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0. INTRODUCTION

The exponential families of distributions involving finite number of
parameters are commonly used for modeling purposes in statistical literature.
Consequently extensive research efforts have been devoted to the study of
their properties and inference problems related to them (see Lehmann (1959),
Berk (1972), Barndorf-Nielsen (1978)). There are however great number of
practical situations, where one needs to consider instead exponential families
involving infinite number of parameters. For instance, all the discrete
distributions with countably infinite support, hereafter referred to as
infinitomial distributions, fall in this category (see example 2 of next
section). One of the early papers which deals with infinitomial distributions
is due to Rao (1958). Also, there are distributions which do not form an
exponential family in the classical framework and yet they could be expressed
as members of infinite parameter exponential (IPE) families (see example 1
of next section for Cauchy family). In his study of nonparametric estimation
of densities, Crain (1974) has considered finite parameter exponential families
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as an approximation to IPE families (see also Section 6). Among others,
these are the key considerations that motivated our present work. Some
earlier works dealing with some probabilistic aspects of IPE families are
due to Soler (1977) and Johansen (1977).

Inthis paper, we introduce IPE families in Section 1 along with some
examples. Section 2 deals with some properties of such families. Asymptotic
properties of the estimators of the parameters are discussed in Sections 3-5.
An application of these results to nonparametric density estimation is given
in Section 6. Finally, it may be remarked that our present approach deals
with the simultaneous estimation of all the 1nf1nite parameters involved.

In order to accomplish this aim we have adopted the Hilbert-Space approach and
have used the properties of probability measures on Hilbert-Spaces (see
Grenander (1963)). Our approach to the statistical aspect of the problem

is similar to that of Berk (1972) for finite parameter exponential families.

l. PRELIMINARIES.

Consider a measurable space (2,8 ) with a o-finite measure p defined on
it. Let L2(u) denote the space of measurable square integrable functions. If
w(x) = =, let {H;(x), 1 > 1} be a complete orthonormal basis (CONB) for Lo(u).
If, on the other hand, u(2) < «, 1et'{Hi(x), i > 0} with Ho(x) =1 form a
CONB for Lz(u). Suppose v is another o-finite measure on (2,8 ) equivalent

to u. Let Lo be the space of all real square summable sequences. Define
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L i (x)
(1) =1t € Lot :{eF dv(x) < =}



and
T e (x)
(2) C(g) = m fe1=] dv(x) < =, for EE 2y
: X
Observe that
(3) 2= {ge Ly C(g) < =}.

It can be easily shown, using Holder inequality, that @ is a convex
set in Lo We shall only consider the case when @ has a non empty interior
90.
DEFINITION. A random variable X defined on (%,8) is said to have distribution

belonging to an infinite parameter exponential (IPE) family with respect to

(u,v) if it has a density with respect to measure v given by
(4) Foog) = e LT e (0 - ce)s,

where g€ Q.

This family will be denoted by € (u,v). Evidently in the case where
() < =, log f(x,g)eLQ(u) for every g€Q. Furthermore the family of
densities'{f(x,é), E€Q} is identifiable as we shall observe later (see
Proposition 1).

Let us now consider the special case when % 1is countable, B8 is the
o-algebra of all subsets of % and y is the counting measure on (%.8) . Let

{Ji(x), i > 0} be a CONB for Lz(u)- Then



(5) -iZ'l €1J1(X)EL2(U)¢> %: (51352’---)622.

Consider

(6) R={g €8,: exp{oo £.J.(x)} < »}.
v %':z: 121 T

Then, for £€Q,

(D) flxp) = exp[igl £9;(x) - C(5)1, xe 2,
is a probability function where

(8 () - mtz: xl [ 0, ()],

The class of distributions as defined by (7) for £€0Q is a subset of
the class of all infinitomial distributions on % (see example 2 below).

We illustrate the IPE families with the following few examples.

Example 1. (Cauchy) Let

1
(9) f(x,n) = /ﬁe‘?x,-oo<x<oo,
which is the Cauchy density with respect to v = N(0,1), the standard
normal probability measure. Let y = N(0,1). It is easy to check that

on f(x;x);e Lz(“) so that.



(10) on T(xs2) = 5 on(
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for all x, where Hy(x)- 1,'{H1(x), 1 > 0} are the Hermite polynomials and
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(11) }OHi(x) o F(x51) du(x), i > 1.

Thus

[o]

(12) f(x,2) = exp{iz] 3; () Hi(x) +ay(M)}, - = <A <o,

form an IPE family of densities.
Example 2. (Infinitomial) Let % = {xo,x],xz,...} and y and v be both

counting measures. Suppose X has a discrete distribution with

P(X=x].)=p1., i>0,

(o]

where p. > 0 for all i > 0and ) p. = 1.
i= = Lo T
i=0
Define, for i > 0,
1 if x = X;
(13) Ji(x) =
0 if x # X;

The {Ji(x), i > 0} form a CONB for 22. The probability function of X can be



written in the form .

© J.(x)
(14) o opt

= exp{.z gidi(x)}, XEX
i

0 L i=0

where £, = nPss 1> 0. 1In (14), we adopt the convention that 0 x (-«) = 0.

Here
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(15) 2= = (g8ps. )

Example 3. Let X be a random vector defined on a measurable space (%,B)
with density f with respect to a o-finite measure v. Suppose @szsz(u)
where u is a o-finite measure equivalent to v. Let {Hi(x), 1>1} be a

CONB for L2(u). Then

(16) moF0) = T a0 K0, x ez,
i21 |
where
(17) a;(f) = [ H(x) on F(x) du(x), i > 1.
, 2z
Hence
(18) f(x) = el [ a,(f) K, (x)],
i=1

which shows that f is a member of IPE family. This representation of f can
be used for a nonparametric estimation of f. Similar approaches for nonparametric
density estimation have been adopted in literature in the past where the authors

have instead assumed that fEELZ(v) (see Prakasa Rao [1983)).



Example 4. (Gaussian processes) Let {X(t), O <t < T} be a Gaussian process
with mean function m(t) and continuous covariance function R(s,t). It is
known that the process X(t) can be represented in the form

2

(19) X(t) = m(t) + jz] xf 05(t) ¥,

where Aj and ¢j(-) satisfy the integral equation

T

(20) Ao5(s) = fo R(s,t) ¢,(t) dt, 0 <s <T

and Yj are i.i.d. N(0,1), j = 1,2,... (see Basawa and Prakasa Rao (1980) ,

P. 167 and Grenander (1981), p. 64). Let, for j = 1,2,...,

.
(21) ay = fo m(t) ¢j(t) dt
and

(22) Z.=a. +22Y..

J J J J

Then Zj’ Jj =1,2,... are independent N(aj,xj). The process {X(t), 0 <t < T}
is completely determined by the sequence'{Zj, J > 1} and vice versa. Let i
denote the probability measure induced by the process X(t) on Lz([O,T]) and g

denote the probability measure induced by the same process when m(t) = 0.

It is known that p_ << y, if (a?/x.) < « (see Chatterjee and Mandrekar
m 0 '='|JJ

(1978) ). In fact, the Randon-Nikodym derivative can be written in the form



@ Pmeefi ol §
23 o— = exp Z. - 3 -
dig LRI TR &

Here the space X 1is the space of sequences (z],zz,...),.ﬁ is the o-algebra

generated by finite dimensional cylinder sets and v = Hge Let us also choose

u = Then it is clear from the earlier construction that a basis for

Up o
0
Lz(z 5B uo) is the completion under L2—norm of all functions

Z, Z.
1 1
H 1Y) L H k
it - H, T ]
1 Af k Af
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the sequence of Hermite polynomials.
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where {Hi(x), i > 1} with HO(x)_

In this framework, the density is given by

2
du © Q. Z. o A
(24) aﬁm‘= eXPg ) ‘*ﬁ‘}ﬁ (‘%9' 3] Xi§
0 j=1 A% AR j=1 %]
J J
and the family
2
du © a.
a;g* m(+) such that Z XJ- %

is an IPE family for a fixed {Aj} or equivalently for a fixed covariance
function R(s,t).
Example 5. Let {Xi’ i> 1} be i.i.d. N(0,1) and'{Yi, i > 1} be independent

random variables with Yi distributed as N(ui,of) such that

(-i) 0<€]i0.iiC2<°°,

(i1) 7 [1-65] < =,

i=1



and

(ii1)

—
-]

i
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=
A
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Let P and PO be the probability measures induced by the processes

Rsg m’l -
{Y;5 1> 1) an {X;5 1 > 1} respectively on (R,8_). It is known that
PH g and PQ 1 are equivalent for every (%,g) satisfying (i) - (iii) (see
3 ’r\l

Chatterjee and Mandrekar (1978)), so that the Radon-Nikodym derivative is
given by

dp 2

Noj o (z;-us) -

(25) Ju 1 lexpl-z 21—+ i z? o.]

dP L 2 i i

g,l i=] o |

]
[0}
x
=]
PR ol
]
Nl

Z Z? (;%" ]) + 12] “izi - c(%ac)g >

where C(H,g) is the appropriate normalizing constant. This in turn can be
rewritten as an IPE family of distributions in terms of {Hi(x)} as was done

in the last example.

2. PROPERTIES OF IPE FAMILIES.

In this section, we state and prove some important properties of IPE
families defined through (1) - (4).

Proposition 1. (i) The natural parameter space  is convex.

(ii) The family; & (u,v) is identifiable.
(iii) Let ¢(-) be any bounded measurable function on (% ,8). Then the

integral

oo

(26) [ ¢(x) exp[ }
z =

EiHi(X)] dV(x)
1

1



(iv)

10

considered as a function of the complex variables Ej = ej + i dj

(j = 1,2,...,k) with k < = while 5j's for j > k considered as real and

fixed with ) £§ < «, is an analytic function in each of these
j=k+1

variables in the region R of parameter points for which (e],...,ek)

is an interior point of Qr](%: Ej for j > k fixed with ) g§ < )
' j=k 1
considered as a set in Rk. In particular, this finite dimensional

analyticity property holds at every point in the interior of Q.

In view of (iii), the partial derivatives of all orders with respect

to ¢£'s of the integral (26) can be computed under the integral sign.

PROOF. (i) The proof is standard and follows from Holder inequality.

(i)

(27)

Let £ and g' both in ¢ be such that
f(x,%) = f(x,%'), a-e[v],

or equivalently from (4).

(g5-25) Hi(x) = C(g) - C(g'), a-e[u].

Ut~ 8
—

1

Since left side and hence the right side of (27) is square integrable
with respect to p, it follows that u(X) < «=. Consequently as per
our definition of IPE family, {Hi(x), i > 0} with Ho(x) = 1 is a CONB
for Lz(u)~ From this fact and the relation (27), 1f follows that
£y = &5 1> 1.

The proofs for (iii) and (iv) follow the standard arguments for the

finite dimensional exponential families (see Lehmann (1959)). O
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Let Ti = Hi(X), i>land]T = (Tl’TZ"")’ where the distribution of
X belongs to IPE family defined by (1) - (4). Then the following result is
given without proof as it follows from standard arguments with minor changes
(see Lehmann (1959), p. 52).

PROPOSITION 2. (i) The distribution of T for any g€ is of an IPE form

v given by

(28) Pi(g) = el T gty - C(e)] - dr(g),
for some measure A defined on the Hilbert space Lo

(ii)  For any proper subset A of il = {1,2,...}, the conditional distribution
of {Ti’ i€A} given {Ti’ ieg Z+-A} exists and is again a member of
an IPE family.

PROPOSITION 3. The family of distributions of T given by (28) for E€Q

is complete provided the interior of @ is nonempty.
PROOF. By making an appropriate translation of the parameter space, we may
assume without loss of generality that QGEQO and hence, for every k > 1,

there exists a constant a, > 0 such that

= s . 0
I = {(g1,gz,...,gk,0,0,..): -8y <E5<q> J—],Z,...,k;gjso for j>klcaq .
Let f(%) be a measurable function of,EG 20 such that

(29) E% f(l) =0, forall geaq.
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Then, for every k > 1, for all g€ Iis

=~

(30) / exp(,Z] £5t5) £1(g) any f exp( Z £5t5) F(E) da(t),
J

where f(%) = f+(§) - f’(&). Since QEEIk, the relation (30) implies that

(31) [ £ (t) dx(t)

’\J

= [f7(t) dA(t).

If the common value of (31) is zero, then>f(£) = 0, a+e[r] and the result is
proved. If the common value is positive, then dividing (30) by this common

value, we may write

(32) [ exp( Z £ t ar* = [ exp( Z] £, t ) dP7(t )
j=1 J=

where

(33) PT(£) = £ (1) dalt), dPT(L) = F7() da(t)

are probability measures on Ly Following the standard argument (see Lehmann

(1959), p. 132—33), it can be shown that

[ N
fH~1}x
—
[an)

i Z
J J
J=1 dpt(

(34) )= el " (£),

for all real ej, j=1,...,k, and for every k > 1. From (34), by letting

k ~ <, and using bounded convergence theorem, it follows that for every
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- 1
9 = (645055...) subject to [|o]] = (121 e?)z < o, We have

I~ 8
-
1 ~18

i 9.t.

0.t.
(35) fedt M (1) = fe :

1 -
P (1),

and the characteristic functionals of the probability measures p* and P™ on

Hilbert space &, coincide. Thus, using Theorem 6.2.1 of Grenander ((1963),

p. 130), it follows that P* and P~ are identical. Consequently, from (33),

we have f+(£) = f‘(&) or equivalently f(t) = 0, a-e[a]. O

PROPOSITION 4. The statistic I(X) = (H](X), H2(X),...) is a sufficient

statistic for the infinite parameter exponential family, & (u,v) given by (4).
The above proposition is an immediate consequence of Halmos-Savage
Factorization theorem. We omit the proof.

Let
(36) 2 = {geq: Eé HT]] < =1

Note that 2 is still convex. Assume that Q? is nonempty. Then, by Proposition 1,

the partial derivative vector

. C(g) C(g)
Clg) = T
0

exists for ge Q] and

(37) £(g) = (ny(g)s my(g)s...), %69(1) ’
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where

(38) nJ(‘%) = E[HJ(X)]a J=1,2,... .

3
We extend the definition of Q(%)= to o, through the relation (37) since
n:'s exist for all EE 9].

J
LEMMA 1 (1) For all £l # Ep in 27

(39) B nEp) - C&1) < g5 nlgy) - ClEy)-

(i) The mapping p(g) = é(g) is 1-1 on Q-

(ii1) C(%) is strictly convex, lower semi-continuous (%2.s.c) on 2 and
0

1°

By Jensen inequality, we have for %1, %2 €£H,

hence ‘a continuous function for %EEQ

O
)
(e}
o
-

|

(40) Eéz[ﬁm {F(X,51)/T(X,E5)1] < 0
equality holding if and only if g1 = Eo- From this and the fact that
E% |IT]] < =, for g€ Qy, the relation (39) follows. (i) is now an easy
consequence of (i). Again in (iii), the convexity of C(é) follows from

Holder inequality. To prove the lower semi-continuity of C(é), it is

sufficient to prove that

v(g) = [ exp(g'H) dv ,
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' . . 0 0
where{l;l! = (H],HZ,...),1s 2.s.c. For this, let Eg €%y Then, for g€ Q7

(a1) b(g) - blg) = fexp(glf) (exp((g-5g) 'H)-1)dv
> Jexp(ggf) ((£-£5) 'H) dv.
However
| fexp(g) ((£-50) 'H) dv]
< Hegoll [ IIRIT exp(ghh) dv < e
for
Hg-ggll < LfIIHII exp(ggh) avI'.
Thus it follows from (41) that for such g
v(g) > ulgy) - ¢
and hence C(g) is ¢.5.c. in o;. Finally the continuity of C(z) in a0 follows
from a result in Roberts and Varberg ((1973), p. 112). O

Let, for ze 22 and ,%6 91,

(42) alylg) = &'y - C(g),



16

(43) a(yIV) = supla(ylg): g€ VI,
and
(44) B(V) = {y: aly[V) < =I,

for Vc:Q1. The following lemma will be useful in the next section where
consistency properties of certain estimators of E are studied.

V) is convex, %.s.c. and

LEMMA 2. (i) For every Vc:Q], the function q(-

hence continuous.

(1) The function q(x +) is strictly concave and u.s.c. over Qq -

PROOF: (i) The properties that q(-

V) is convex and 2.s.c. follow from its
definition and that (42) is linear in Y- These two properties in turn
imply its continuity (see Roberts and Varberg (1973), p. 112). Part (ii)
is a consequence of Lemma 1 (iii).

3. STRONG CONSISTENCY.

In this section, we shall study the uniqueness and strong consistency
of the maximum 1ikelihood estimator (MLE) of £. Let X]""’Xn be i.1.d.
with common density belonging to: &€ (u,v). Let

(45) T (7 H (X)) T W)
~ = n * /> n 2] 90 00 .
7 1 ja1 273

un j=]
Note that maximizing the likelihood function (based on the sample X]""’Xn)
with respect to E is equivalent to maximizing the function q(ﬂhl%) over .

The following lemma will be used to prove the main result.
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LEMMA 3. Let 2 be Tocally compact. Then, for every %EEQ? and sufficiently

small ¢ > 0,

(46) sw - a(g5) 1) < a(al5)15)

s€
A

where V = Q] - S,
(47) S = {§€SH:]]%-%|] < e}

and q(gls) is as defined in (42).

PROOF. Fix g€ al. For s # £, by Lemma 1, we have

(48) $'n(g) - C(s) <g'nlg) - C(g), g€

If Q(é) = », then (48) holds trivially. Hence for all s # ¢ and

%651 , we have
(49) s'nlg) - C(s) < alp(e) |E)

Note that q(p(g)

«) is upper semi-continuous (u.s.c.) in view of Lemma 1 (ii{)
and (42). Furthermore V is compact.  Consequently q(Q(%)Ig) attains its
supremum for EEEV'(see Ash (1972), p. 389). The inequality (46) now follows
from (49) and the fact that g¢V. O

_ 0
%Q(X) € B (Q]), where B(.)

is as defined in (44) and ;iEQ? be the "true" parameter. Then there exists

THEOREM 1. Let o be locally compact and Q(é) = E

a measurable sequence {én} such that éhesﬁ and
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(50) llg,-£]] 0, ave as n » «.

Moreover this sequence is a unique MLE for g for large enough n.

PROOF. @, being locally compact there exists an e > 0 such that the set

:
S={sea. |ls-gl] <&

is compact. Define V = Q]-S. As a first step, we shall show that for every

sample point w, there exists n(w) such that

(51) sup  q(H [s) > sup q(H [s) = q(H [V),
- n'o nN'n un
S€S sev

for n > n(w). By strong law of large numbers (with strong convergence) for
Hilbert-space valued random elements (see Grenander (1963) , Theorem 6.4.2, p. 144)
it follows that llﬁh'ﬁ(é)ll +~ 0, a-e, as n » ». Consequently, since Q(%)EEBO(Q])
by hypothesis, for every w, there exists n](w) such that

O

(52) HBEB %),fM'ninﬁwL

V) is continuous by Lemma 2,

Again since q(-
(53) a(f, [V) > a(n(e)[V), a-e.
Analogously we also have

(54) aF, |5) ~ aln(g)|g), ave.
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From (52), (53), (54) and (46), it follows that for almost every w, there

exists n(w) such that for n > n(w)
(55) a(lf,1g) > a(f,[V).

Since g€S, (51) follows from (55). Thus, eventually, the global supremum

of Q(Eh -) is same as that over S. However, since S is compact and q(Ehl‘)

is u.s.c., it follows from a known selection theorem (see Himmelberg et.al.

(1976), p. 391), that there exists for every n, a measurable function gn

with values in S such that

(56) sup  q(f |s) = q(F |2.).
- anta a~n'tn
gezs

Since ¢ > 0 is arbitrary and én-e S, the existence of {én} which is a MLE

for large enough n and the relation (50) now follow from (51) and (56).

Finally the uniqueness of the estimator follows from the strict concavity

of q(f|+) (see Lemma 2) and the fact that 2, is convex. !
The following theorem gives a method of obtaining the MLE via the

1ikelihood equation.

THEOREM 2. Let C(s) be Frechet-differentiable for all SGEQ?. Then, for

almost every sample point w, the likelihood equation
(57) H, = ¢

has a unique solution %ﬁ for n large enough, which maximizes the Tikelihood
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0

function over Q] provided that

={y: = Q(%) for some § € Q?}

is open.
PROOF. Since ||Eh - n(g)l| ~ 0, a-e, as n » =, where QGEQ? is the "true"

parameter, for almost every sample point w, there exists n(w) such that for

n > n(w), Eﬁ‘e 9 (Q?). Consequently, since Q(g) = Q(i) is 1-1 from Q?_to

8 (Q?), equation (57) has a unique solution for n > n(w). Denote this
solution by gX. Since C(%) is convex on the open convex set Q? and the
Frechet-derivative C(gﬁ) exists, it follows from Theorem A in Roberts and
Varberg ((1973), p. 98) that

(58) C(s) - C(gk) > (3-g%)" C(g*), for g€ 9?

or equivalently

| ' *‘ w1 (% * 0
(59) 5" R(EF) - Clg) < £F' £(gk) - Cgk), for seqy.

Using (57) for g = 3 in (59), yields

60) g Hy - Cle) < 5

0]
¥ - C(g;), for $ €9,

which proves that g; maximizes the likelihood function over Q?. O
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4. WEAK CONSISTENCY AND ASYMPTOTIC NORMALITY.

In this section, we shall show that the MLE én is weakly consistent
and asymptotically normally distributed under some conditions. For this we
shall need the following Temma which is a simple consequence of Proposition 1 (iv).

LEMMA 4. Let %ego,

2
3°C(g)
(6]) C--( ) = s
1] '&K’—: BE_iBEJ-
and

for i, j =1,2,..., with

(63)  x(g) = (055005 £g) = (Ci5(e)).
Then
(64) z(g) = Clg)-

THEOREM 3. Let ® (g?) be open, where
(65) Y (szo) = {y: y = n(s), for some SGQO}
1 X X RARS» N 1°°

Also assume that for every QGEQ?, C(%) is twice Frechet differentiable and that

there exists a neighbourhood N(%) such that
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(66) 0 < inf o(C(8)) =K <=

gen) ~
where p(Q(Q)) is the infimum of the eigenvalues of the Hermitian operator
Q(Q) in %9 Then, given ¢ > 0 and %6}9?, there exists a set A(n,e) such

that

(1) P%(A(n,e)) >1-e, fornznlesg), and
(ii) for every weA(n;e) and n Z_n(s,%), the equation
(67) T -
Hn - g(é)
has a unique solution %;.
(iii) For n 3_n(s,§), define Eq = éﬁ for we A(n,e) and
Ey = 0 for w ¢ A(n,e). Then En is measurable and
- -1
(68) P%(llgn— gl[>eK ") <&, for n > n(e,g).

(iv) én maximizes the likelihood function over Q? for
w€A(n,e).
PROOF. Fix E'EQ?. By weak law of large numbers (with strong convergence)
for Hilbert-Space valued random elements (see Grenander (1963)), for every
e > 0, there exists n(e,%) such that

-

(69) P(IIH -C(%)H>e)_<_e.

‘% un n

Define A(n,e) = [IIEh - E(%)|| < ¢]. Choose ¢ sufficiently small so that



(70) ey - C(g)||< elc 8 (sz ).
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This is possible since ® (Q?) is open. For n > n(e,gl) and we A(n,e),

. T 0 . h . -0
s1nce‘ﬂne ﬂ(g1) and s1nc? S(é) is one to one from @

] to ® (g?) (see Lemma 1

(ii)), the equation H, = E(E) has a unique solution for 5, say gx. This

proves (i) and (if). For (iii) we proceed as follows

For weA(n,e) and n > n(e )

(71) e > ||H -é(g)ll
= 11EG) - SE
- llg(én)(én_é)ll

where %n =gt t (én-%) for some 0 < t < 1. The last equality follows from

the mean value theorem for functions defined on normed linear spaces (see

Roberts and Varberg (1973), p. 71). On the other hand using (66) we have

(72) 1EG ) e ] 2 K g gl

It therefore follows from (71), (72) and (69) that

(72a) ||l%n E||>8K )<P(|]H %|[>€)

A
m

This proves the weak consistency of the sequence {én}.

Finally (iv), namely



24

that én maximizes the Tikelihood function over 9? for we A(n,e) follows
from the Tines of argument as used for (58) - (60) in the proof of Theorem
2. O
It may be remarked here that the operator é(é) has an inverse whenever
0 < Q(Q(Q)) < » is satisfied. Again, in the following theorem, the symbol
-7z(m,§) will stand for the Gaussian probability measure on %9 with mean m
and covariance operator é (see Grenander (1963), p. 140 for definition).

THEOREM 4. Let

2

(73) 2, = {g €0: E%||Q(X)|| < @},
and the conditions of Theorem 3 hold with Q? replaced by Qg. Furthermore
let '

-1 - p
(74) 11776 Eg,) - LI — o
whenever
(75) e, - £ll £ 0, as n » =,

Then the MLE én of Theorem 3 is weakly consistent (with strong convergence)

and

L8[

(76) n® () > 70,17 (5) as n o

L
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PROOF. The results of Theorem 3 continue to hold even when 2 is replaced
here by 2. By the central limit theorem for Hilbert-space valued random

elements (see Grenander (1963), Theorem 6.5.1, p. 145), we have

1 i \
(77)  nE @00 - ) 5 0z,
as N » whenever‘géégz. Again using the mean value theorem for functions
defined on normed linear spaces, we have, following the notations in Theorem 3,

for n > n(e,g) and weA(n,e),

(78) ClEn) = £5) + Clst) Gme)
with
(79) st-ell < 1g, gl |-

However for we A(n,s), we also have
(80) ﬂn - E(%n)'

Thus, for n z_n(e,%), we have

Nl
o

(81) n2 57 (@, - C(2)

n® 27 e) C(s%)(E,-£) T(A(n.e))

1
=

2\ -C(e)) 1(AS(n.e))

+n



26

where I(A) is the indicator function of the event A. Since I(A(n,e)) -2 1,
as n » », the second term on the right side of (81) tends to zero in
probability. Thus the 1limit distribution of the first term on the right
side of (81) is same as that of the left side, which in view of (77) is
:72(Q,£'](g)). However, in view of (79) and the condition (74) the first
term on the right side of (81) has the same 1imit distribution as that

of n% (én-g), which proves the theorem. Here at the end we have used
STutsky type theorem for Hilbert-space valued random elements. O

2. WEAK CONVERGENCE

In this section as an alternative to the classical approach adopted in
section 4, we shall consider the weak convergence of the log-likelihood ratio

process and thereby study the asymptotic distribution of the MLE. Let

(82) () =n(s' | s

be the log-1ikelihood function based on a sample X]""’Xn from; €(u,v),

defined in section 1 but with parameter geéﬂg. Let X (t), t€2, be the

v

log-1ikelihood ratio process defined by

(83) Xo(t) = v (gt tn ®-y ()

i

s

ntn"E g - Clgrt nH) + c(g))

o

which evidently takes values in the space of continuous functions of 56522.



27

Let

P
[0 0]
~

Mrer®
-<

_—
ct

S

]
><
~—~
oct

-

1
m
™
><
=

—

oct

"

L

Since E€ %o for every 56522, by the central Timit theorem for Hilbert-

space valued random elements (see Grenander (1963), Theorem 6.5.1, p. 145),

as n - «, where % is distributed asg?z(g,Q(é)).
THEOREM 5. The process Y (t) for tege,, [[t|| < s, converges weakly, for

every § > 0, as n » », to the process

(86) , Y(%) =t'Z, ||| <s.
_ k k :
PROOF. Since 121 xiYn(Ei) converges weakly to 1Z]A1Y(£i) for every real

(A],...,xk) and arbitrary t., 1 = 1,....k with [|t.[] < s and k > 1, it
follows from Cramer-Wold theorem that the finite dimensional distributions
of the process Yn(E) converge to those of the process Y(%). The theorem

will follow once we prove the tightness condition

(87) Tim Tim P ( sup |Y (t

LU )‘Y(t)<e)=],
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for every ¢ > 0. This can be shown by using (84) and (85) as follows:

(88) Tim Tim P ( sup

1Y (t)-Y (£,)] <€)
¢:0 e % |t t||<d nielt ntvett =

1
> lim lim P _(d|[n® (H

0 ek Wt =)

> 1im P_(d|[zZ|| <€) = 1. O
T @0 & Fll < |

THEOREM 6. Let C(%) be twice continuously Frechét-differentiable at every

éesgg. Then the process X (t), [[t]]| < ¢, converges weakly for every s >0

to the process

Wik

(89) X(t) = £'Z - % GE)E 1> [12]] <6
where (.,.) denotes the inner product in %9

PROOF. The result follows from (64), (84), Theorem 5 and the fact that

(9  EX(E) = - B (E(hat 0

)t, t)
% y n N

for some 0 < o < 1, which in turn follows from Taylor expansion of

1
C(% +t n? )(see Roberts and Varberg (1973), p. 70). O
THEOREM 7. Let, for every éeégg and for the wn(g) as defined in (82), the

following conditions hold:
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(i1) C(%) is twice continuously Frechet-differentiable.

(i) é(%) is a positive definite operator.

Then a measurable MLE én exists and

-1

(92) n® (£ -6) Lo 0 (0.5 H(ED)S as n > e

PROOF. Condition (91) guarantees that the Tikelihood function is maximized

globally over Qg at a point within the region

ik

(93) By = {s: |Is-Ell <6 n ®}
for large enough § and with probability converging to one as n - =, where
g 1s the “true" parameter. On the other hand, the continuity of the function

¢n( ) and the compactness of the set B(S implies the existence of a measurable

S
n
MLE én over this set. Thus we restrict our attention to the parameter set

BG in order to study the limit distribution of én' The log-likelihood ratio
process X (t) with |[t]] < &, 1s the same as the process v (s) - v, (g), for

36536’ under the transformation

i

(94) s+ tn

By Theorem 6, the process X (t) with [|t|| < &, converges weakly to the
process X(E) as defined in (89) and hence for any continuous functional
h(-) which maps the space of continuous functions on the space |[t|]| < s,

tes, to the space %55 the following holds (Billingsley (1969)):
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(95) h(x,) £, nx), as n > =.

. 1
In particular, it follows that n<

(%n_é) has a limiting distribution which
is the same as the distribution of the location of the supremum of the
Timiting processrx(g). ‘Again using the condition (iii), it can be verified

directly that

(9%) £2-3GE LY <t2-31GE LD

(97) t=z)7 7,
thereby establishing the result (92). O

g. DENSITY ESTIMATION
In continuation to example 3 of section 1, we can estimate the density
f(x,g) belonging to, € (u,v) family, by f(x,én), where én is a MLE as

discussed in the previous sections. More specifically, let
- s 0
(98) f(X,%) - eXp{.IZ] €.|H1-(X) - C(%)}s %6923

where y is a probability measqreand {Hi(x), i > 0} with Ho(x) =1 be a

CONB for Lz(p). Let én be a MLE of £ based on a sample of size n from (98).
Then the estimator f(x,én) converges to f(x,é)»almost surely or in probability
according as én is strongly or weakly consistent. One measure of the closeness

of the estimator f(x,én) to f(x,g) may be taken to be
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(99) n Sl F(xo£) = on F(x,E)1° dulx),

which is equal to
. 2 s 2
(100) n g -gl1"+n(c(e ) - C(g))".

Under the assumption that C(g) is twice continuously Frechet differentiable

and n® (£ -f) = 0,(1), it can be shown that

(101) n{[C(g,) - p(g)lz - QB () (E,-£))} 2 0
as n -+ « where

(02)  9) - ¢ L)

Consequently, the limit distribution of (100), whenever it exists, is same as

that of the quadratic form
(103)  n((+JENGE, - £)s (E-6))

where 1 is the identity operator. Assuming that (92) holds the Timit

distribution of (103) is identical with the distribution of

(104) (L + () 2, 2)

where % is distributed as;72(0,§_1(%)). Again the distribution of (104) is
known (see, for instance, Gikhman and Skorokhod ( 1974) , p. 352).
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{. CONCLUDING REMARKS

(a) The weak convergence of the log-likelijhood ratio process as discussed
in section 5 has been found useful in literature on inference problems
for the finite parameter case. More specifically, it has been used for
the study of asymptotic theory of Bayes estimators (see Ibragimov and
Hasminskii (1981) and Basawa and Prakasa Rao (1980)). The results of
section 5 can be put to use for similar investigétions in the infinite
parameter case.

(b) It will be of interest to obtain sufficient but easily verifiable
conditions for the condition (91) to hold. The condition (91) is also
related to the problem of finding the rate of convergence of the MLE
in our present case (see Prakasa Rao (1968) and Ibragimov and Hasminskii

(1984)).

ol

(c) The condition '21 g? < = on.the parameter space arises naturally
i=
in our present approach. However there are infinite parameter families
where such a condition may not hold, for instance, see example 2 for
the infinitomial case. In order to include such cases one needs to
study appropriate extensions of the present IPE families such as the
extension to general topological vector spaces. The probabilistic
frame work for one such extension is given by Soler (1977) (see also
Johansen (1977)).
(d) Another useful extension of the present IPE families is when the Ei's
are themselves known functions of infinite number of unknown parameters
6.. Moreover the function Hi(') need not form a CONB of a Hilbert-space.

J
Such extensions are useful for statistical inference for stochastic processes
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such as the problem of estimation of drift parameter in linear stochastic
differential equation, etc.

(e) The present work was restricted to the estimation problem. The problem
of testing hypothesis concerning 3 has also been studied and shall be

dealt with elsewhere.
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