of a system. It is commonly

assumed that the system receives over time the so called 'shocks' or 'blows' in

some random manner (see for instance Esary, Marshall and Proschan [6], Barlow and
Proschan [1] and Proschan and Serfling [11]). Each shock results into possibly

a random amount of 'damage' or ‘wear' to the system. This damage ngps accumu-
lating as the shocks arrive over time. If N(t) denotes the numbet of shocks arriving

during (0,t), the total damage received by the system during this time is then

given by

( .
Z(t) = ) Y .,
where the random variables (r.v) Yn’ assumed to be independent andhidentica11y

distributed (I.1.D), represent the random amounts of damages due to various shocks

for n =0,1,2,..., with Y0 = 0, a.s. In a threshold type model one postulates the
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existence of a threshold, either of the number of shocks or for the total damage:.
so that the system is assumed to fail as soon as this threshold is reached. Again
this threshold is assumed to be random varying with a common distribution over

the underlying conceptual population of similar -components. In this paper, for
simplicity, we shall restrict ourselves to the case where thg_thre§ho1d is given
only in terms of the number of shocks or equivalently we may assume that the
damages Yn's are all equal to the same positive constant. Thus {f K denotes the

random thresho]d in -terms of the number of shocks with

b, = P(K=k), P, = ¥ p.» Po=1, k=0,1,2,...,
k ko s2pqp 1000 e

and T denotes the length of Tife of the system, we have for t ;‘O,

Hi(t P(T > t) = P, t) , 1
(0 =P(T> 1) = ] P (M

i

where Qk(t) = P(N(t) = k), k =0,1,2,...

Again in the case of nonthreshold type models, instead of a threshold, one
postulates the existence of an appropriate nonnegative risk function f(£(t);t)

R

such that

P(system fails during (t,t+r)|(T) = x,T. > t) = f(x;t)r+o(r), (2)

where g(t) = (N(t), Z(t)). A-standard argument (see [12], [14], [16]) then leads

to

-t N
P(T > t) = E{exp[-j0 f(g(r)st)dr]} . - (3)

fy(t)
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In the present paper we shall restrict ourselves to the case with

fle(t)st) = alt)N(E), ' ()

where «(-) is a nonnegative function satisfying certain regularity conditions,
so that (3) now becomes -

—

. ot
Wz(t) = P(T > t) = E{exp[—f0 alt)N(z)dz]}. - ~(5)

Again, in [1] and [6], the authors have studied certain reliability proper-
ties of the function (1) under the assumption that N(t) is a time homogeneous

k]
Poisson process with parameter » > 0, so that (1) is givem-by-

Hﬁ(t) = Z ?k Al exp(TAt). (6) |
For the nonthreshold case of (4) and (5), we assume that (i) the function a(-)
is continuous for t > 0 and (ii) satisfies the condition
[ [1-exp{-] a(u)du}]ldr = «. (7)
0 T
Under these conditions, when N(t) is a time homogeneous Poisson-pfo&gss with
parameter A > 0, it can be easily shown (see Puri [14]) that (5) becomes
B £ t
H2(t) = exp[-A [, {T-exp(-/ afu)du)}dc]. (8)
' 0

T

It may be noted here that while the continuity requirement for the function al+)
can be somewhat relaxed, nevertheless in view of (8), the conditioﬁ'(7) is
essential in order thét T be an honest r.v. Also the reader may‘¥ind the above
nonthreshold model as exhibited by (8) in a paper by Mercer [10]. However for the

present study, we consider the more realistic case for the above models, where
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the Poisson parameter A itself is assumed to vary randomly over the population of
components (or systems) with cumulative distribution function (c.d.f.) F (.) with
F(0) = 0, so that the shock arrival process N(t) is a mixed Poisson process. The
mixed Poisson processes form a fairly rich class of Markov processes (see Feigen
[7], LeCam [8] and Puri [18]). In particular they include the Tinear birth
processes after a time-scale change, among others. Also they are Eharacterized

as being the only point processes (save time-scale changes) with'énrorder statistic

property and with Tim E(N(t)) = = (see Puri [18]). Again the reader may find in

o

[17], a brief mention of few of the results (without proofs).of the present
paper for the special case, where A was assumed to be nonfgndpm. For the present

generalized case, (6) and (8) respectively now become

o o k .
M = 1 P OY) exp(-at)df(r), (9)
20 Ko © |
and
Lt t
Hé(t) = F (fo {1-exp(-f a(u)du)}dr), (10)

where F*(.) is the Laplace-Stieltjes transform (L.S.T.) of F(.). _An alter-

native representation of (10), which will be useful, is given By“

o k
M(t) = 1 [o(t)1 [ A exp(aan)dr(), (11)
,H

where

1 t t _
o(t) = €-f0 exp[-f a(u)duldr . - (12)

Let 2 denote the family of distributions of T as given by (9) for the threshold



models, generated by varying g = ({ﬁk}, F(.)). Similarly let Qz.be the correspoﬁl.
ding family of distributions given by (10) - (11) for the nonthreshold models,
generated by varying ¢ = (a(.), F(.)), where o(.) is subject to conditions (i)

and (ii) given above. Likewise the symbols 91(F), Q]({Pk})’ QZ(F), Qz(a(.)),
etc., stand for the corresponding subfamilies where in each case the parameter
given in the parentheses is considered known while the other parameter is assumed

to generate the subfamily in question.

REMARK 1. As is evidént in (11), the expression (3) for nonthreshold models often

*s in general depend on t for thesé'mode1s. In our
]k

is Tike (9) except that ?k

present case these take the form [¢(t) in (11), which %ﬁmjts an alternative
interpretation namely that the various shocks affect the syétem‘fhdependently

with 4(t) representing the probability that the system is spared from a single
shock during (0,t). This interpretation results essentia]]& because of the
Tinearity assumption of the risk function made in (4). Although this Tinearity
assumption may appear questionable in some practical situations, yet we shall

show later that the family 2, based on this assumption is already much richer

than the family 215 in that it contains many more distributions besides containing
the family g, (see section 5). ' .

In the next two sections, we consider first the problem of nonidentifiability

within each of the two families 91 and 92.

3. NONIDENTIFIABILITY WITHIN FAMILY 0,: The following theorem deals with the
N

nonidentifiability among the members of the threshold family of distributions.

THEOREM 1: Based on the r.v. T, the family of distributions Q] i$ not identifiable.

More specifically, for any arbitrary member of 0 corresponding to © = ({ﬁk}, F(.))

and for every 0 < a < 1, there exists 0, = ({5k(a)}, Fé(.)) such that the
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expression (9) corresponding to ¢ and s, both coincide. 0On the other hand the

N y =
corresponding enhanced familx}QT of joint distributions of T and NT’ generated by

varying o = ({5k}, F(.)) is_indeed identifiable, where the r.v. NT denotes the

number of shocks arriving by the failure time T.

-
—

PROOF: Consider an arbitrary but fixed member of o3 corresponding to

o = ({5k}, F(.)). For0<a=<1, let

Sk ..
P2 = 1 - P, k=002,
=0 ]
Since ?b = 1, we have ﬁb(a) = 1. Also using the fact tha£1?5»15 increasing with
j, it can be shown that so is ?ﬁ(a). In fact it follows by noting that -

Pk(a) = E(ﬁk), where X is a binomial r.v..with k number of trials and the proba-.
bility of success for each trial equal to a and the fact that the binomial distri-
bution has monotone likelihood ratio in the parameter k (see Lehmann [9]). Let
for every x > 0, Fa(x) = F(ax). Then using (9) it can be easily seen that the
expression for H}(t) for o, = ({5k(a)}, Fa(')) coincides with the one for ¢. This
result for the special case when F is degenerate is known (see [4], [6]). For

the second part, let g(s) = E(sK), |s| < 1, be the probabi]ity_géﬁéyating
function (p.g.f.) of K, with g(0) = 0. Then it can be easily shown that

N ®
(s T exp(-uT)) = [ 9lG3perO). (13)

where Re(u) > 0 and |s| < 1. Consequently the identity of the joint distributions
of T and NT for any two members of QT corresponding to 0y = ({5k}JrF](.)) and

6> = ({Qk}, F2(.)) is equivalent to the identity
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f 9, (3)dF, (3) = f; 9, (23)dF, (1), S

for Re(u) > 0, [s| < 1, where 94 and g, are the p.g.f's corresponding to {ﬁk}
and {Qk} respectively. Putting u = 0 in (14) immediately yields g](s) = gz(s).
Using this while equating the powers of s on both sides of (14), we must have for

some k > 1,

f; (2% aF, (1) = IZ () dFy00). Re(w) > 0, (15)

-

-

which in turn is equivalent to

f: Ak exp(—kt)dF](A) = f Ak exp(- At)dF (A) t>0. (16)'
In particular for a fixed to > 0, we have

f; A exp(exto)dF](A) = f; 2K exp(-at_)dF, (). (17)
Using (16) and (17) we have Vu > O,

f: exp( Au)dF] f exp( Au)d?z(x), (18)

where for i = 1,2,

dﬁ(x) = [Ak exp(-xto)dFi(A)][f: AK exp(axto)dFi(X‘-)]_1. (19)

Extending (18) through analytical continuation for complex u's, with Re(u) > 0,
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establishes the identity of the Laplace-Stieltjes transforms of ?1 and F2,
leading to Fy = F, and hence finally to Fy = F,. 0

The next theorem shows that while the subfamily Q](F) is identifiable, the

subfamily Q]({—k}) is also identifiable under mild conditions:

THEOREM 2. (a) The subfamily Q](F) is identifiable.

(b) The subfamily Q]({ﬁk}) is identifiable whenever the p.g.f g(.) for the

sequence {pk}‘is such that L(x) defined by the c.d.f.

)

-

Lix) = g([T+exp(-x)17), —w<x<w, . (20)

has a nonvanishing characteristic function (c.f.).

PROOF. (a) The proof follows from the fact that Q](F) c:Qz(F) (see theorem 5,
section 5) and that the subfamily QZ(F) is identifiable (see theorem 4, section 4).
(b) Note that since g(0) = 0, L(x) is a bonafide c.d.f. For two members of
Q]({ﬁk}), corresponding to c.d.f's F] and F2’ using (13) the idéntify of the

corresponding distributions of T becomes equivalent to the identity_

<o (o]

I g(z2)dF (1) = J ol dr0). Re(w 2 0. (21)

Working with real u > 0 and setting u = exp(-y), it can be easily shown after

an appropriate transformation that (21) is equivalent to .

co
~

i L(y-x)dF](x)

-0

fw L(y-x)dF,(x), - (22)

for - » <y < », where Ei is the c.d.f. of [-znAi], with Ay having the c.d.f.
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F.,
;

convolutions on the two sides of (22) establishes the identity of fhe c.ffs of

i = 1,2. Since L(.) has a nonvanishing c.f, taking Fourier transform of the

F] and F2 and hence of the c.d.f's F] and F2. O

4. NONIDENTIFIABILITY WITHIN FAMILY ,. In order to establish-analegous results
for the family 2y, W need to derive the expression similar to (13) for the
present case of nonthreshold models. We briefly outiine this. be]éw, first for
the case when ) is a-constant, so that the shock-arrival. process is Poisson.
Following the methods of ([12], [16]), it can be easily shown. that

-

-

o N ® A
E(s | exp(-uT)[2) = s exp(-ut)a(t)6 (s;t)dt, (23)
| ) -
where
6(sst) = EME) 17> 1)) = kf S 1 (8), (24)
=0 >
P 1(t) = PIN(E) =k, T>t), (25)

i

I(A) denotes the indicator function of the event A, and G, etc. denote the
corresponding partial derivatives of G. By establishing the usual differential
equations satisfied by the probabilities Py ](t)'s, one can then show that G

satisfies the differential equation
G, + Sa(t)Gs = -A(1-s)G. , - (26)

Furthermore (26) when solved subject to G(s;0) = 1, leads to the solution

G(ss;t) = exp[-at+as¥(t)], (27)
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where -
t t
y(t) = fO exp(- [ a(v)dv)d . (28)
. T
Using this and (23) yield for each i, -
Ny
E(s ' exp(-uT)|r)
=7->\s-_[ exp(-ut)a(t)¥(t)exp[-At+as¥(t)]1dt. (29)
0
Finally taking expectation over A, we have s

3 -
o -

N e | o
E(s | exp(-ut)) = - sf, exp(-ut)a(t)e(t)F (t-s¥(t))de,  (30)

for |s| < 1, Re(u) > 0, where F* is the derivative of L.S.T of F(.). We now
proceed in establishing the analog of theorem 1 for the nonthreshold family of

distributions.

THEQOREM 3. Based on the r.v. T, the family of distributions 92 is not

jdentifiable. More specifically, for any arbitrary member of 92 corresponding

to g = (a(.),F(.)) and for every 0 < a < 1, there exists g, = (aa(.),Fa(.))

such that the expression (10) corresponding to 6 and 9, both coincide. On the

other hand the corresponding enhanced family Q; of joint distributions of T and

N;. generated by varying ¢ = (a(.),F(.)) is identifiable provided each F(.) has

a moment generating function (m.g.f.) and the function a(.) satisfies the addi-

tional condition (besides (i) and (ii) given_in section 2)

Tim [¥(t)/t] = 1. (31)
-0 :
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PROOF. Consider an arbitrary but fixed member of 2, corresponding to-

= (a(.), F(.)) with F(0) = 0, and a(.) satisfying conditions (i) and (i)

WD

of section 2. For 0 <a < 1, let Fa(x) = F(ax) and

0 (1) = as(t)¥(D[1-a)t + av()]7" I (32)

where ¥(t) is as defined in (28). Then it can be easily verified that aa(.)
too satisfies (i) anq'ﬁii). Furthermore the expression (10) for Hé(t) for

0y = (aa(.), Fa(')) coincides with the one for & = (a(.),F(.)). This establishes

that the family 2 is not identifiable. We now consider the enhanced family QZ
. L
subject to the conditions on F(.) and a(.) given in the theorem above. For two
| . . . S
such members of 2o corresponding to ¢, = (a1(.),F](.)) and 0, = (az(.),FZ(.)),
the identity of the corresponding expressions for (30) for Re(u) > 0 and |s| <'1,

can be easily shown to be equivalent to the identity

(£ (6 1% ECAS exp(-ng ©))

= ap(t) [ty (1)1F E(a5 exp(-ay 1)), (33)

e

valid for t > 0 and k > 1, where for 1 = 1,2, the r.v. Ai has the c.d.f

Fi(') and

t t

Ti(t) = [ exp(-f ai(V)dV)dT. (34)
0 B

Since Ti(t) >0, for t >0, i =1,2, it follows from (33) that for-every t > O,

either both ai(t)'s are positive or both are simultaneously zero.” Thus without

loss of generality we may assume that there exists a sequence {tn} converging

to zero with “i(tn) >0, fori=1,2, and n > 1. Replacing t in (33) by t, and
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dividing both sides of (33) by tﬁ and letting n + =, using (31) it is easily
seen that

14 ——yal(t”) (35)

im - =C

N0 ap(ty

exists, is positive and that
ky _ k _ -
E(Az), - CE(A'I), k - ],2, « o . (36)

On the other hand using the fact that Fi(O) =0, 1=1,2, and'Ai's have m.g.f's,
from (36) it easily follows that F, = F,. Finally using ®his in (33), for t's

with ai(t) > 0, we have
(o (£)/ap(£)] = [e,(8)/9()1° . ) (37)
This being valid Yk > 1, implies that W](t) = Wz(t) so that a1(t) = az(t). o

REMARK 2. It is easily seen from (33) that if F(.) were known the subfamily

*
QZ(F) is identifiable without any additional conditions on o(.) or F(.), as in

e

that case (33) reduces to ' .

w (0 (016 = ay (v (0)1° (38)

valid for t > 0 and k > 1, from which one can easily argue for the identity of
*
ui's. If on the other hand o{.) were known, the subfamily 92(@) is again identi-

fiable without any additional condition. In that case from (33)Mit follows that

E(X exp(-a7t)) = E(85 exl-azt)), (39)
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for all k > 1 and t > 0. Multiplyirg now both sides of (39) by (tk/k!), adding

over k > 1 and subtracting the sum from one yield the identity

E(exp(-a;t)) = E(exp(-n,t)), t > 0, (40)
from which it easily follows that F] = F2‘ -

The following theorem is analog of theorem 2 for the subfamilies Qz(a)

and QZ(F).

THEOREM 4. The subféhi]ies Qo (a) ggg_QZ(F) are both identifiable.

—_——

the identity of two members of Qz(a) corresponding to c.d.f;*s_F}~and Fos is

PROOF. For a given a(.) satisfying the conditions (1)_an€‘(ij) of section 2,

equivalent to (in view of (10))
Ft-¥(t)) = Fp(t-¥(t)), t > 0. (41)

Since t-¥(t) as a function of t, varies continuously from 0 to = as t varies
* *
from 0 to », (41) implies the identify of the transforms F1(u) and Fz(u) for
u > 0, and hence of F] and F2. Again for a given F with F(0) = 0, the identity

of two members of QZ(F) corresponding to ai(.) and 92(.) is equivalent to

Fr(t-e, (1) = F(t-5,(1)), (42)

*
for t > 0, where wi's are as defined in (34). Since F (u) for u > 0 is strictly

decreasing, (42) immediately implies W](t) = Wz(t) so that d](t) = az(t). 0

5. MUTUAL IDENTIFIABILITY OF THE TWO FAMILIES. In order to distinguish between

the two models in live situations it is of considerable interest to compare the
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two families of distributions 2 and 2, from the point of view of their mutual
identifiability. Since the underlying shock-arrival process is same for the two
models and they differ only in their assumptions concerning the causation of the
failure (threshold versus nonthreshold) of the system, such a comparison appears
much more natural between the corresponding subfamilies 91(F).5nd QZ(F), where
the common F is the same although left unspecified. The following theorem is

concerned with such a comparison.

THEOREM 5. (q) For every F with F(0) = 0, Q](F) C:QZ(F), so that based on the

r.v. T, the family 9](F) is nonidentifiable with respect to fhe'family QZ(F).

-

-

(b) Let the d.f. F with F(0) = 0 and fO AdF(A) < = satisfy the-condition

Tim sup [11(t)/JB(t)] > 1, - (43)
t > o

for all g > 0, where
I,(t) = f: v exp(-v)F(v/t)dv, (44)
3,(8) = [ expl-v py (1) IF(v/t)av, T )

0

and

og(t) = 1 - [Trexp(-6t)1(st) 7" (46)

Then QZ(F) is strictly larger than the family 91(F). In particu]gf subject to

(43), for each member of QZ(F) with a constant a(.) = o > 0, there exists no

corresponding member of Q](F) with a matching distribution for T.
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PROOF. (a) The proof follows from the fact that for each member of 91(F) with a

{5k} and the corresponding function

oo k oo

. P fo 2K exp(-At)dF(r), (47)

|
-
—
<t
~—
]
11 &~1

—

there exists a unique member of QZ(F) with a corresponding function

Lt t
A (t) = F (J {1-exp(-] o(u)du)}dr) (48)
0

2
T
coinciding with H}(t) of (47). The corresponding functionia(.) which makes it

possible, is given by

*_ oo *_ -
a(t) = [dF T (Hy(£))/atIle-F (Hy ()17, (49)
*_ .

where F 1(.) is the inverse function of L.S.T. F*. Using the properties of the
function H}(.), it can be easily verified that the function a(.) given by (49)
does indeed satisfy the desired conditions (i) and (ii) of section 2. Conversely
for a given member of QZ(F) with a corresponding function o(.), it is not always
possible to find a meaningful solution for {?k} by equating (47) and-(48).
(b) The proof is by contradiction. Let F satisfy the condition (43) for all
g > 0. Consider a member of QZ(F) with a constant o(.) = « > 0. Suppose that a
corresponding member of 91(F) with a sequence 5k exists such that

Po(T > tla,F) = P{(T > t[{P, },F), (50)
valid for all t > 0. Rewriting (9) and (10) differently, (50) can be

equivalently written down as
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where for i > 0,
108 = [ YT exp(-v)F(v/t)dv. - (52)

Using (51) and the fact that E(A) < «, we shall first show that in the present
case py must be zero. Differentiating both sides of (51) with respect to t

(under the summation and the integral signs which is permissfb]é here), one is
L

-

led, after some simplification, to the identity o

(1-exp(-at))E[At exp{-at pa(t)}]

= Z k Py EL K1 exp(=At)], (53)
where the r.v. A has the d.f. F, and pu(t) is as defined in (46). Dividing

both sides of (53) by t, and letting t -~ 0, one obtains Py = 0, while using the

fact that E(A) < ». Thus we may rewrite (51) as
oa(t) = 1 Pis L (), (617 . (54)

Note that since -

I.(t)

2
i E{F(X21+2/2t)}, -

where xi is a chi-square r.v. with v degrees of freedom, it follows that the

integral Ii(t) is strictly increasing with i. Again in view of (43) there exists
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a sequence {tn} with tn -+ @, such that

Tim {I](tn)[Ja(tn)]']} . 1. (55)
Moo

For the same sequence, using (55) and the increasing property of the integral

Ii(tn), it follows from (54) that

o () 2 T ()3 (e)T7T . " (56)

o

Finally ]ettiﬁg n - o, since 1im pa(tn) = 1, in view of (55) we arrive at a
N :
contradiction. O -

REMARK 3: The condition (43) essentially. reflects the behaviour of F near the

origin in terms of the rate with which F(t) tends to zero as t > 0. Indeed it
is satisfied by most of the standard distributions, such as Gamma distribution.
In particular, when F(x) = 1 - exp(-x), x > 0, the 1imit in (43) is two, whereas
for a degenerate F(.) at an arbitrary point x > 0, the Timit is =.

In order to find a way out of the mutual nonidentifiability problem between
the families Q](F) and QZ(F) as exhibited by the preceeding theonéﬁ;swe now con-
sider the corresponding enhanced families Q;(F) and QZ(F) of distributions of
r.v.'s (T, NT). The following theorem shows that the mutual nonidentifiability
problem is substantially reduced by the additional information through the

r.v. NT‘

THEOREM 6. The families of distributions QT(F) ggg_Q;(F) are partially mutually

nonidentifiable. More specifically, no matter what the common F is, a member of

* —
Q](F) corresponding to a sequence {Pk} yields the same distribution for (T’NT)
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. )
as does a member of the family QZ(F) corresponding to a function g(.) if and

only if for some 0 < Py < 1,

1,2, ..., (57)

1l

K = p](] p]) » Kk
and

P1

(t)_ /t t>0. ) ' - (58)

PROOF. For a-member of Q?(F), it follows from (13) that for k > 1, Re(u) > 0,

k 1 ;
E(I(N(t)=k)exp(-uT)) = pkf T__TT—'EXP( ut)E(A exp( At))dt. (59)

Similarly for a member of QZ(F), it follows from (30) that for k > 1,
Re(u) > 0,

E(I(N(t) = k)exp(- IE‘7774 “exp(-ut) [¥(£) 1€ a(t)E(aKexp(eat))dt, (60)

where w(t) is as given by (28). The identity of (59) and (60) for-all k > 1,

and Re(u) > 0, immediately Teads to the relations

(k-1)

P, = o)) s, e 50, (61)

from which (57)and (58) easily follow. O

g, A FEW CONCLUDING REMARKS (a) It is of interest to note that the question of

distinguishability between the threshold type and the nonthreshold type models

comes up often in several modeling situations in biology, medicine and public
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health as well. In the experience of the author the nonthreshold type models
appear to be much more reasonable in certain live situations than the threshold

type models. (see Puri [12], [13], [15]).

(b) The generalized models dealt with here involving mixed Poisson processes

for the arrivals of shocks may be of some independent interest in the context

of reliability theory, keeping in mind that the parameter ) may 1p fact vary

over the population of components (or systems). In fact in their work oﬁ

accident proneness Bétes and Neyman ([2],[3]) also allowed A to be random for
similar reasons. These processes could of course be further generalized to

mj}ed nonhomogeneous Poisson processes through a time scaig change, allowing
thereby the changes in the risk over time. Also since these“phocesses are

known to have an order statistic property, it makes them easily mathematically
tractable. (see Feigen [7], Puri [8]).

(c) The considerations here of the r.v.'s such as NT(besides T) makes it amply
clear about how they could be used in reducing the problems of nonidentifiability.
In many situations however, it is possible that the r.v. NT considered here may
not be even observable. In such cases one needs to look for some other observable
variables which could be used instead. L

(d) In theorem 2(b) the identifiability of 91({§k}) was proved under the assump-
tion that the c.d.f L(x) has a nonvanishing c.f. One could instead prove the
same result under the assumption that the threshold K has all the moments and

that the r.v. A'] has m.g.f. This can be carried out by using the moment

relation

e(1") = el e, s T, (62)
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which is established using (13). It is conjectured however that ?he_fami]y
91({§k}) is identifiable without any conditions whatsoever. Similarly one could
prove the identifiability of the family Q; in theorem 3, under somewhat different
conditions than (31), to cover those cases where (31) does not hold. One such

case in mind is where a(t) = (c/t), t > 0, ¢ > 0, for which .

-1

Le(t)/t] = (c+1) (63)
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