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Abstract

The problem of testing a point null hypothesis (or a "small inter-
val" null hypothesis) is considered. Of interest is the relationship
between the P-value (or observed significance level) and conditional
and Bayesian measures of evidence against the null hypothesis. Although
one might presume that a small P-value indicates the presence of strong
evidence against the null, such is not necessarily the case. Expand-
ing on earlier work (especially Edwards, Lindman, and Savage (1963)
and Dickey (1977)), it is shown that actual evidence against a null
(as measured, say, by posterior probability or comparative 1ikelihood)

can differ by an order of magnitude from the P-value. For instance,

data which yields a P-value of .05, when testing a normal mean,

results in a posterior probability of the null of at least .30 for

any objective prior distribution. ("Objective" here means that equal
prior weight is given the two hypotheses and that the prior is symmetric
and nonincreasing away from the null; other definitions of "objective"
will be seen to yield qualitatively similar results.) The overall
conclusion is that P-values can be highly misleading measures of

the evidence provided by the data against the null hypothesis.



1. INTRODUCTION

We consider the simple situation of observing a random quantity X having
density (for convenience) f(x|6), 6 being an unknown parameter assuming values
in a parameter space,@ic:]R]. It is desired to test the null hypothesis

H.: 6 = 8, versus the alternative hypothesis H1: 8 # 60, where % is a specified

0
value of 6 corresponding to a fairly sharply defined hypothesis being tested.
(Although exact point null hypotheses rarely occur, many "small interval”
hypotheses can be realistically approximated by point nulls; this issue is
discussed in Section 4.) Suppose that a classical test would be based on
consideration of some test statistic T(X), where large values of T(X) cast
doubt on HO' The P-value (or observed significance level) of observed data,
X, is then

p = Pe=eO(T(X) > T(x)).

2), o

Example 1. Suppose X = (X]""’Xn)’ where the X, are i.i.d. 7 (8,0

known. Then the usual test statistic is
T(X) = /ﬁ}ileol/c,
where X is the sample mean, and
p = 2(1-9(t)),
where ¢ is the standard normal c.d.f. gnd

t = T(x) = VA|%-0y|/o.



We will presume that the classical approach is the report of p, rather
than the reporf of a (pre-experimental) Neyman-Pearson error probability.
This is because (i) most statisticians prefer use of P-values, feeling it
to be important to indicate how strong the evidence against HO is (cf. Kiefer
(1977)); and (ii) the alternative measures of evidence we consider are based
oﬁ knowledge of x (or t=T(x)). (For a comparison of Neyman-Pearson error
probabilities and Bayesian answers, see Dickey (1977).)

There are several well known criticisms of testing a point null hypothesis.
One is the issue of "statistical" versus "practical" significance, that one
can get a very small p even when Ie-eol is so small as to make 6 equivalent
to 8 for practical purposes. (This issue dates back at least to Berkson (1938,
1942); see also Hodges and Lehmann (1954), Good (1983), and Solo (1984) for discussion
and history.) Also well known is "Jeffreys's paradox" or "Lindley's paradox",
whereby, for a Bayesian analysis with a fixed prior, and for values of t

chosen to yield a given fixed p, the posterior probability of H. goes to 1 as

0
the sample size increases. (A few references are Jeffreys (1961), Lindley
(1957), Shafer (1982), and Good (1983).) Both these criticisms are dependent
on large sample sizes and (to some extent) on the assumption that it is
plausible for 6 to equal % exactly (more on fhis later).

The issue we wish to discuss has nothing to do (necessarily) with large
sample sizes for even exact point nulls (although Targe sample sizes do tend
to exacerbate the conflict, the Jeffreys-Lindley paradox being the extreme

illustration thereof). The issue is simply that p gives a very misleading

impression as to the validity of H,, from almost any evidentiary viewpoint.
0



Example 1 (Jeffreys's Bayesian Analysis). Consider a Bayesian who chooses

the prior distribution on 6 which gives probability %—each to H0 and H], and
spreads the mass out on H] according to a 72(60,02) density. (This prior is
close to that recommended by Jeffreys (1961) for testing a point null, though
he actué]]y recommends a Cauchy form for the prior on H]. We do not attempt to
defend this choice of prior here. Particularly troubling is the choice of the
scale factor 02 for the prior on H1, though it can be argued to at ]east pro-

vide the right "scale". See Berger (1985) for discussion and references.) It

will be seen in Section 2 that the posterior probability, P(Holx), of H0 is
given by

-1/2

P(Hglx) = (1 + (1+n) ™ Zexpt?/[21+) 1)1, (1.m)

some values of which are given in Table 1 for various n and t (the t being chosen

to correspond to the indicated values of p).

Table 1. P(Holx) For Jeffreys-Type Prior

n
j2 t 1 5 10 20 50 100 1000
.10 1.645 .42 .44 .47 .56 .65 72 .89
.05 1.960 .35 .33 .37 .42 .52 .60 .82
.01 2.576 21 .13 .14 .16 .22 .27 .53

.001 3.291 .086 .026 .024 .026 .034 .045 .124




The conflict between p and P(HO]x) is apparent. If n =50 and t = 1.960, one
can classically "reject Hy at significance level p = .05," while P(H [x) =
(which would actually indicate that the evidence fgggr§_H0) For practical
examples of this conflict see Jeffreys (1961) or Diamond and Forrester (1983)

(a]though one can demonstrate the conflict with virtually any classical example).

Example 1 (An Extreme Bayesian Analysis). Again consider a Bayesian who gives

each hypothesis prior probability ;, but now suppose he decides to spread out

the mass on H1 in the symmetric fashion that is as favorable to H] as possible.

The correspond1ng values of P(H |x) are determined in Section 3, and are

given in Table 2 for certain values of t.

Table 2. P(Holx) For a Prior Biased Towards H]

P-value (p) t P(Holx)
.10 1.645 .340
.05 1.960 .227
.01 2.576 .068
.001 3.291 .0088
Again the numbers are astonishing. Althoughp = .05 when t = 1.96 is observed,

even a Bayesian analysis strongly biased towards H] states that the null has
a .227 probability of being true, evidence against the null which would not
strike many people as being very strong. It is of 1nterest to ask: just how
biased against H0 must a Bayesian analysis in this situation (i.e., when

= 1.96) be, in order to produce a poster1or probabi]ity of P(Holx) = .05?



The astonishing answer is that one must give H0 an initial prior probability
of .15, and then spread out the mass of .85 (given to H]) in the symmetric

fashion that most supports H]. Such blatant bias towards H] would hardly be

tolerated in a Bayesian analysis; but the experimenter who wants to reject

need not appear so biased - he can Jjust observe that p = .05 and reject by

“"standard practice".

If the symmetry assumption on the prior above is dropped, i.e. if one now

chooses the unrestricted prior most favorable to H], the posterior probability
is still not as low as p. For instance, Edwards, Lindman, and Savage (1963)
shows that, if each hypothesis is given initial probability %3 the unrestricted

"most favorable to H]" prior yields
_ . 2 -1
P(Hofx) = [T+exp{t/2}]""', (1.2)

the values of which are stil] substantially higher than p (e.g., when t = 1.96,
p = .05 while P(Holx) = .128).

Example 1 (A Likelihood Analysis). It is common to perceive the comparative

evidence provided by x for two possible parameter values, e] and 0,5 as

being measured by the likelihood ratio

zx(e]:ez) = f(x|e1)/f(x|92)



(cf. Edwards (1972)). Thus the evidence provided by x for 8y against some
6 # % could bé measured by Qx(eoze). Of course, we do not know which o # %
to consider, but a Tower bound on the comparative evidence would be (see

Section 3)

' f(xleo) 2 2
&X = 'Igf Q,X(GO.G) = We—) = exp{-t / .

0

Values of 4, for various t are given in Table 3.

Table 3. Bounds on the Comparative Likelihood

P-value (p) t Likelihood Ratio Lower Bound (&X)
.10 1.645 .258
.05 1.960 .146
.01 2.576 .036
.001 3.291 .0044

Again, the Tower bound on the comparative likelihood when t = 1.96 would
hardly seem to indicate strong evidence against the null, especially when
it is realized that maximizing the denominator over all o # 60 is almost

certain to strongly bias the "evidence" in favor of H].



The evidentiary clashes so far discussed involve either Bayesian or
Tikelihood analyses, analyses of which a frequentist might be skeptical. Let

us thus phrase, say, a Bayesian analysis in frequentist terms.

Example 1 (continued). Jeffreys (1980) states, concerning the answers obtained

using his type of prior for testing a point null,

"These are not far from the rough rule long known to
astronomers, i.e. that differences up to twice the
standard error usually disappear when more or better
observations become available, and that those of three

or more times usually persist."

Suppose such an astronomer learned, to his surprise, that many statistical
users rejected null hypotheses at the 5% Tevel when t = 1.96 was observed.

Being of an open mind, the astronomer decides to conduct an "experiment" to

verify the validity of rejecting HO when t = 1.96. He looks back through

his records, and finds a large number of normal tests of approximate point
nulls, in situations for which the truth eventually became known. Suppose he
first noticed that, overall, about half the point nulls were false and half
were true. He then concentrates attention on the subset he is interested in,
namely those tests>that resulted in t being between, say, 1.96 and 2. 1In this
subset of tests, the astronomer finds that HO had turned out to be true 30% of
the time, so he feels vindicated in his "rule of thumb" that t=2 does not

imply H0 should be confidently rejected.



In probability Tanguage, the "experiment" of the astronomer can be described
as taking a random series of true and false null hypotheses (half true and half
false), looking at those for which t ends up between 1.96 and 2, and finding
the Timiting proportion of these cases in which the null hypothesis was true.
It will be shown in Section 4 that this 1imiting proportion will be at least
.22.

Note the important distinction between the "experiment" here and the
typical frequentist "experiment" used to evaluate the performance of, say, the class-
ical .05 level test. The typical frequentist argument-is that, if one confines atten-
tion to the sequence of ;rgg;HO in the "experiment", than only 5% will have t>1.96.
This is, of course, true, but is not the answer the astronomer was interested
in. He wanted to know what he should think about the truth of H0 upon observing

t=2, and the frequentist interpretation of .05 says nothing about this.

At this point, there might be cries of outrage to the effect thatp = .05

was never meant to provide an absolute measure of evidence against HO’ and any

such interpretation is erroneous. The trouble with this view is that,

like it or not, people do hypothesis testing to obtain evidence as to whether
or not the hypotheses are true, and it is hard to fault the vast majority

of nonspecialists for assuming that, if p = .05,7then H0 is very likely wrong.
This is especially so since we know of no elementary texts that teach that

p = .05 (for a point null) really means that there is at best very weak

, evidence against HO‘ Indeed, most nonspecialists interpret p precisely as

P(Holx) (cf. Diamond and Forrester (1983)), which only compounds the problem.
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Before getting into technical details, it is worthwhile to discuss the main
reason for the. substantial difference between.the magnitude of p, and the ‘magni-
tude of the evidence against HD' The problem is essentially one of conditioning.
The actual vector of observations is x; andAP(HO]x) and & depend only on the evi-
dence from the actual data observed.. To calculate a P-value, however, one effective-
1y replaces x by the "knowledge" that X is in A= {y:T(y) > T(x)}, and then ‘calculates
. p = Pe=eo(A). Although the use of frequentist measures can cause problems, the
main culprit here is the replacing of x itself by A. To see this, suppose
that a Bayesian in Example 1 were told only that the observed x is in a set A.

If he were initially "50-50" concerning the truth of HO’ if he were very
uncertain about 6 should H0 be false, and if p were moderately small, then his
posterior probability of Hy would essentially equal p (see Section 4). Thus

a Bayesian sees a drastic difference between knowing x (or t) and knowing only
that x is in A.

Common sense supports the distinction betWeen x and A, as a simple
illustration shows. Suppose X is measured by a weighing scale which occassionally

"sticks" (to the accompaniment of a flashing 1ight). When the scale sticks

at 100 (recognizable from the flashing 1ight) one knows only that the true x

was, say, larger than 100. If large X casts doubt on HO’ occurrence of a
"stick" at 100 should certainly be greater evidence that H0 is false, than
should a true reading of x = 100. Thus there should be no surprise that using
A in the frequentist calculation might cause a substantial overevaluation of

the evidence against HO' Thus Jeffreys (1980) says

"I have always considered fhe arguments for the use of
P absurd. They amount to saying that a hypothesis
that may or may not be true is rejected because a
greater departure from the trial value was improbable;
that is, that it has not predicted something that

has not happened."
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What is, perhaps, surprising is the magnitude of the overevaluation that
is encountered.

An objection often raised concerning the conflict is that point null
hypothesés are not realistic, so the conflict can be ignored. It is true
that exact point null hypotheses are rarely realistic (the occasional test
for something Tike ESP perhaps befng an exception), but for a large number

of problems testing a point null hypothesis is a good approximation to the

actual problem. Typically, the actual problem may involve a test of something
Tike Hy: le-eol < b, but b will be small enough that Hy can be accurately

approximated by Hd: 0 =9 Jeffreys (1961) and Zellner (1984) argue forcefully

0
for the usefulness of point null testing, along these lines. And, even if
testing of a point null hypothesis were disreputable, the reality is that

people do it all the time (cf. the economic Titerature survey in Zellner (1984)),

and we should do our best to see that it is done well. Further discussion
is delayed until Section 4 where, to remove any Tingering doubts, small
interval null hypotheses will be dealt with.
For the most part, we will consider the Bayesian formulation of evidence
in this paper, concentrating on determination of lower bounds for P(Holx)
under various types of prior assumptions. The single prior Jeffreys analysis
s one extreme; the Edwards, Lindman, and Savage (1963) Tower bounds (in (1.2))
over essentially all priors with fixed probability of HO is anofher extreme.
We will be particularly interested in analysis for classes of symmetric priors, feel-
ing that any:"objective" analysis will involve some such symmetry assumption; a non-
symmetric prior implies that there are specifically favored alternative values of 6.
Section 2 reviews basic features of the ca1cu1ation of P(HO[x), and
discusses the Bayesian literature on testing a point null hypothesis.
Section 3 presents the various lower bounds on P(Holx). Section 4 discusses
more general null hypotheses and conditional calculations, and Section 5

considers generalizations and conclusions.
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2. POSTERIOR PROBABILITIES AND 0DDS

It is convenient to specify a prior distribution for the testing problem
as follows: Tdet 0 < Ty < 1 denote the prior probability of H0 (i.e., that
g = eo), and ™= T-no denote the prior probability of H]; furthermore,
suppose the mass on H1 (i.e., on ¢ # eo) is spread out according to the
density g(e6). One might question the assignment of a positive probability
to HO’ because it will rarely be the case that 6 = eo is thought to possibly
hold exactly. As mentioned in Section 1, however, HO is to be understood as
simply an approximation to the realistic hypothesis HO: [e-eol < b, and so 9
is to be interpreted as the prior probability that would be assigned to
{6: ]e-eoi < b}. A useful way to picture the actual prior in this case is
as a smooth density with a sharp spike near eo. (To a Bayesian, a point
null test is typically reasonable only when the prior distribution is of this

form.)

Noting that the marginal density of X is
m(x) = f(x[eg) my + (1—w0)mg(X), (2.1)
where
mg(x) = [f(x|e) g(e) do,

it is clear that the posterior probability of H0 is given by (assuming that
f(x|eo) > 0),
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P(Hylx) = f(x|og) * mo/m(x)

() m () ]
[14- - . f(gleo)] . (2.2)

Also of interest is the posterior odds ratio of H0 to H1 which is

P(HOIX) i m . f(x|90) (2.3)
,1-P(H0[x) (1—w0) mg(x) :
The factor wo/(l-no) is the prior odds ratio, while
Bg(x) = f(xleo)/mg(x) (2.4)

is the Bayes factor for H0 versus H]. Interest in the Bayes factor centers

around the fact that it does not involve the prior probabilities of the
hypotheses, and hence is sometimes interpreted as the actual odds of the
hypotheses implied by the data alone. This feeling is reinforced by noting
that Bg can be interpreted as the likelihood ratio of HO to H], where the
1ikelihood of Hy s calculated with respect to the "weighting" g(s). Of
course, the presence of g (which is a part of the prior) prevents any such
interpretation from having a non-Bayesian reality, but the lower bounds we
consider for P(HO[x) translate into lower bounds for Bg, and these lower
bounds can be considered to be "objective" bounds on the likelihood ratio
of HO to H]. Even if such an interpretation is not sought,it is helpful to

separate the effects of T and g.
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Example 1 (continued). Suppose that i is arbitrary, and that g is again
N (60,02). Since a sufficient statistic for o is X-®:72(6,02/n), we have

that mg(i) is a»72(90,02(1+n'])) distribution. Thus

By(x) = fx]eg)/my(x)

[Zﬂcz/n]-]/zexp{- 242;90)2/02}
[2n0” (140 )1 Zexpi- 2x-00) /L2 (140 1) 3

= (1+n)]/2 exp%- %tz/(1+n'])§,
and

P(Holx) = [1+(1-mp)/ (ryB )77

(]‘Wo)

5 ™2 enprg? (e,

i
[ |
—
4

which yields (1.1) for Ty = %u (The Jeffreys-Lindley Paradox is also apparent
from this expression: 1if t is fixed, corresponding to a fixed P-value, but

n>~, then P(Holx)’+ 1 no matter how small the P-value.)

1
0o 2
The choice of o = %— has obvious intuitive appeal in scientific investigations

When giving numerical results, we will tend to present P(Holx) for =, =

as being "objective." (Some might argue that 0 should even be chosen larger
than %3 since HO is often the "established theory.") Except for personal
decisions (or enlightened true subjective Bayesian hypothesis testing) it will

rarely be justifiable to choose g < %g who, after all, would be convinced by
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the statement "I conducted a Bayesian test of HO’ assigning prior probability

.1 to HO’ and my conclusion is that H0 has posterior probability .05 and

should be rejected."? We emphasize -this obvious point because some react

(personal communication) to the Bayesian-cldssical conflict by attempting to

argue that T should be made small in the Bayesian analysis so as to force agreement.
There is a substantial literature on the subject of Bayesian testing

of a point null. Among the many references to analyses with particular priors,

as in Example 1, are Jeffreys (1957, 1961), Good. (1950, 1958, 1965, 1967, 1983),

Lindley (1957, 1961, 1965, 1977), Raiffa and Schlaifer (1961), Edwards, Lindman,

and Savage (1963), Smith (1965), Dickey and Leintz (1970), Zellner (1971, 1984),

Dickey (1971, 1973, 1974, 1980), Lempers (1971), Leamer (1978), Smith and Spiegelhalter

(1980), Zellner and Siow (1980), and Diamond and Forrester (1983). Many of-these

works specifically discuss the relationship of P(Holx) to significance levels;

other papers in which such comparisons are made include Pratt (1965), DeGroot

(1973), Dempster (1973), Dickey (1977), Hi11 (1982), Shafer (1982), and Good

(1984). Finally, the papers which find Tower bounds ont and P(Holx) that

are similar to those we consider include Edwards, Lindman and Savage (1963),

Hildreth (1963), Good (1967, 1983, 1984), and Dickey (1973, 1977).
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3. LOWER BOUNDS ON POSTERIOR PROBABILITIES

3.1 Introduction

This section will examine some lower bounds on P(Holx) when g(e), the
distribution of o given that H] is true, is allowed to vary within some
class of distributions G. If the class G is sufficiently large so as to
contain all "reasonable" priors, or at least a good approximation to any
"reasonable" prior distribution on the H] parameter set, then a lower bound
on P(Holx) which is not small would seem to imply that the data x do not
constitute strong evidence against the null hypothesis HO: 6 = 64- We will
assume in this section that the parameter space is the entire real line
(although most of the results hold with only minor modification to parameter
spaces which are subsets of the real line) and will concentrate on the following

four classes of g:

{al11 distributions},

Gy

GS = {all distributions symmetric about eo},

GUS = {all unimodal distributions symmetric about eo},
GNOR = {a]1%72(60,T2) distributions, 0 5_12 < w},

Even though these G's are supposed to consist only of distributions on
{ele#éo}, it will be convenient to allow them to include distributions with
mass at 60, so that the Tower bounds we compute are always attained; the
answers are unchanged by this simplification, and cumbersome Timiting notation

is avoided. Letting

P(H,|x,G) = inf P(H;|x)
P{Hy X ;neG olX
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and

B(x,G6) = inf B _(x),
geG 9

we see immediately from formulas (2.2) and (2.4) that

B(x,G) = f(xleo)/sup mg(x)
g€G

and

"TO ) E(Xsﬁy ’

Note that sup m_(x) can be considered to be an upper bound on the "Tlikelihood"
geG
of H] over all "weights" geG, so that B(x,G) has an interpretation as a lower

bound on the comparative Tikelihood of HO and H].

3.2 Lower Bounds for G, = {Al11 Distributions}
The simplest results obtainable are for GA, and were given in Edwards,

Lindman, and Savage (1963). The proof is elementary and will be omitted.

Theorem 1. Suppose a maximum likelihood estimate of 6, call it é(x), exists

for the observed x. Then

B(x, Gy) = F(x]og)/F(x]6(x)),



and

(T-10)  £(x[6(x)) -1
B(Holxs GA) = [] + “0 ° f)(()l(leg)lj .

(Note that ij,GA) is equal to the comparative likelihood bound, Ly that
was discussed in Section 1, and hence has a motivation outside of Bayesian

analysis.)

Example 1 (continued). An easy calculation shows that, in this situation,

2
B(x, Gy) = et /2

and

T-7 2
EjHolx, GA) = [1 +(————O-)et /2]_].
"0

17

For several choices of t, Table 2 gives the corresponding two-sided P-values,

. 1
p, and the values of P(Hy[x, Gy), with Ty =

Table 4. Comparison of P-values and E(HOIX,GA) When Ty = %—'

P-value (p) t E(Holx, GA) E(Holx, GA)/Qot)
.10 1.645 .205 1.25
.05 1.960 .128 1.30
.01 2.576 .035 1.36

.001 3.291 .0044 1.35
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Note that the lower bounds on P(Holx) are considerably larger than the
corresponding P-values, in spite of the factthat minimization of P(Holx)
over gEGA is "maximally unfair" to the null hypothesis. The last column
~ shows that the ratio of P(H0|x, GA) to pt is rather stable. The behavior

of this ratio is described in more detail by Theorem 2.

Theorem 2. For t >1.68 and Ty = %-1n Example 1,

P(H,|Xx,G,) .
:-Ol—A>/§a1.253.

pt
Furthermore,
1+ I—)-(HOIX’GA) _ //F
im e = J5.
teo pt

Proof. The limit result and the inequality for t > 1.84 follow from the
Mills-ratio type inequality

L A -16'2 ) R 12, y > 0.

ye el 3ty
The left inequality here is from Feller (1968), page 175, and the right in-
equality can be proved using a variant of Feller's argument. For 1.68<t<1.84,

the 1nequa]1ty’of the theorem was verified numerically.

The interest in this theorem is that, for L - %—, we can conclude that
P(Hylx) is at least (1.25) pt, for any prior; for Targe t the use of p as evi-
dence against H0 is thus particularly bad, in-a proportional sense. (The actual

difference betweengP(Holx)”and the P-value appears to be decreasing in t, however.)



3.3 Lower Bounds for G. = {Symmetric Distributions}

There is a large gap between E(H0|x, GA) (for m, = %) and P(Holx)

0
for the Jeffreys-type single prior analysis (compare Tables 1 and 4). This
reinforces the suspicion that using GA unduly biases the conclusion against
HO’ and suggests use of more reasonable classes of priors. Symmetry of g

(for the normal problem anyway) is one natural objective assumption to make.

Theorem 3 begins the study of the class of symmetric g by showing that

minimizing P(Holx) over all geGg is equivalent to minimizing over the class
Gopg = {all symmetric two-point distributions}.
Theorem 3.

sup mg(x) = sup mg(x),
9€Bipsg g€ Gg

so that

/

§(x,G2PS) = B(x,Gg) and P(Hy[X,G,pq) = EﬂHolx,GS).

Proof. A1l elements of GS are mixtures of elements of GZPS’ and m_(x) is

g
linear when viewed as a function of g. O

Example 1 (continued). If t <1, a calculus argument shows that the symmetric

two-point distribution which strictly maximizes mg(x) is the degenerate "two-
point" distribution putting all mass at 80 Thus Eﬂx,Gs) =1 and_E(Holx,GS) =

for t < 1. (Since the point mass of 6g is not really a legitimate prior on
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{e]e#eo}, this means that observing t < 1 actually constitutes evidence in
favor of Hy for any real symmetric prior on {ele#eo}.)

If t > 1, then mg(x) is maximized by a nondegenerate element of Gops-
For moderately Tlarge t, the maximum value of mg(x) for g€ Gypg is very well

approximated by taking g to be the two-point distribution putting equal

mass at é(x) and at 260-6(x), so that

1

2
E-t .

B(x,G¢) = 7 ‘L(P =2 exp {-
5¢ (0)+5¢ (2t)

For t > 1.645, the first approximation is accurate to within 1 in the fourth
significant digit, and the second approximatioh to within 2 in the third signifi-
cant digit. Table 5 gives the value of EﬂH0|x,GS) for several choices of t,
again with L =-% .

Table 5. Comparison of P-values and E(HOIX,GS) When g -1

2
P-value (p) t P(Hyl%:65) P(Hy|%:65)/ (0 t)
.10 1.645 .340 2.07
.05 1.960 . .227 2.31
.01 2.576 .068 2.62
.001 3.291 .0088 2.68

The ratio EjHolx,Gs)/E(HO|x,GA) converges to 2 as t grows. Thus,
the discrepancy between P-values and posterior probabilities becomes even
worse when one restricts attention to symmetric priors. Theorem 4 describes
the asymptotic behavior of P(HOIX,GS)/Qot). The method of proof is the same

as for Theorem 2.
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Theorem 4. For t > 2.28 and o = %—in Example 1,

P(Hy[x,6g)
— =5 /27 =2.507.
pt
Furthermore,
P(H,|x,6c)
Tim ——O—t——5—= s
tow p

3.4 Lower Bounds for GUC = {Unimodal, Symmetric Distributions}.

Minimizing P(Holx) over all symmetric priors still involves considerable
bias against HO‘ A further "objective" restriction, which would seem
reasonable to many, is to require the prior to be unimodal, or (equivalently
in the presence of the symmetry assumption) nonincreasing in Ie-eol. If this did
not hold, there would again appear to be "favored" alternative values of 6. The
class of such priors on 6# eO has been denoted G .. Use of this class would pre-

Us

veht excessive bias towards specific 6 # 8
Theorem 5 shows that minimizing P(Holx) over geGUS'is equivalent to minimiz-

ing over the more restrictive class

us = {all symmetric uniform distributions}.
The point mass at eo is included in Z% as a degenerate case. (Obviously,
each element of GUS is a mixture of elements of 245. The proof of Theorem 5

is thus similar to that of Theorem 3, and will be omitted.)
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Theorem 5.
sup mg(x) = sup mg(x),
g€ Gyg 9¢€ Us

so that B(x,G;q) = B(x,%Ug) and P(Hy[x,Gq) = EKHOIXs?KS)-

Example 1 (continued). Since GUSCZGS, it follows from our previous remarks

that B(x,Gg) = 1 and P(Hy{x,6;g) = my when t < 1. If t > 1, then a calculus
argument shows that the ge&GUS which maximizes mg(x) will be nondegenerate.

By Theorem 5, this maximizing distribution will be uniform on the interval
(eO—Ko//ﬁ, eO+Ko//ﬁ) for some K > 0. Let mK(i) denote mg(i) when g is

uniform on (eo-Kc//ﬁ; eO+Ko//ﬁ). Since X ~ 71(6,02/n),

/0 eo'l'KG/l/YT

m(X) = ok Sog-kervm FiXI0) 60

1
2K

a |3

[e(K-t) - o(-(K+t))].
If t > 1, then the maximizing value of K satisfies g%-mK(i) = 0, so that

K[e(K+t) + o(K-t)] = e(K-t) - o(-(K+t)). (3.1)

= X-6
Note that f(i]eo) = 1% ¢< > =-Z§ @ (t). Thus if t > 1 and K maximizes

mK(i), we have

E(X,GUS)
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We summarize our results in Theorem 6.

Theorem 6. If t <1 in Example 1, then B(x,Gjq) = 1 and P(Hyx,6yg) = mp.
If t > 1, then

- 2¢ (t)
BOxGys) = S TRFE)+ KT)

and

-1
P(HolX:Gyg) = [1 + o | (e (K+t)+¢(K-t))] ,

where K > 0 satisfies (3.1).

For t > 1.645, a very accurate approximation to K can be obtained from
the following jterative formula (starting with Ky = t):

1

K.y = t + [2 Tog(K,/e(K,-t)) - 1.838]2 .

i+]
Convergence is usda]]y achieved after only 2 or 3 iterations. Also, Figures 1
and 2 give values of K and B for various values of t in this problem. For
easier comparisons, Table 6 gives EKHOIX,GUS) for some specific important values

=1
of t, and o = 5
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. , _ 1

Table 6. Comparison of P-values and EKHOIX,GUS) When g =7

N 2
P-value (p) t P(Hy [x5Gyg) E(HOIX,GUS)/Qvt )

.10 1.645 .390 1.44

.05 1.960 .290 1.51

.01 2.576 .109 1.64

.001 3.291 .018 1.66

Comparison of Table 6 with Table 5 shows that E(HOIX,GUS) is only
moderately larger than E(HOIX,GS) for P-values of .10 or .05. However,
the asymptotic behavior (as t-«).of the two Tower bounds is very different,

as the following theorem shows.

in Example 1,

N —

Theorem 7. For t > 0 and o =

P(Ho|x,6y)/ () > 1.

Furthermore,
. 2
Tim P(Hq[x,Gq)/ (pt")

toe
Proof. For t > 2.26, the previously mentioned Mills ratio inequalities were

= 1.
used together with the easily verified (for t > 2.26) inequaiity_g(x,GUS) > 2to(t).
The inequality was verified numerically for 0 < t < 2.26. |

3.5 Lower Bounds for GNOR = {Normal Distributions}.

We have seen that minimizing P(H0|x) over gegGUS.is the same as minimizing
over g€ Z(S. Although using Q(S is much more reasonable than using GA’ there
is still some residual bias against H0 involved in using Q(S' Prior opinion
densities typically look more Tike a normal density or a Cauchy density, than
like a uniform density. What happens when P(Hoix) is minimized over g€ GNOR’
that is, over scale transformations of a symmetric normal distribution, rather than
over scale transformations of a symmetric uniform distribution? This question has

been investigated by Edwards, Lindman and Savage (1963), pp. 229-231.



Figure 1. Minimizing Value of K When G = GUS'
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Figure 2. Values of g(x,GUS) in the normal example.



Theorem 8. (Edwards, Lindman, and Savage (1963)). If t <1 in Example 1,
then B(x,Gygp) = 1 and P(Hy{%sGyop) = mp- If t > 1, then

2

B(X,G ) = ‘/é- t e-t /23

~ NOR

and

=

) 204
P(Hglx,Gygg) = [1 + —on 0 SXRLL/21y1

o /e t

. =1
Table 7. Comparison of P-values and EﬁHO[x,GNOR) When m; = 3
2
P-value (p) t P(Hy | %>6yqR) E(HOIX,GNOR)/(pt )
.10 1.645 412 1.52
.05 1.960 .321 1.67
.01 2.576 . .133 2.01
.001 3.291 .0235 2.18

Except for larger t, the results for GNOR are similar to those for GUS’ and
the comparative simplicity of the formulas in Theorem 8 might make them the
most attractive lower bounds.

A graphical comparison of the lower bounds B(x,G), for the four G
considered, is given in Figure 3. Although the vertical differences are
larger than the visual discrepencies, the closeness of the bounds for GUS

and GNOR is apparent.



.
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Figure 3. Values of B(x,G) in the normal example
for different choices of G.
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4. MORE GENERAL HYPOTHESES AND CONDITIONAL CALCULATIONS

4.1 General Formulation

To verify some of the statements made in the Introduction, consider the
Bayesian calculation of P(HOIA), where H0 is of the form HO: Q€v®0 (say,
@0 = (eo—b, 60+b)), and A is the set in which x is known to reside (A may
be {x}, or a set such as {x: VHWXleol/czj.96}). Then, letting =, and =, again
denote the prior probabi]itiés of H0 and H], and introducing 9 and gy as the
densities on @, and ©, = @8 (the complement of @0), respectively, which

describe the spread of the prior mass on these sets, it is straightforward to

check that
-1
(]_WO) mg](A) .
P(HyIA) = |1 + —— . ) , (4.1)
0 mgO
where
mgi(A) = é Pe(A)gi(e) de. (4.2)

One claim made in the introduction was that, if 6, = (eo-b, 60+b) with
b suitably small, then approximating H0 by HO: 6 = eO is a satisfactory
approximation. From (4.1) and (4.2), it is clear that this will hold from
the Bayesian perspective when f(x|9) is approximately constant on{@0 (so

that Mg (x) = f(x]e)go(e)deezf(xleo); here we are assuming that A = {x}).
0 g
Note, however, that 91 is defined to give zero mass to‘®0, which might be

important in the ensuing calculations.
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For the general formulation, one can determine lower bounds on

P(HOIA) by choosing sets Go-and G] of 9 and 9qs respectively, calculating

B(A, Gy G]) = inf m_(A)/ sup m_ (A), (4.3)
9p € 6 90 gq € 6y 91

and defining

-1

P(HolAs Ggs Gy) = |1+ . . (4.4)

4.2 More General Hypotheses

Assume in this section that A = {x} (i.e., we are in the usual inference
model of observing the data). The Tower bounds in (4.3) and (4.4) can be
applied to a variety of generalizations of point null hypotheses, and still
exhibit the same type of conflict between posterior probabilities and P-values
that we observed in Section 3. Indeed, iff®0 is a small set about 89> the

general Tower bounds turn out to be essentially equivalent to the point null

lower bounds. The following is an example.

Theorem 9. In Example 1, suppose the hypotheses were HO: o € (eo—b,eo+b)
and Hy: 0 ¢ (6g=bs0ytb). If [t-vn b/c] > 1 (which must happen for a classical
test to reject HO) and GO = G] = GS (the class of all symmetric distributions

about 60), then B(x, GO’ G]) and EﬁH0|x, GO’ G]) are exactly the same as

B and P for testing the point null.

Proof. Under the assumption on b, it can be checked that the minimizing

gy s the unit point mass at 6, (the interval (64-Ds eO+b) being in the

0 ( 0
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convex part of the tail of the Tikelihood function), while the maximization

over G] is the same as before. [

Another type of testing situation which yields qualitatively similar
Tower bounds is that of testing, say, HO: o = 60 versus H]: 9 > 8- It
is assumed, here, that e = eo still corresponds to a well-defined theory to
which one would ascribe probability T of being true, but it is now presumed
that negative values of 6 are known to be impossible. Analogues of the
results in Section 3 can be obtained for this situation; note, for instance,
that G = GA = {all distributions} will yield the same lower bounds as in

Theorem 1 in Subsection 3.2.

4.3 Posterior Probabilities Conditional on Sets

We revert here to considering HO: 8 = eo,and use the general Tower
bounds in (4.3) and (4.4) to establish the two results mentioned in Section 1
concerning conditioning on sets of data. First, in the example of the
"astronomer" in Section 1, a Tower bound on the Tong run proportion of true

null hypotheses is

sup m_ (A) -1
P(H.1A) = |1 + 12, 9 "1
P(Hy] 72" P, ) ;
0

where A = {x: 1.96 < t < 2.0}. Note that Py (A) = 2[¢(2.0)-2(1.96)} = .0044,
0

while

sup m_ (A) = sup Pe(A) = ¢(.02)-2(-.02) = .016.
9 91 0

Hence E(HOIA) o [1+(.O]6)/(.OO44)]'] = .22, as stated.
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Finally, we must establish the correspondence between the P-value and
the posterior probability of H0 when the data, x, is replaced by the cruder
knowledge that x€A = {y: T(y) > T(x)}. (Note that Pq (A) =p., the P-value.)

0

A similar analysis was given in Dickey (1977). Clearly

B(A, G) = P_ (A)/sup m_(A)
% geG 9

p/sup m_(A),
geG 9

=1
so, when LA

P(HyIA, 6) = [1+sup m (A)/p].

Now, for any of the classes G considered in Section 3, it can be checked in

Example 1 that

sup m_(A) = 1;
g€ G

it follows that E(HOIA, G) = (1 + p'])'], which for small p is approximately

equal to p.
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5. CONCLUSIONS AND GENERALIZATIONS

Comment 1. A rather fascinating "empirical" observation follows from

+ .
graphing (in Example 1) B(x,G,,.) and the P-value calculated at (t-1) (the posi-

— us
tive part of (t-1)) instead of t; this last will be called .the "P-value of (t—1)+"
for brevity. Again, EIX’GUS) can be considered to be a reasonable Tower bound on
the comparative Tikelihood measure of the evidence against HO (under symmetry and
unimodality restrictions on the "weighted 1ikelihood" under H]).- Figure 4 shows

that this comparative likelihood (or Bayes factor) is close to the P-value that

would be obtained if we replaced t by (t—])+ The implication is that the "com-
monly perceived" rule of thumb, that
s .
1 means only mild evidence against HO

2 means significant evidence against H0

3 means highly significant evidence against HO

4 means overwhelming evidence against HO’
.

should, at the very least, be replaced by the rule-of-thumb

1 means no evidence against HO
4 2 means only mild evidence against H0
t_.

3 means significant evidence against H0

L 4 means highly significant evidence against HO’

and even this may be overstating the evidence against HO (see Comments 3 and 4).

Comment 2. We restricted analysis to the case of univariate 6, so as not
to lose sight of the main ideas. We are currently looking at a number of

generalizations to higher dimensional problems. It is rather easy to see
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Figure 4. Comparison of g(x,GUS) and P-values.
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that the GA bound is not very useful in higher dimensions, becoming very small as
the dimension increases. (This is not unexpected, since concentrating all mass on
the m.1.e. under the alternative becomes less and less reasonable as the dimension
increases.) The bounds for spherically symmetric (about eo) classes of priors (or,
more generally, invariant priors) seem to be quite reasonable, however, comparable
to or larger than the one dimensional bounds.

An alternative (but closely related) idea being considered for dealing with
high dimensions is to consider the classical test statistic, T(X), that would be
used, and replace f(x|e) by fT(tIe), the corresponding density of T. In goodness-
of-fit problems, for instance, T(X) is often the chi-squared statistic, having a
central chi-squared distribution under HO and a noncentral chi-squared distribution
under contiguous alternatives (cf. Cressie and Read (1984)). Writing the noncen-
trality prarmeter as n, we could reformulate the test as one of HO: n=2~0
versus H]: n > 0 (assuming, of course, that contiguous alternatives are felt
to be satisfactory; it seems 1ikely, in any case, that the lower bound on P(H0|x)
will be achieved by g concentrating on such alternatives). Thus the problem has
been reduced to a one-dimensional problem and our techniques can apply. Note the
usefulness of much of classical testing theory to this enterprise; determining a
suitable T and its distfibution forms the bulk of a classical analysis, and would

also form the basis for calculating the bounds on P(H,|x).

Comment 3. What should a statistician desiring to test a point null hypothesis do?
While it seems clearly unacceptable to use a P-value of .05 as evidence to reject,

the Tower bounds on P(H0|x) that we have considered can be argued to be of

Timited usefulness; if the Tower bound is large we know not to reject HO’ but

if the lower bound is small we still do not know if H0 can be rejected (a small
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lower bound not necessarily meaning that P(Holx) is itself small). One possible
solution is to seek upper bounds for P(Ho[x), an approach taken with some

success in Edwards, Lindman, and Savage (1963) and Dickey (1973). The trouble

is that these upper bounds do require "nonobjective" subjective input about

g. It seems reasonable, therefore, to conclude that we must embrace subjective
Bayesian analysis, in some form, in order to reach sensible conclusions about test-
ing a point null. Perhaps the most attractive possibility, following Dickey (1973),
;iswto communicate Bg(x).or P(Holx) for a wide range 6f prior inputs, allowing the
user to easily choose his own prior, and a]sd to see the effect of the choice

of prior. In Example 1, for instance, it would be a simple matter in a given
problem to consider all 72(u,r2) priors for g, and present a contour graph

of Bg(x) with respect to the variables u and 2. The reader of the study

can then choose u (often to equal eo) and 12 qnd immediately determine B or

P(HO]x) (the latter necessitating a choice of my also, of course). And by

2 over reasonable ranges, the reader could also determine

varying u and T
robustness or sensitivity to prior inputs. Note that the functional form of

g will not usually have a great effect on P(H0]x) (replacing the 7Z(u,T2)

priors by Cauchy priors would cause a substantial change only for very extreme

x) so one can usually get away with choosing a convenient form with parameters

that are easily accessible to subjective intuition. (If there was concern

about the choice of a functional form for g, the more sophisticated robustness
analysis of Berger and Berliner (1986) could be performed, an analysis which

yields an interval of values for P(Holx) as the prior ranges over all distributions
“close" to an elicited prior,) General discussions of presentation of P(Holx),

as a function of subjective inputs, can be found in Dickey (1973), Berger (1985),

and Berger and DasGupta (1985).
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Comment 4. If one insisted on creating a "standardized" significance test

for common use (as opposed to the flexible Bayesian reporting discussed above)
it would seem that the tests proposed by Jeffreys (1961) are quite suitable.

For small and moderate n in Table 1, P(Holx) is not too far from the objective
lower bounds in Table 6, say, indicating that the choice of a Jeffreys-type
prior does not excessively bias the results in favor of HO’ As n increases,

the exact P(Holx) and the lower bound diverge, but this is due to the inadequacy

of the lower bound (which does not depend on n).

Comment 5. Although for most statistical problems it is the case that, say,
E(H0|X,GUS) is substantially larger than the P-value for x, this need not

always be so, as the following example demonstrates.

Example 2. Suppose that a single Cauchy (6,1) observation, X, is obtained,
and that it is desired to test HO: 6 = 0 versus H1: 6 # 0. It can then
be shown that (for Ty = %J |

B(x,6yc) P(Hglx,6y5)

1im —= lin @ —_——— =1,
|x|+w P-value leﬁm P-value

so that the P-value does correspond to the evidentiary Tower bounds for large
|x| (see Table 8 for comparative values when |x| is small). Also of interest,
in this case, is analysis with the priors

GC = {al1 Cauchy distributions},

]

N~

since one can prove that, for x| > 1 and =, =
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EKX’GC) = _glll_. and EﬂHolxa GC) = __jﬂld___

(1+x2) (1+]x])2

(whi]e_ﬁ(x,GC) =1 and P(H,|x,6¢) = for |x| < 1). Table 8 presents values

of all of these quantities for 0 and varying |x].

Table 8. B and P For a Cauchy Distribution When T =-%

P-value (p) |X| B(x:6ys)  P(Hg[x:6yc)  B(x,6c)  P(Hy[x,G)
.50 1.000 .894 .472 1.000 .500
20 3.080 . 351 .260 .588 .370
.10 6.314 .154 .133 .309 .236
.05 12.706 .069 .064 .156 .135
.01 63.657 .0115 .0114 .031 .030
.0032 200 .0034 .0034 .010 .010

Although it is tempting to take comfort in the closer correspondence
between the P-value and EKHOIX,GUS) here, a different kind of Bayesian

conflict occurs. This conflict arises from the easily verifiable fact that,
for any fixed g,

(5.1)

Tim B . (x) =1 and Tim P(Holx) = Ty

x| 9 x|

so that Targe x provides no information to a Bayesian. Thus, rather than

this being a case where the P-value might have a reasonable evidentiary
interpretation because it agrees with EjHolx,GUS), this is a case where
E(Holx,GUS) is itself highly suspect as an evidentiary conclusion.

Note also that the situation of a single Cauchy observation is not even

irrelevant to normal theory analysis; the standard Bayesian method of analyzing
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the normal problem with unknown variance, 02, is to integrate out the
nuisance parameter 02, using a noninformative prior. The resulting
"marginal Tikelihood" for ¢ is essentially a t-distribution with (n-1)
degrees of freedom (centered at x); thus if n = 2, we are in the case
of a Cauchy distribution. As noted in Dickey (1977), it is actually
the case that, for any n in this problem, the marginal likelihood is
such that (5.1) holds. (Of course, the initial use of a noninformative

. 2 . . P
prior for ¢ is not immune to criticism.)

Comment 6. Since any unimodal symmetric distribution is a mixture of
symmetric uniforms, and a Cauchy distribution is a mixture of normals,
it is easy to establish the interesting fact that (for any situation and

any x)

B_(XaGus) = B_(Xsus) iE(X’GNOR) < B(X:Gc)'

The same argument and inequalities also hold with GC replaced by the

class of all t-distributions of a given degree of freedom.
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Testing a Point Null Hypothesis: The
Irreconcilability of P Values and Evidence

JAMES O. BERGER and THOMAS SELLKE*

The problem of testing a point null hypothesis (or a “small interval” null
hypothesis) is considered. Of interest is the relationship between the P
value (or observed significance level) and conditional and Bayesian mea-
sures of evidence against the null hypothesis. Although one might pre-
sume that a small P value indicates the presence of strong evidence
against the null, such is not necessarily the case. Expanding on carlier
work [especially Edwards, Lindman, and Savage (1963) and Dickey (1977)],
it is shown that actual evidence against a null (as measured, say, by
posterior probability or comparative likelihood) can differ by an order
of magnitude from the P value. For instance, data that yield a P value
of .05, when testing a normal mean, result in a posterior probability of
the null of at least .30 for any objective prior distribution. (“Objec-
tive” here means that equal prior weight is given the two hypotheses and
that the prior is symmetric and nonincreasing away from the null; other
definitions of “objective” will be seen to yield qualitatively similar re-
sults.) The overall conclusion is that P values can be highly misleading
measures of the evidence provided by the data against the null hypothesis.

KEY WORDS: P values; Point null hypothesis; Bayes factor; Posterior
probability; Weighted likelihood ratio.

1. INTRODUCTION

We consider the simple situation of observing a random
quantity X having density (for convenience) f(x | 6), 0
being an unknown parameter assuming values in a param-
eter space ® C R'. It is desired to test the null hypothesis
H, : 0 = 8, versus the alternative hypothesis H, : 8 # 0,
where §, is a specified value of 8 corresponding to a fairly
sharply defined hypothesis being tested. (Although exact
point null hypotheses rarely occur, many “small interval”
hypotheses can be realistically approximated by point nulls;
this issue is discussed in Sec. 4.) Suppose that a classical
test would be based on consideration of some test statistic
T(X), where large values of T(X) cast doubt on H,. The
P value (or observed significance level) of observed data,
x, is then

p = Pro_o(T(X) = T(x)).

Example 1. Suppose that X = (X, . . ., X,), where
the X; are iidd 946, ¢?), ¢* known. Then the usual test
statistic is

T(X) = Va|X — /o,
where X is the sample mean, and
p = 2(1 — @),
where @ is the standard normal cdf and
t = T(x) = Val|g — O)/o.

We will presume that the classical approach is the repbrt
of p, rather than the report of a (pre-experimental) Ney-

* James O. Berger is the Richard M. Brumfield Distinguished Pro-
fessor and Thomas Sellke is Assistant Professor, Department of Statistics,
Purdue University, West Lafayette, IN 47907. Research was supported
by National Science Foundation Grant DMS-8401996. The authors are
grateful to L. Mark Berliner, Iain Johnstone, Robert Keener, Prem Puri,
and Herman Rubin for suggestions or interesting arguments.

man-Pearson error probability. This is because (a) most
statisticians prefer use of P values, feeling it to be impor-
tant to indicate how strong the evidence against H, is (see
Kiefer 1977), and (b) the alternative measures of evidence
we consider are based on knowledge of x [or ¢ = T(x)].
{For a comparison of Neyman—Pearson error probabilities
and Bayesian answers, see Dickey (1977).]

There are several well-known criticisms of testing a point
null hypothesis. One is the issue of “‘statistical’”’ versus
“practical” significance, that one can get a very small p
even when |0 — 0, is so small as to make 8 equivalent to
6, for practical purposes. [This issue dates back at least to
Berkson (1938, 1942); see also Good (1983), Hodges and
Lehmann (1954), and Solo (1984} for discussion and his-
tory.] Also well known is “Jeffreys’s paradox” or “Lind-
ley’s paradox,” whereby for a Bayesian analysis with a
fixed prior and for values of f chosen to yield a given fixed
p, the posterior probability of H, goes to 1 as the sample
size increases. [A few references are Good (1983), Jeffreys
(1961), Lindley (1957), and Shafer (1982).] Both of these
criticisms are dependent on large sample sizes and (to
some extent) on the assumption that it is plausible for ¢
to equal 6, exactly (more on this later).

The issue we wish to discuss has nothing to do (neces-
sarily) with large sample sizes for even exact point nulls
(although large sample sizes do tend to exacerbate the
conflict, the Jeffreys-Lindley paradox being the extreme
illustration thereof). The issue is simply that p gives a very
misleading impression as to the validity of Hy, from almost
any evidentiary viewpoint.

Example 1 (Jeffreys’s Bayesian Analysis). Consider a
Bayesian who chooses the prior distribution on @, which
gives probability  each to H, and H, and spreads the mass
out on H; according to an 9u(6,, 0?) density. [This prior
is close to that recommended by Jeffreys (1961) for testing
a point null, though he actually recommended a Cauchy
form for the prior on H,. We do not attempt to defend
this choice of prior here. Particularly troubling is the choice
of the scale factor ¢? for the prior on f,, though it can be
argued to at least provide the right “scale.” See Berger
(1985) for discussion and references.] It will be seen in
Section 2 that the posterior probability, Pr(H, | x), of Hy
is given by

Pr(H, | x) = (1 + (1 + n) " exp{/[2(1 + 1/m)]})~,
(1.1)

some values of which are given in Table 1 for various n
and ¢ (the ¢ being chosen to correspond to the indicated
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Table 1. Pr(H, | x) for Jeffreys-Type Prior

P t 1 5 10 20 50 100 1,000
.10 1.645 42 44 .47 56 .65 72 .89
.05 1.960 .35 .33 .37 42 52 .60 .82
01 2.576 .21 A3 14 .16 22 27 .53

.001 3.291 .086 .026 .024 .026 .034 .045 124

values of p). The conflict between p and Pr(H, | x) is
apparent. If » = 50 and ¢+ = 1.960, one can classically
“reject Hy at significance level p = .05, although Pr(H,
| x) = .52 (which would actually indicate that the evidence
favors Hp). For practical examples of this conflict see Jef-
freys (1961) or Diamond and Forrester (1983) (although
one can demonstrate the conflict with virtually any clas-
sical example).

Example 1 (An Extreme Bayesian Analysis). Again
consider a Bayesian who gives each hypothesis prior prob-
ability £, but now suppose that he decides to spread out
the mass on H, in the symmetric fashion that is as favorable
to H, as possible. The corresponding values of Pr(H, | x)
are determined in Section 3 and are given in Table 2 for
certain values of 1. Again the numbers are astonishing.
Although p = .05 when ¢ = 1.96 is observed, even a
Bayesian analysis strongly biased toward H, states that the
null has a .227 probability of being true, evidence against
the null that would not strike many people as being very
strong. It is of interest to ask just how biased against Hy
must a Bayesian analysis in this situation (i.e., when ¢ =
1.96) be, to produce a posterior probability of Pr(H, | x)
= .05? The astonishing answer is that one must give H,
an initial prior probability of .15 and then spread out the
mass of .85 (given to H;) in the symmetric fashion that
most supports H,. Such blatant bias toward H; would hardly
be tolerated in a Bayesian analysis; but the experimenter
who wants to reject need not appear so biased—he can
just observe that p = .05 and reject by “standard prac-
tice.”

If the symmetry assumption on the aforementioned prior
is dropped, that is, if one now chooses the unrestricted
prior most favorable to H,, the posterior probability is still
not as low as p. For instance, Edwards, Lindman, and
Savage (1963) showed that, if each hypothesis. is given
initial probability £, the unrestricted “most favorable to
H,” prior yields

Pr(H, | x) = [1 + exp{}/2}]7%, (1.2)
the values of which are still substantially higher than p
[e.g., whent = 1.96, p = .05 and Pr(H, | x) = .128].

Table 2. Pr(H, | x) for a Prior Biased Toward H,

13

Example 1 (A Likelihood Analysis). It is common to
perceive the comparative evidence provided by x for two
possible parameter values, 0, and 0,, as being measured
by the likelihood ratio

100, = 02) = f(x |00/ f(x]0)

(see Edwards 1972). Thus the evidence provided by x for
6, against some 0 # 0, could be measured by [ (6, : ).
Of course, we do not know which 6 # 6, to consider, but
a lower bound on the comparative evidence would be (see

Sec. 3)

fx ] 0)

ATV _ 2
sup f(x | 0) exp{— 12},
4

I, = infl, (0, : 6) =
- 0

Values of [, for various r are given in Table 3. Again, the
lower bound on the comparative likelihood when ¢ = 1.96
would hardly seem to indicate strong evidence against the
null, especially when it is realized that maximizing the
denominator over all § 7 0, is almost certain to bias strongly
the “evidence” in favor of H,.

The evidentiary clashes so far discussed involve either
Bayesian or likelihood analyses, analyses of which a fre-
quentist might be skeptical. Let us thus phrase, say, a
Bayesian analysis in frequentist terms.

Example 1 (continued). IJeffreys (1980) stated, con-
cerning the answers obtained by using his type of prior for
testing a point null,

These are not far from the rough rule long known to astronomers, i.e.

. that differences up to twice the standard error usually disappear when

more or better observations become available, and that those of three
or more times usually persist. (p. 432)

Suppose that such an astronomer learned, to his sur-
prise, that many statistical users rejected null hypotheses
at the 5% level when ¢ = 1.96 was observed. Being of an
open mind, the astronomer decides to conduct an “ex-
periment” to verify the validity of rejecting H, when ¢ =
1.96. He looks back through his records and finds a large
number of normal tests of approximate point nulls, in
situations for which the truth eventually became known.
Suppose that he first noticed that, overall, about half of
the point nulls were false and half were true. He then
concentrates attention on the subset in which he is inter-
ested, namely those tests that resulted in ¢ beir{g between,
say, 1.96 and 2. In this subset of tests, the astronomer
finds that Hj had turned out to be true 30% of the time,
so he feels vindicated in his “rule of thumb” that r = 2
does not imply that H, should be confidently rejected.

In probability language, the “‘experiment” of the as-

Table 3. Bounds on the Comparative Likelihood

Likelihood ratio

P Value (p) t Pr(H, | x) P Value (p) t lower bound (1)
10 1.645 .340 10 1.645 .258
.05 1.960 227 .05 1.960 146
.01 . 2.576 .068 .01 2.576 .036
.001 3.291 .0088 .001 3.291 .0044
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tronomer can be described as taking a random series of
true and false null hypotheses (half true and half false),
looking at those for which ¢ ends up between 1.96 and 2,
and finding the limiting proportion of these cases in which
the null hypothesis was true. It will be shown in Section
4 that this limiting proportion will be at least .22.

Note the important distinction between the “experi-
ment” here and the typical frequentist “experiment” used
to evaluate the performance of, say, the classical .05 level
test. The typical frequentist argument is that, if one con-
fines attention to the sequence of true H, in the “experi-
ment,” then only 5% will have r = 1.96. This is, of course,
true, but is not the answer in which the astronomer was
interested. He wanted to know what he should think about
the truth of Hy upon observing ¢ = 2, and the frequentist
interpretation of .05 says nothing about this.

At this point, there might be cries of outrage to the
effect that p = .05 was never meant to provide an absolute
measure of evidence against H, and any such interpreta-
tion is erroneous. The trouble with this view is that, like
it or not, people do hypothesis testing to obtain evidence
as to whether or not the hypotheses are true, and it is hard
to fault the vast majority of nonspecialists for assuming
that, if p = .05, then H; is very likely wrong. This is
especially so since we know of no elementary textbooks
that teach that p = .05 (for a point null) really means that
there is at best very weak evidence against H,. Indeed,
most nonspecialists interpret p precisely as Pr(H, | x) (see
Diamond and Forrester 1983), which only compounds the
problem. '

Before getting into technical details, it is worthwhile to
discuss the main reason for the substantial difference be-
tween the magnitude of p and the magnitude of the evi-
dence against H,. The problem is essentially one of con-
ditioning. The actual vector of observations is x, and Pr(H,
| x) and [, depend only on the evidence from the actual
data observed. To calculate a P value, however, one ef-
fectively replaces x by the “knowledge” that Xisin A =
{y: T(y) = T(x)} and then calculates p = Pry_, (A). Al-
though the use of frequentist measures can cause prob-
lems, the main culprit here is the replacing of x itself by
A. To see this, suppose that a Bayesian in Example 1
were told only that the observed x is in a set A. If
he were initially “50-50” concerning the truth of Hj, if
he were very uncertain about § should H, be false, and
if p were moderately small, then his posterior probability
of H, would essentially equal p (see Sec. 4). Thus a Bayes-
ian sees a drastic difference between knowing x (or ) and
knowing only that x is in A.

Common sense supports the distinction between x and
A, as a simple illustration shows. Suppose that X is mea-
sured by a weighing scale that occasionally “sticks” (to
the accompaniment of a flashing light). When the scale
sticks at 100 (recognizable from the flashing light) one
knows only that the true x was, say, larger than 100. If
large X casts doubt on Hy, occurrence of a “‘stick” at 100
should certainly be greater evidence that H, is false than
should a true reading of x = 100. Thus there should be
no surprise that using A in the frequentist calculation might
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cause a substantial overevaluation of the evidence against
H,. Thus Jeffreys (1980) wrote

[ have always considered the arguments for the use of P absurd. They
amount to saying that a hypothesis that may or may not be true is rejected

because a greater departure from the trial value was improbable; that
is, that it has not predicted something that has not happened. (p. 453)

What is, perhaps, surprising is the magnitude of the over-
evaluation that is encountered.

An objection often raised concerning the conflict is that
point null hypotheses are not realistic, so the conflict can
be ignored. It is true that exact point null hypotheses are
rarely realistic (the occasional test for something like ex-
trasensory perception perhaps being an exception), but
for a large number of problems testing a point null hy-
pothesis is a good approximation to the actual problem.
Typically, the actual problem may involve a test of some-
thing like H, : [0~ 0y = b, but b will be small enough
that H, can be accurately approximated by H, : 0 = 0,.
Jetfreys (1961) and Zellner (1984) argued forcefully for
the usefulness of point null testing, along these lines. And,
even if testing of a point null hypothesis were disreputable,
the reality is that people do it all the time [see the economic
literature survey in Zellner (1984)], and we should do our
best to see that it is done well. Further discussion is delayed
until Section 4 where, to remove any lingering doubts,
small interval null hypotheses will be dealt with.

For the most part, we will consider the Bayesian for-
mulation of evidence in this article, concentrating on de-
termination of lower bounds for Pr(H, | x) under various
types of prior assumptions. The single prior Jeffreys anal-
ysis is one extreme; the Edwards et al. (1963) lower bounds
[in (1.2)] over essentially all priors with fixed probability
of H, is another extreme. We will be particularly intérested
in analysis for classes of symmetric priors, feeling that any
“objective” analysis will involve some such symmetry as-
sumption; a nonsymmetric prior implies that there are
specifically favored alternative values of 6.

Section 2 reviews basic features of the calculation of
Pr(H, | x) and discusses the Bayesian literature on testing
a point null hypothesis. Section 3 presents the various
lower bounds on Pr(H, | x). Section 4 discusses more gen-
eral null hypotheses and conditional calculations, and Sec-
tion 5 considers generalizations and conclusions.

2. POSTERIOR PROBABILITIES AND ODDS

It is convenient to specify a prior distribution for the
testing problem as follows: let 0 < 7y < 1 denote the prior
probability of H, (i.e., that § = 6;), and let n;, = 1 ~ 7,
denote the prior probability of H;; furthermore, suppose
that the mass on H, (i.e., on 0 # 6,) is spread out according
to the density g(6). One might question the assignment
of a positive probability to Hj, because it will rarely be
the case that it is thought possible for § = 6§, to hold
exactly. As mentioned in Section 1, however, H, is to be
understood as simply an approximation to the realistic
hypothesis H, : |0 — 6| = b, and so = is to be interpreted
as the prior probability that would be assigned to {0 : |0
— 0| = b}. A useful way to picture the actual prior in this
case is as a smooth density with a sharp spike near 6,. (To
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a Bayesian, a point null test is typically reasonable only
when the prior distribution is of this form.)
Noting that the marginal density of X is

m(x) = f(x|O)my + (1 — m)my(x), (2.1)

where
my(x) = j F(x] 0)g(0) do,

it is clear that the posterior probability of Hj is given by
(assuming that f{x | 0,) > 0)

Pr(Hy | x) = f(x|0p) X me/m(x)
mMy(x)

_ (1» - 7To) o
“[” 7 Xf(xi(}n)} - 22

Also of interest is the posterior odds ratio of H, to H),
which is

Pr(H, | x) _ Ty % f(x | 0o)
1= Pr(Hy|x) (1 — 1) | myx)
The factor /(1 — ) is the prior odds ratio, and

By(x) = f(x | 0o)/my(x) (2.4)
is the Bayes factor for H, versus H,. Interest in the Bayes
factor centers around the fact that it does not involve the
prior probabilities of the hypotheses and hence is some-
times interpreted as the actual odds of the hypotheses
implied by the data alone. This feeling is reinforced by
noting that B, can be interpreted as the likelihood ratio
of Hy to H,, where the likelihood of H, is calculated with
respect to the “weighting” g(8). Of course, the presence
of g (which is a part of the prior) prevents any such inter-
pretation from having a non-Bayesian reality, but the lower
bounds we consider for Pr(H, | x) translate into lower
bounds for B,, and these lower bounds can be considered
to be “objective” bounds on the likelihood ratio of H, to
H,. Evenifsuch an interpretation is not sought, it is helpful
to separate the effects of nyand g.

2.3)

Example 1 (continued). Suppose that n, is arbitrary
and g is again 9U(0,, ¢%). Since a sufficient statistic for 0
is X ~ 9U0, ¢*/n), we have that m,(X) is an 96, o}(1
+ n~!)) distribution. Thus

By(x)
= FCx | B0)Imy(®)
[2no/n]~12 exp{ —g x- 00)2/02}

27aX(L+n-)]" "2 exp{—4(F— 0o [o*(L+n )]}

= (1 + ) exp{—32/(1 + n7Y)},
and

Pr(H, | x) [1+ (1 = 7o)/ (mB)]™!

- [1 I ) (1 + n)~1?
Ty R

-1
X exp{sf/(1 + n"‘)}} )

115

which yields (1.1) for n, = 3. [The Jeffreys-Lindley par-
adox is also apparent from this expression: if ¢ is fixed,
corresponding to a fixed P value, but n — =, then Pr{H,
| x) = 1 no matter how small the P value.]

When giving numerical results, we will tend to present
Pr(H, | x) for my = §. The choice of 7, = % has obvious
intuitive appeal in scientific investigations as being “‘ob-
jective.” (Some might argue that =, should even bé chosen
larger than 3, since H, is often the “established theory.”)
Except for personal decisions (or enlightened true sub-
jective Bayesian hypothesis testing) it will rarely be jus-
tifiable to choose ny < §; who, after all, would be convinced
by the statement “I conducted a Bayesian test of H,, as-
signing prior probability .1 to H,, and my conclusion is
that H, has posterior probability .05 and should be re-
jected”? We emphasize this obvious point because some
react to the Bayesian-classical conflict by attempting to
argue that 7, should be made small in the Bayesian analysis
so as to force agreement.

There is a substantial amount of literature on the subject
of Bayesian testing of a point null. Among the many ref-
erences to analyses with particular priors, as in Example
1, are Jeffreys (1957, 1961), Good (1930, 1958, 1965, 1967,
1983), Lindley (1957, 1961, 1965, 1977), Raiffa and Schlai-
fer (1961), Edwards et al. (1963), Smith (1963), Dickey
and Lientz (1970), Zellner (1971, 1984), Dickey (1971,
1973, 1974, 1980), Lempers (1971), Leamer (1978), Smith
and Spiegelhalter (1980), Zellner and Siow (1980), and
Diamond and Forrester (1983). Many of these works spe-
cifically discuss the relationship of Pr(H, | x) to significance
levels; other papers in which such comparisons are made
include Pratt (1965), DeGroot (1973), Dempster (1973),
Dickey (1977), Hill (1982), Shafer (1982), and Good (1984).
Finally, the articles that find lower bounds on B, and Pr(H,
| x) that are similar to those we consider include Edwards
et al. (1963), Hildreth (1963), Good (1967, 1983, 1984),
and Dickey (1973, 1977).

3. LOWER BOUNDS ON POSTERIOR PROBABILITIES
31 Introduction

This section will examine some lower bounds on Pr(H,
| x) when g(6), the distribution of § given that H, is true,
is allowed to vary within some class of distributions G. If
the class G is sufficiently large so as to contain all “rea-
sonable” priors, or at least a good approximation to any
“reasonable” prior distribution on the H, parameter set,
then a lower bound on Pr(H, | x) that is not small would
seem to imply that the data x do not constitute strong
evidence against the null hypothesis H, : § = 6,. We will
assume in this section that the parameter space is the entire
real line (although most of the results hold with only minor
modification to parameter spaces that are subsets of the
real line) and will concentrate on the following four classes
of g: G4 = {all distributions}, G5 = {all distributions sym-
metric about 6}, Gys = {all unimodal distributions sym-
metric about 6y}, Gyor = {all 9Y0,, 7?) distributions, 0 <
7* < «}. Even though these G’s are supposed to consist
only of distributions on {0 | 6 # 0}, it will be convenient
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to allow them to include distributions with mass at 0,, so
the lower bounds we compute are always attained; the
answers are unchanged by this simplification, and cum-
bersome limiting notation is avoided. Letting

Pr(H, | x, G) = inf Pr(H, | x)

geG
and
B(x, G) = inf By(x),

$€G
we see immediately from formulas (2.2) and (2.4) that
B(x, G) = f(x| 6)/sup my(x)

ZEG

and

Pr(H, | x G):[H(l””")x ! ] |
= ’ Ty §(x’ G) .
Note that sup,e #71,(x) can be considered to be an upper
bound on the “likelihood” of H; over all “weights” g €
G, s0 B(x, G) has an interpretation as a lower bound on
the comparative likelihood of H, and H,.

3.2 Lower Bounds for G, = {All Distributions}

The simplest results obtainable are for G, and were
given in Edwards et al. (1963). The proof is elementary
and will be omitted.

Theorem I.  Suppose that a maximum likelihood esti-
mate of § [call it 6(x)], exists for the observed x. Then

B(x, Ga) = f(x]6)/f(x ] 0(x)),

and

(- ) flx] é(x»] K
Ty flx | 09)
[Note that B(x, G,) is equal to the comparative likelihood

bound, [, that was discussed in Section 1 and hence has
a motivation outside of Bayesian analysis.]

E(Holx; G4) = [1 +

Example 1 (continued). An easy calculation shows that,
in this situation, '

-2

E(x’ GA) =€

and
-1
Pr(Hg I X, GA) - [1 + (1—_—@ 612/2] .
= -
For several choices of ¢, Table 4 gives the corresponding

‘two-sided P values, p, and the values of Pr(H, | x, G,),
with 7, = §. Note that the lower bounds on Pr(H, | x) are

Table 4. Comparison of P Values and Pr(H, | x, G,) When n, = #

P Value (p) t Pr(H, | x, Ga) Pr(Hy | x, Ga)/(pt)
10 1.645 .205 1.25
.05 1.960 128 1.30
.01 2.576 035 1.36
001 3.291 0044 1.35
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considerably larger than the corresponding P values, in
spite of the fact that minimization of Pr(H, | x) over g €
G, is “maximally unfair” to the null hypothesis. The last
column shows that the ratio of Pr(H, | x, G,) to pt is rather
stable. The behavior of this ratio is described in more detail
by Theorem 2.

Theorem 2. Fort > 1.68 and 7, = % in Example 1,
Pr(H, | x, Gy)/pt > Vr/2 = 1.253.
Furthermore, ’

lim Pr(H, | x, G.)/pt = Vai2.

Proof. The limit result and the inequality for r = 1.84
follow from the Mills ratio-type inequality

1 _yl1- e} _ | 1

y? o(y) R

The left inequality here is from Feller (1968, p. 175), and
the right inequality can be proved by using a variant of
Feller’s argument. For 1.68 < ¢ < 1.84, the inequality of
the theorem was verified numerically.

1 - y > 0.

The interest in this theorem is that, for z, = %, we can
conclude that Pr(H, | x) is at least (1.25) pt, for any prior;
for large ¢ the use of p as evidence against Hj is thus
particularly bad, in a proportional sense. [The actual dif-
ference between Pr(H, | x) and the P value, however,
appears to be decreasing in ¢.]

3.3 Lower Bounds for G; =
{Symmetric Distributions}

There is a large gap between Pr(H, | x, G,) (for ny =
$) and Pr(H, | x) for the Jeffreys-type single prior analysis
(compare Tables 1 and 4). This reinforces the suspicion
that using G, unduly biases the conclusion against H, and
suggests use of more reasonable classes of priors. Sym-
metry of g (for the normal problem anyway) is one natural
objective assumption to make. Theorem 3 begins the study
of the class of symmetric g by showing that minimizing
Pr(H, | x) over all g € G is equivalent to minimizing over
the class G,ps = {all symmetric two-point distributions}.

Theorem 3.
sup mg(x) = sup m,(x),
gEGurs £€Gs
sO
B(x, Gyps) = B(x, Gy)
and

&(Ho ] x, Gyps) = E(Ho | x, Gg).

Proof. All elements of G are mixtures of elements of
G, ps, and my(x) is linear when viewed as a function of g.

Example 1 (continued). 1If t = 1, a calculus argument
shows that the symmetric two-point distribution that strictly
maximizes m,(x) is the degenerate “‘two-point” distribu-
tion putting all mass at 0,. Thus B(x, G5) = 1 and Pr(H,
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Table 5. Comparison of P Values and Pr(H, | x, Gs) When n, = 4

P Value (p) t Pr(Hy | x, Gs) Pr(Ho | x, Gs)/(pt)
.10 1.645 340 2.07
.05 1.960 227 2.31
01 2576 068 2.62
.001 3.291 .0088 2.68

| x, Gg) = m, for t = 1. (Since the point mass at 0, is not
really a legitimate prior on {# | 6 # 0}, this means that
observing ¢ = 1 actually constitutes evidence in favor of
H, for any real symmetric prior on {0 | 0 # 0,}.)

If ¢ > 1, then my(x) is maximized by a nondegenerate
element of G,ps. For moderately large ¢, the maximum
value of my(x) for g € G,py is very well approximated by
taking g to be the two-point distribution putting equal mass
at §(x) and at 26, — d(x), so

o()
50(0) + 30(21)

For ¢ = 1.645, the first approximation is accurate to within
L in the fourth significant digit, and the second approxi-
mation to within 2 in the third significant digit. Table 5
gives the value of Pr(H, | x, Gy) for several choices of ¢,
again with n, = §.

The ratio Pr(H, | x, Gg)/Pr(H, | x, G,) converges to 2
as ¢ grows. Thus the discrepancy between P values and
posterior probabilities becomes even worse when one re-
stricts attention to symmetric priors. Theorem 4 describes
the asymptotic behavior of Pr(H, | x, G4)/(pt). The method
of proof is the same as for Theorem 2.

B(x, Gy) = = 2 exp{—3i’}.

Theorem 4. Fort > 2.28 and n, = § in Example 1,
Pr(H, | x, Gs)/pt > V2r = 2.507.
Furthermore,

lim Pr(H, | x, Gg)/pt = V2x.

fs0

3.4 Lower Bounds for Gy; = {Unimodal,
Symmetric Distributions}

Minimizing Pr(H, | x) over all symmetric priors still
involves considerable bias against H,. A further “objec-
tive” restriction, which would seem reasonable to many,
is to require the prior to be unimodal, or (equivalently in
the presence of the symmetry assumption) nonincreasing
in |0 — 6y|. If this did not hold, there would again appear
to be “favored” alternative values of 6. The class of such
priors on 0 # @, has been denoted by Gys. Use of this
class would prevent excessive bias toward specific 6 5 6.

Theorem 5 shows that minimizing Pr(H, | x) over g €
Gys is equivalent to minimizing over the more restrictive
classUs = {all symmetric uniform distributions}. The point
mass at 0, is included in 9 as a degenerate case. (Ob-
viously, each element of Gy is a mixture of elements of
Us. The proof of Theorem 5 is thus similar to that of
Theorem 3 and will be omitted.)

17

Theorem 3.

sup m,(x)
8EGus

s0 B(x, Gys) = B(x, 95) and Pr(Hy | x, Gys) = Pr(H, |
X, 6“5)

= sup my(x),
gEUs

Example 1 (continued). Since Gys C G, it follows
from our previous remarks that B(x, Gys) = 1 and Pr(H,
|x, Gys) = mowhen = 1.1f¢> 1, then a calculus argument
shows that the g € G that maximizes m,(x) will be non-
degenerate. By Theorem 5, this maximizing distribution
will be uniform on the interval (0, — Ko/Vn, o, + Ko/
Vn) for some K > 0. Let mg(X) denote m,(X) when g is
uniform on (0, — Ko/\Vn, 6, + Ka/Vn). Since X ~ N0,

o*ln),
m(%) = (Val20K) fo"”‘“’v_; F(Z]0) do

0y~ Ko!Vn
= (Vnla)12K)[®(K ~ 1) — &(~(K + )].

If + > 1, then the maximizing value of K satisfies 9/
aKYm(%) = 0, so
Klp(K + 1) + o(K — 1]

=K — 1) - P(—(K + 1)). (3.1)

Note that

(\/i;/a)qp(t).

X—-0
x| 6) = (Val ") =
18 = Vit
Thus if £ > 1 and K maximizes mg(X), we have

fE16) _ 2(0)
me@ oK+ 0 + oK )

We summarize our results in Theorem 6.

§(xv GUS) =

Theorem 6. If t = 1 in Example 1, then B(x, Gys) =
1 and RI:(HO I X, Gus) = Ty. If¢ > 1, then

20(8)
oK+ 8) + o(K — 1)

g(xa GUS) =

and

Pr(H, | x, Gus) = [1 LA -

o

o WK+ 1) + g(K ~ t))]“l
- 20(1) ’

where K > 0 satisfies (3.1).

For ¢ = 1.645, a very accurate approximation to K can
be obtained from the following iterative formula (starting
with Ky = #):

Koy =t + [2 log(Ki/D(K; — 1)) — 1.838]'"
Convergence is usually achieved after only 2 or 3 itera-
tions. In addition, Figures 1 and 2 give values of K and B
for various values of ¢ in this problem. For easier com-
parisons, Table 6 gives Pr(H, | x, Gys) for some specific
important values of ¢, and 7, = .

Comparison of Tabie 6 with Table 5 shows that
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K3

Figure 1. Minimizing Value of K When G = Gys.

Pr(H, | x, Gys) is only moderately larger than Pr(H, | x,
Gs) for P values of .10 or .05. The asymptotic behavior
(as t — =) of the two lower bounds, however, is very
different, as the following theorem shows.

Theorem 7. Fort > 0 and ny = 3 in Example 1,
Pr(Hy | x, Gys)/(pt?) > 1.
Furthermore,

llm &(HO | X, Gus)/(ptz) = 1.

Proof. For t > 2.26,the previously mentioned Mills ratio
inequalities were used together with the easily verified (for
t > 2.26) inequality B(x, Gys) > 2tp(t). The inequality
- was verified numerically for 0 < r = 2.26.

3.5 Lower Bounds for Gyor = {Normal
Distributions}

We have seen that minimizing Pr(H, | x) over g € Gys
is the same as minimizing over g € ;. Although using U
is much more reasonable than using G, there is still some
residual bias against H, involved in using 94,. Prior opinion
densities typically look more like a normal density or a
_ Cauchy density than a uniform density. What happens
when Pr(H, | x) is minimized over g € Gyog, that is, over
scale transformations of a symmetric normal distribution,
rather than over scale transformations of a symmetric uni-
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Figure 2. Values of B(x, Gys) in the Normal Example.

form distribution? This question was investigated by Ed-
wards et al. (1963, pp. 229-231).

Theorem 8. (See Edwards et al. 1963). If r = 1 in
Example 1, then B(x, Gyor) = 1 and Pr(H, | x, Gyor). =
ny. If t > 1, then

B(x, Gnor) = Vete

and

(L-m) exp{ﬁ/z}]‘1
Ty \/E t '

Table 7 gives Pr(H, | x, Guor) for several values of t.
‘Except for larger ¢, the results for Gygy are similar to those
for Gys, and the comparative simplicity of the formulas
in Theorem 8 might make them the most attractive lower
bounds. - )

A graphical comparison of the lower bounds B(x, G),
for the four G’s considered, is given in Figure 3. Although
the vertical differences are larger than the visual discrep-
ancies, the closeness of the bounds for Gys and Gyop is
apparent.

Pr(H, | x, Gyor) = [1 +

‘Table 6. Comparison of P Values and Pr(H, | x, Gus) When n, = }

P Value (p) - t Pr(Ho | X, Gus) Pr(Hy | X, Gus)!(pt?)
10 1.645 390 1.44
05 1.960 290 1.51
01 2,576 109 1.64
.001 3.291 018 1.66
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Table 7. Comparison of P Values and Pr(H, | x, Gnos) When =, = }

P Value (p) t Pr(H, | X, Gwon) Pr(H, I %, Gron)/(pt?)
.10 1.645 412 1.52
.05 1.960 321 1.67
01 2.576 133 2.01
001 3.291 .0235 2.18

4. MORE GENERAL HYPOTHESES AND
'CONDITIONAL CALCULATIONS

41 General Formulation

To verify some of the statements made in the Introduc-
tion, consider the Bayesian calculation of Pr(H, | A), where
H, is of the form H, : 0 € O, [say, O, = (0, — b, 0, +
b)] and A is the set in which x is known to reside (A may
be {x}, or a set such as {x: V[t ~ f|/c = 1.96}). Then,
letting 7, and 7, again denote the prior probabilities of H,
and H, and introducing g, and g, as the densities on 0,
and 0, = 0 (the complement of ©,), respectively, which
describe the spread of the prior mass on these sets, it is
straightforward to check that

mg (A)
m,(A)

Pr(H, | A) = [1 L ; ) ] ,(4.1)
0

where.

me(4) = | Pra(A)g(6) do. .2)

One claim made in the Introduction was that, if @, =
(0y — b, 0y + b) with b suitably small, then approximating

1.O
0.9
0.8
0.7
0.6
0.5

0.4

BOUNDS ON B

0.3

0.2

0.1

Figure 3. Values of B(x, G) in the Normal Example for Different Choices
of G.
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Hy by Hy: 0 = 6, is a satisfactory approximation. From
(4.1) and (4.2), it is clear that this will hold from the
Bayesian perspective when f(x | 6) is approximately con-
stant on 0, [s0 m,,(x) = fo, F(x | 0)go(0) d0 = f(x | 00);
here we are assuming that A = {x}]. Note, however, that
g is defined to give zero mass to ®,, which might be
important in the ensuing calculations.

For the general formulation, one can determine lower
bounds on Pr(H, | A) by choosing sets GO and G, of g,
and g,, respectively, calculating

B(A, G,, Gy) = inf my(A)/sup my(A), (4.3)
80€Cy B1€G,
and defining
?_[:(HO [ A1 G()s Gl)
(1 - 7'[0) 1 -1
=11+ . (44
[ Ty . ﬁ(l‘L Gy, Gy) 44

42 More General Hypotheses

Assume in this section that A = {x} (i.e., we are in the
usual inference model of observing the data). The lower
bounds in (4.3) and (4.4) can be applied to a variety of
generalizations of point null hypotheses and still exhibit
the same type of conflict between posterior probabilities
and P values that we observed in Section 3. Indeed, if ®,
is a small set about 8y, the general lower bounds turn out
to be essentially equivalent to the point null lower bounds.
The following is an example.

Theorem 9. InExample 1, suppose that the hypotheses
were Hy: 0 € (6, — b, 0, + b) and H, : 0 & (6, — b,
6y + b). If |t — Vn blo| = 1 (which must happen for a
classical test to reject Hy) and Gy = G; = G (the class
of all symmetric distributions about ), then B(x, G,, G,)
and Pr(H, | x, G,, G,) are exactly the same as B and P for
testing the point null.

Proof. Under the assumption on b, it can be checked
that the minimizing g, is the unit point mass at 6, [the
interval (6, — b, 6, + b) being in the convex part of the
tail of the likelihood function]; whereas the maximization
over G, is the same as before. :

Another type of testing situation that yields qualitatively
similar lower bounds is that of testing, say, H; : 0 = 6,
versus H, : § > 6;. It is assumed, here, that 8 = 0, still
corresponds to a well-defined theory to which one would
ascribe probability 7, of being true, but it is now presumed
that negative values of ¢ are known to be impossible.
Analogs of the results in Section 3 can be obtained for
this situation; note, for instance, that G = G, = {all
distributions} will yield the same lower bounds as in Theo-
rem 1 in Section 3.2.

4.3 Posterior Probabilities-Conditional on Sets

We revert here to considering H; : 8 = 6, and use the
general lower bounds in (4.3) and (4.4) to establish the
two results mentioned in Section 1 concerning conditioning
on sets of data. First, in the example of the “astronomer”
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in Section 1, a lower bound on the long-run proportion of
true null hypotheses is

sup m1,(A) -
4]

B | O

Py (A) ’

where A = {x: 1.96 < r = 2.0}. Note that Pr,(A) =
2[P(2.0) — ®(1.96)] = .0044, whereas

sup my (A) = sup Pry(A) = &(.02) — ®(-.02) = .016.
& 4

Hence Pr(H, | A) = [1 + (.016)/(.0044)]"' = .22, as
stated.

Finally, we must establish the correspondence between
the P value and the posterior probability of H; when the
data, x, are replaced by the cruder knowledge thatx € A
= {y: T(y) = T(x)}. [Note that Pr,(A) = p, the P value.]
A similar analysis was given in Dickey (1977). Clearly,

B(A, G) = Pry(A)/sup my(A)
- gEG

= p/sup my(A),
8ECG

so, when 7y = 3,
Pr(Hy | A, G) = [1 + sup my(A)/p]™".
gECG

Now, for any of the classes G considered in Section 3, it
can be checked in Example 1 that

sup m,(A) = 1;
gEGC

it follows that Pr(H, | A, G) = (1 + p~')~!, which for
small p is approximately equal to p.

5. CONCLUSIONS AND GENERALIZATIONS

Comment 1. A rather fascinating ‘“‘empirical” obser-
vation follows from graphing (in Example 1) B(x, Gys)
and the P value calculated at (¢ — 1)* [the positive part
of (¢ — 1)] instead of ¢; this last will be called the “P value
of (¢ — 1)*” for brevity. Again, B(x, Gys) can be consid-
ered to be a reasonable lower bound on the comparative
likelihood measure of the evidence against H, (under sym-
metry and unimodality restrictions on the “weighted like-
lihood” under H,). Figure 4 shows that this comparative
likelihood (or Bayes factor) is close to the P value that
would be obtained if we replaced ¢ by (¢ — 1)*. The im-
plication is that the “‘commonly perceived” rule of thumb,
that ¢ = 1 means only mild evidence against Hy, t = 2
means significant evidence against Hy, ¢ = 3 means highly
significant evidence against H,, and f = 4 means over-
whelniing evidence against Hy, should, at the very least,
be replaced by the rule of thumb ¢ = 1 means no evidence
against Hy, t = 2 means only mild evidence against Hy, ¢
= 3 means significant evidence against Hy, and = 4

-means highly significant evidence against Hy, and even this
may be overstating the evidence against H, (see Comments
3 and 4).

Comment 2. We restricted analysis to the case of uni-
variate 6, so as not to lose sight of the main ideas. We are
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Figure 4. Comparison of B(x, Gys) and P Values.

currently looking at a number of generalizations to higher-
dimensional problems. It is rather easy to see that the G,
bound is not very useful in higher dimensions, becoming
very small as the dimension increases. (This is not unex-
pected, since concentrating all mass on the MLE under
the alternative becomes less and less reasonable as the
dimension increases.) The bounds for spherically sym-
metric (about 6,) classes of priors (or, more generally,
invariant priors) seem to be quite reasonable, however,
comparable with or larger than the one-dimensional bounds.

An alternative (but closely related) idea being consid-
ered for dealing with high dimensions is to consider the
classical test statistic, T(X), that would be used and re-
place f(x | 0) by f(¢| 0), the corresponding density of T.
In goodness-of-fit problems, for instance, T(X) is often
the chi-squared statistic, having a central chi-squared dis-
tribution under H, and a noncentral chi-squared distri-
bution under contiguous alternatives (see Cressie and Read
1984). Writing the noncentrality parameter as #, we could
reformulate the test as one of Hy: y = 0 versus H, : y >
0 [assuming, of course, that contiguous alternatives are
felt to be satisfactory; it seems likely, in any case, that the
lower bound on Pr(H, | x) will be achieved by g concen-
trating on such alternatives]. Thus the problem has been
reduced to a one-dimensional problem and our techniques
can apply. Note the usefulness of much of classical testing
theory to this enterprise; determining a suitable T and
its distribution forms the bulk of a classical analysis and
would also form the basis for calculating the bounds on
PT(HO I x).

Comment 3. What should a statistician desiring to test
a point null hypothesis do? Although it seems clearly
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unacceptable to use a P value of .05 as evidence to re-
ject, the lower bounds on Pr(H, | x) that we have consid-
ered can be argued to be of limited usefulness; if the
lower bound is large we know not to reject Hy, but if the
lower bound is small we still do not know if H; can be re-
jected [a small lower bound not necessarily meaning that
Pr(H, | x) is itself small]. One possible solution is to seek
upper bounds for Pr(H, | x), an approach taken with some
success in Edwards et al. (1963) and Dickey (1973). The
trouble is that these upper bounds do require “nonobjec-
tive” subjective input about g. It seems reasonable, there-
fore, to conclude that we must embrace subjective Bayes-
ian analysis, in some form, to reach sensible conclusions
about testing a point null. Perhaps the most attractive
possibility, following Dickey (1973), is to communicate
B,(x) or Pr(H, | x) for a wide range of prior inputs, al-
lowing the user to choose, easily, his own prior and also
to see the effect of the choice of prior. In Example 1, for
instance, it would be a simple matter in a given problem
to consider all 9u(y, 7*) priors for g and present a contour
graph of B,(x) with respect to the variables x# and 7. The
reader of the study can then choose i (often to equal ;)
and 7* and immediately determine B or Pr(H, | x) (the
latter necessitating a choice of n, also, of course). And by
varying u and 72 over reasonable ranges, the reader could
also determine robustness or sensitivity to prior inputs.
Note that the functional form of g will not usually have a
great effect on Pr(H, | x) [replacing the 9(x, %) priors by
Cauchy priors would cause a substantial change only for
very extreme x|, so one can usually get away with choosing
a convenient form with parameters that are easily acces-
sible to subjective intuition. [If there was concern about
the choice of a functional form for g, the more sophisti-
cated robustness analysis of Berger and Berliner (1986)
could be performed, an analysis that yields an interval of
values for Pr(H, | x) as the prior ranges over all distri-
butions “close” to an elicited prior.] General discussions
of presentation of Pr(H, | x), as a function of subjective
inputs, can be found in Dickey (1973) and Berger (1985).

Comment 4. If one insisted on creating a “standard-
ized” significance test for common use (as opposed to the
flexible Bayesian reporting discussed previously) it would
seem that the tests proposed by Jeffreys (1961) are quite
suitable. For small and moderate 7 in Table 1, Pr(H, | x)
is not too far from the objective lower bounds in Table 6,
say, indicating that the choice of a Jeffreys-type prior does
not excessively bias the results in favor of Hy. As n in-
creases, the exact Pr(H, | x) and the lower bound diverge,
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but this is due to the inadequacy of the lower bound (which
does not depend on n).

Comment 5. Although for most statistical problems it
is the case that, say, Pr(H, | x, Gys) is substantially larger
than the P value for x, this need not always be so, as the
following example demonstrates.

Example 2. Suppose that a single Cauchy (0, 1) ob-
servation, X, is obtained and it is desired to test H,: 6 =
0 versus H, : § # 0. It can then be shown that (for n, =

b
B(x, Gys) _

P value

&(Ho I x, Gys) _

lim
P value

b

al
bz

so the P value does correspond to the evidentiary lower
bounds for large |x| (see Table 8 for comparative values
when [x| is small). Also of interest in this case is analysis
with the priors G = {all Cauchy distributions}, since one

can prove that, for |x] = 1 and =, = §,

2|x| 2|x|
B(x, Go) = —5— and Pr(H, ) =
_(x» () (1 + ,\'2) an r( 0 | X, GC) (1 + lx[)?_

[whereas B(x, G¢) = 1 and Pr(H, | x, G¢) = % for x| =
1]. Table 8 presents values of all of these quantities for
my = 4 and varying |x|.

Although it is tempting to take comfort in the closer
correspondence between the P value and Pr(H, | x, Gys)
here, a different kind of Bayesian conflict occurs. This
conflict arises from the easily verifiable fact that, for any

fixed g,
lim B,(x) = 1

fel—

lim Pr(H, | x) = my,

Jx}—=e

and (5.1
so large x provides no information to a Bayesian. Thus,
rather than this being a case in which the P value might
have a reasonable evidentiary interpretation because
it agrees with Pr(H, | x, Gys), this is a case in which
Pr(H, | x, Gys) is itself highly suspect as an evidentiary
conclusion.

Note also that the situation of a single Cauchy obser-
vation is not even irrelevant to normal theory analysis; the
standard Bayesian method of analyzing the normal prob-
lem with unknown variance, ¢, is to integrate out the
nuisance parameter ¢2, using a noninformative prior. The
resulting “marginal likelihood” for 0 is essentially a ¢ dis-
tribution with (n — 1) degrees of freedom (centered at
X); thus if n 2, we are in the case of a Cauchy distri-
bution. As noted in Dickey (1977), it is actually the case
that, for any n in this problem, the marginal likelihood is

Table 8. B and Pr for a Cauchy Distribution When n, = #

P Value (p) x| B(x, Gus) Pr(H, [ x, Gus) B(x, Gc) Pr(H, | x, Go)
.50 1.000 .894 472 1.000 .500
.20 3.080 .351 .260 .588 370
10 6.314 154 133 .309 .236
.05 12.706 .069 .064 156 135
.01 63.657 0115 .0114 .031 .030
.0032 200 .0034 .0034 010 .010
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such that (5.1) holds. (Of course, the initial use of a non-
informative prior for ¢® is not immune to criticism.)

Comment 6. Since any unimodal symmetric distribu-
tion is a mixture of symmetric uniforms and a Cauchy
distribution is a mixture of normals, it is easy to establish
the interesting fact that (for any situation and any x)

B(x, Gys) = B(x, Us) = B(x, Gror) = B(x, G¢).

The same argument and inequalities also hold with G¢
replaced by the class of all ¢ distributions of a given degree
of freedom.

[Received January 1985. Revised October 1 985.]
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JOHN W. PRATT*

Comment

1. BERGER AND SELLKE (AND EDWARDS,
LINDMAN, AND SAVAGE)

When I was younger so much younger than today, I
never needed anybody’s help in any way, least of all the
Beatles’, and I usually found old fogeys’ historical homilies
distasteful. As my own fogeyhood impends, I find them
just as distasteful, but more salutary. In this vein I must
say that, despite the generous references in Berger and
Sellke (B&S) and my previous looks at Edwards, Lind-
man, and Savage (1963) (EL&S), I realized only on recent
rereading how much credit is due EL&S for formulating
and resolving questions that illuminate the interpretation
of P values in testing sharp null hypotheses (and much
else). The extent and charm of their penetrating discussion
and the progression ordering most of B&S’s results are
evident in this brief quotation from EL&S (p- 228) on
testing the null hypothesis that a normal distribution with
known variance has mean 1 = 0.

Lower bounds on L. An alternative when u(4 { H,) [the density on
H,] is not diffuse enough to justify stable estimation is to seek bounds
on L [the likelihood ratio or Bayes factor in favor of H,]. Imagine all
the density under the alternative hypothesis concentrated at x, the place
most favored by the data. The likelihood ratio is then

P(r)

L = L7 _ -t
" 9(0) ,
This is of course the very smallest likelihood ratio that can be associated
with £. Since the alternative hypothesis now has all its density on one
side of the null hypothesis, it is perhaps appropriate to compare the
outcome of this procedure with the outcome of a one-tailed rather than
a two-tailed classical test. At the one-tailed classical .05, .01, and .001
points, Ly, is .26, .066, and -008s, respectively. [This essentially covers
Th. 1 and Tables 3 and 4 of B&S, in one-tailed form.] Even the utmost
generosity to the alternative hypothesis cannot make the evidence in
favor of it as strong as classical significance levels might suggest. Inci-
dentally, the situation is little different for a two-tailed classical test and
a prior distribution for the alternative hypothesis concentrated symmet-
rically at a pair of points straddling the null value [see B&S, Th. 3 and
Tables 2 and 5). If the prior distribution under the alternative hypothesis
is required to be not only symmetric around the null value but also
unimodal, which seems very safe for many problems, then the results
{B&S, Ths. 5 and 6 and Table 6] are too similar to those obtained later
for the smallest possible likelihood ratio obtainable with a symmetrical
normal prior density to merit separate presentation here.

2

After giving results for normal priors (B&S, Th. 8 and
Table 7), EL&S “conclude that a ¢ of 2 or 3 may not be
evidence against the null hypothesis at all, and seldom if
ever justifies much new confidence in the alternative hy-
pothesis” (p. 231) (see B&S, Comment 1).

It is not that B&S claim or sneak off with credit due.

others. Few are more aboveboard, and I have admired
other writing by Berger, in particular his books, for both
substance and referencing. But credit slides all too easily
onto later authors even when they have no need or desire

* John W. Pratt is Professor, Graduate School of Business Adminis-
tration, Harvard University, Boston, MA 02163. The author is very
grateful to Persi Diaconis and Arthur Schleifer, Jr. for helpful comments
and to the Associates of the Harvard Business School for rescarch sup-
port. .

to steal it. EL&S is still must reading. Do not assume that
later publications supersede or.subsume it or let its intro-
ductory posture or exotic auspices deter you. It is reprinted
in at least two books. Only 1% of it is quoted above. The
other 99%, though not all so condensed, is also highly.
rewarding. Some of its subheadings on testing (the topic
of half of it) are Bernoullian example, Upper bounds on
L, Haunts of y* and F, Multidimensional normal mea-
surements and a null hypothesis, and Some morals about
testing sharp null hypotheses.

B&S’s spiraling exposition is helpful the first time
around, but afterward I felt a need for more winding up
than the graphs of Bayes factors in their Figure 3, even
after the trivial but revealing addition of a graph of the
comparable frequentist factor p/(1 — p). In the top part
of Table 1 here, I have collected and juxtaposed proba-
bilities from B&S’s tables (but not the Bayes factors or
ratios to pt or p#?), following A. S. C. Ehrenberg’s precepts
as best I could. The remaining three lines give Pr(H, | 1)
for a normal prior with variance equal to the sampling
variance of the mean (B&S, Table 1 with n = 1), and for
tight and diffuse priors, which may be viewed as extreme
normals (with n = 0 and o, respectively). Thus the first
column shows that the minimum posterior probability for
a P value p = .10 is .205 when all priors are allowed and
increases to .340, .390, and .412 as symmetry, unimodality,
and normality restrictions are added. The excess over p
and increase with more restrictions on the prior are pro-
portionately even greater at smaller P values. Normality
adds little to symmetry, as EL&S observed.

Not to leave well enough alone, I included a “large™ ¢
column with B&S’s asymptotic formulas and two they hap-
pen to omit [where 2.07 = (ne/2)"2and 1.77 = n'?]. They
show that the first three are lower bounds fort >0, 1>
2.28, and t > 0, respectively (Theorems 2, 4, 7). The range
where the fourth is a lower bound is t > 2.72 by my sketchy
calculations. (Foranormal priorwith arbitraryn, the asymp-
totic formula is Pr(Hy | 1) = [(n + 1)n/2]"2%e™2 0y The
range of ¢ where this is a lower bound depends on #n. It
cannot be a lower bound for all # and ¢, since it is not a
lower bound for ¢ < 2.72 in the EL&S worst case n + 1
= 1)

All the normal results hold for all sample sizes and all
prior and sampling variances if # is defined as the ratio of
the prior variance to the sampling variance of the mean
rather than as the sample size. What I see as “troubling”
about the scaling here (see B&S, p. 112) is only the
importance of the height of the prior density under H,
(near X, say). Such trouble is inevitable in testing sharp
null hypotheses, not a deficiency of the prior family. Since
n is unrestricted, there is no troubling link between ¢ and
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Table 1. Comparison of P Values and Minimum Pr(H, | x) When n, = #

t 1.645 1.860 2.576 3.291 Large
250 B&S B&S
P Value (p) .10 .05 .01 .001 t Tables Theorems
Priors allowed
All 205 .128 .035 0044 1.25tp 3,4 1,2
All symmetric 340 227 .068 .0088 2.51tp 2,5 3,4
Symmetric unimodal .390 .290 109 .018 t?p 6 5-7
Symmetric normal 412 321 133 .025 2.07t%p 7 8
Normal var ¢%/n 42 35 21 086 1.77¢™tp 1
Tight at 4, 5 5 5 5
Diffuse . 1 1 1 -1

the prior variance of 0 as there is for “conjugate” priors
when o is unknown.

The notion of choosing one or more classical or other
insufficient statistics and basing a Bayesian analysis or
comparison on them rather than on the whole data set
(see B&S, Comment 2) is supported and explored at some
length in Pratt (1965, sec. 2).

2. CASELLA AND BERGER (AND PRATT)

In certain one-sided cases, Casella and Berger (C&B,
but a different Berger) show that the infimum of Pr(H, |
x), the posterior probability of H,, is as small as the P
value, p, or smaller. Now a point that permeates EL&S
1s that, if small, a lower bound is almost useless since it
doesn’t say you will be anywhere near it. (Hence they seek
upper bounds too.) In fact, however, not only is inf
Pr(H, | x) = or = p but, more to the point, Pr(H, | x)
itself is close to p in most ordinary one-sided testing prob-
lems if n is not small and the prior on @ is not jagged. This
is obvious in particular for normal models and hence for
procedures concordant with asymptotic likelihood theory.
It is also obvious for flat priors in C&B’s situation, that
of a single observation (or test statistic) x with density
known except for location. What C&B add is essentially
that, in this situation, Pr(H, | x) < p is impossible if the
prior is unimodal and the density symmetric with mono-
tone likelihood ratios, but possible in many other cases.
Their situation is unfortunately very special. Test statistics,
even ¢ and rank statistics, rarely have densities known
except for location. Furthermore, for n > 1, a regular
location family admits a single sufficient statistic only if it
is normal with known variance (Kagan, Linnik, and Rao
1973), and otherwise attending to information besides the
test statistic can either raise or lower Pr(H, | x). So where

C&B take us is unclear but not far.
"~ Having done the decent thing and quoted someone else,
I will now do the fun thing and quote myself. In Pratt
(1965, secs. 7 and 8) I did not merely “state that in the
one-sided testing problem the p value can be approxi-
mately equal to the posterior probability of H,” (C&B,
p. 106). I emphasized the much more important point that
it usually will be (without claiming novelty even then). I
argued both via confidence limits as approximate posterior
fractiles and, in location problems, via diffuse priors and
independence of 6 and T ~ 6. Among my arguments for
confidence limits as approximate posterior fractiles were

one’s natural reluctance to use them when they are not
and asymptotic likelihood theory.  also mentioned Good’s
elegant argument (1950, 1958). If one-sided reconcilability
is as little recognized as C&B suggest, at least I for one
tried (both in 1965 and later). But the two-sided discrep-
ancy may get more ink mainly because it is more subtle,
surprising, and significant.

As to two-tailed P values, I would have been even more
gloomy about the one-dimensional case if I had registered
EL&S properly, but what I said in part, partly para-
phrased, was “The only widely valid relation between a
two-tailed P-value and a posterior probability of natural
interest seems to be” that $p sometimes has the foregoing
one-sided interpretation. Although 1 — p “‘is often ap-
proximately the posterior probability that” 0 = 0 = 20,
this interval is not of natural interest. Its multidimensional
counterpart is “even less s0,” and indeed depends on ir-
relevant particulars of the design and test statistic.

In short, when the null hypothesis § = 0 is tested against the alternative
0 > 0, where @ is one-dimensional and 8 < 0 is possible, the P-value is
usually approximately the posterior probability that 8 = 0. Most other
situations where the P-value has a helpful interpretation can be recast
in this form. Of course, §-= 0 can be replaced by § = 6§, or 6 = 0,. And
while it is convenient to use P-values in the discussion, those who arc
interested only in whether or not the results are significant at some
preselected level will find similar remarks apply. All the statements about
the relation of P-values to posterior probabilities, or lack of it, can be
seen easily to hold for a univariate or multivariate normal distribution
with known variance or variance matrix. (Pratt 1965, p. 184)

Two technical points. C&B’s Lemma 3.1 is an imme-
diate consequence of the fact (subsumed in their proof)
that the posterior obtained from a mixture of priors is a
mixture of the posteriors obtained from each. The point
is more familiar when mixing different models also: the
posterior weights are the posterior probabilities of the
components, which are of course proportional to their
prior probabilities times their predictive densities. B&S
(see Th. 3 and its proof) work directly with the Bayes
factor and the predictive density, which is equivalent and
simpler for the purpose.

C&B’s Theorem 3.1 states less than they prove. As it
is stated, all but the first sentence of the proof could be
replaced by the observation-that the inequality follows
from Theorem 3.2 (whose proof is independent of Th.
3.1), or directly and easily by considering the uniform prior
on (—k, k) as k — = [Eq. (3.5) and the limit calculation
at the end of the proof of Th. 3.2].
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3. WHAT ABOUT THE PRIORS?

Are the minimizing priors “palatable’? If not, what
then? The one-point prior most favorable to H, is clearly
an exaggeration, but more palatable for one-sided than
two-sided alternatives, as EL&S noted. The symmetric
two-point prior is still worse for one-sided but somewhat
better for two-sided alternatives. EL&S chose accordingly;
their remark that one-point priors for one-sided alterna-
tives are “‘little different” is borne out by halving the P
values in B&S’s Table 4 and comparing the result with
Table 5 (or 2), most easily via the last column unless p =
.05. All of the minimizing priors depend on the data, an
unpalatable feature to most who care at all, and real opin-
ions in one-sided problems would rarely be symmetric or
improper. So real prior opinions will often be far from the
minimizing opinions, which suggests that real posterior
opinions may greatly exceed the lower bounds. This
strengthens B&S’s main point [because restricting the
prior further can only increase the amount by which Pr(H,
| x) exceeds p in the two-sided case], but points up the
weakness of C&B’s results in the one-sided case (where
matters were already left indeterminate by their argu-
ment).

Unfortunately, to discredit a seriously entertained point
null hypothesis, one needs something like a lower bound
on the prior density in the region of maximum likelihood
under the alternative. This appears directly in EL&S but
only indirectly in B&S (Comment 3). To my mind it jus-
tifies EL&S in being even more cautious in their conclu-
sion (quoted previously) than B&S in Comment 1. Any
dimension-reducing hypothesis poses a similar troubling
problem. Making such hypotheses approximate makes
them more realistic but harder yet to analyze.

4. WHATS IT ALL ABOUT?

‘The broad question under discussion is an important
one: what do frequentist inference procedures really ac-

. J. GOOD*
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complish, and what can statisticians of all stripes learn
about them by viewing them through Bayesian glasses?
The articles here give precise answers to well but narrowly
posed subquestions about P values. If you are a Defender
of Virtuous Testing or simply a Practical Person, you may
feel that the subquestions do not represent the real issues
well. But whatever your attitudes or Attitudes, the B&S—
EL&S results can hardly comfort you, and I think should
disturb you. And even if you can blink them completely—
even if you are prepared to disavow any remotely posterior
interpretation of P values or visibility through Bayesian
glasses—you are not out of the woods. A vast literature
discourses on all kinds of problems with hypothesis testing
and P values for all kinds of purposes from all kinds of
viewpoints: frequentist, Bayesian, logical, practical; for
description, inference, decisions, conclusions; prelimi-
nary, simultaneous, final; choice of model, estimator, fur-
ther sampling; and so on. It would be impolite to cite my
several nibbles at'the subject and invidious to select others,
so I will trust the other discussants to suggest its scope.
Domains where tests are acceptable may exist, but re-
jecting Bayesian arguments will not establish or enlarge
them.

In summary, I see little major news here beyond what
was known by 1963 (EL&S) or obvious by 1965 (Pratt).
But every generation must rediscover old truths, and re-
viving, polishing, and amplifying them and even charting
their backwaters are useful. If these articles help the world
hear their messages, which I certainly agree with, well and
good. If the world is ready for less stylized and precise but
all the more disturbing messages about testing, better yet.
Regardless, fogeyhood is fun!

ADDITIONAL REFERENCE
Kagan, A. M., Linnik, Yu. V., and Rao, C. R. (1973), Characterization

Problems in Mathematical Statistics (translated from the Russian by
B. Ramachandran), New York: John Wiley.

Comment

I was interested in both of these articles {which I shall
call B&S and C&B) because Bayesian aspects of P values
have fascinated me for more than 40 years. The topic will
be taken more seriously now that it has hit JASA with
two long articles, plus discussion, and the occasion will be
all the easier to remember because two Bergers are in-
volved. One result, I hope, will be that the conventional

* 1. J. Good is University Distinguished Professor, Department of
Statistics, Virginia Polytechnic Institute and State University, Blacks-
burg, VA 24061. This work was supported in part by National Institutes
of Health Grant GM18770.

P value of approximately .05, when testing a simple sta-
tistical hypothesis Hy, will be correctly interpreted: not as
a good reason for rejecting Hy but as a reason for obtaining
more evidence provided that the original experiment was
worth doing in the first place.

In my opinion P values and Bayes factors are both here
to stay, so the relationships befween them need to be taken
seriously. These relationships form a large part of the main
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problem of pure rationality, namely to what extent Bayes-
ian and non-Bayesian methods can be synthesized. (The
main problem of applied rationality is how to preserve the
human species.) My view is that the methods can be syn-
thesized, because, contrary to the opinion of some radical
Bayesians, I believe that P values are not entirely without
merit. The articles by B&S and C&B contribute to this
synthesis, although the fitle of B&S might suggest other-
wise.

The relationships between P values and Bayes factors
depend on the specific problem, on the background in-
formation (some of which is usually vague), on the sample
size, on the model assumed, Bayesian or otherwise, and
on the questions being asked. B&S and C&B consider
distinct questions and, therefore, arrive at distinct solu-
tions. Their problems can be described as significance test-
ing and discrimination, respectively. I think that the article
by C&B would have been improved if it had been slightly
more friendly to B&S. Television commercials compare
burgers, but they do not knock the simple statistical hy-
pothesis. Both articles make useful contributions by care-
~ ful considerations of inequalities satisfied by Bayes factors.
My comments will be partly historical. .

Sometimes it is adequate, as in B&S, to define a null
hypothesis as § = Oor as 6] < J, where J is small [compare,
e.g, Good 1950, p. 91}; sometimes (and this can be re-
garded as a generalization of the first case) the null hy-
pothesis asserts that § < 0 with one or more priors
conditional on this inequality; sometimes the initial or
prior probability Pr(H,) is (approximately) equal to § as
is usually assumed in both of the articles under discussion
and by Jeffreys (1939); sometimes Pr(H,) is far from %
(and of course the posterior probability of H, can, there-
fore, be arbitrarily smaller than a P value); sometimes we
prefer to leave the estimation of Pr(H,) to posterity and,
therefore, try to summarize the evidence from the exper-
‘imental outcome alone by a P value or by a Bayes factor
(or by its logarithm the weight of evidence), both of which
have the merit of not depending on Pr(H,); and sometimes
the priors conditioned on H; and on its negation H, are
reasonably taken as “mirror reflections” in the origin, as
is largely assumed by C&B. When testing a treatment that
a scientist had previously claimed to be better than a stan-
dard one, we are apt to choose H, as § = 0 and H,as 8§
> 0. This model shows more respect to the scientist than
if we defined H; as 0 < 0 or H, as 6 # 0. Whether he

-deserves that much respect will again depend on circum-

stances.

Although the two articles deal with distinct problems,
it is possible to produce models that include both problems
and intermediate ones. I have worked out one such con-
crete example that more or less does this and that [ shall
describe briefly. For more details see Good (in press a).
It is a special case of C&B (4.1), but I believe that it is
general enough for most purposes.

Let X denote the mean of #n random variables, iid, and
each N(0, ¢%), where ¢? is known or well estimated from
the sample. Our aim is to discriminate between H, : 0 <
Oand H,: 8 > 0.

Journal of the American Statistical Association, March 1987

Assume that the prior density of 0 given H; (i = 0 or
1) is the folded normal density

[@/m)"* 7] expl - 02/25})], (1)
where 0 <0ifi = 0,and 6 > 0if i = 1, but with 7; having
the log-Cauchy hyperprior density

i
nr{Al + [log(zi/a)]}

Vi = (2)
This hyperprior provides a convenient way to give pro-
priety to the familiar improper prior of Jeffreys and Hal-
dane proportional to 1/7;. The upper and lower quartiles
of (2) are a;e™ and a,e™*, so we can give 7; a determinate
value g; by letting /4, — 0. In addition, we can determine
a; and 4; by judging the quartiles.

For this two-level hierarchical Bayesian model we find,
after a page of elementary calculus, that the Bayes factor
against Hy provided by the observation x, which by defi-
nition is O[H, | (X = x) & G]/O(H, | G), is equal to

BH : X =x|G) =¥,/¥,, (3)

where O denotes odds (also sometimes called an odds
ratio), G denotes what was given before X was observed,
the colon is read “provided by the information that,” the
vertical stroke denotes “given’ as usual, and

¥, = Vix, g,, a;, 4;) Zf (o2 + 3712
0

—x2/2 gxtlo, '
X exp[a7 ]d)[(g n 2)”2] wi{zt; a;, &) dr, (4)

where ¢y = 1, ¢ = —1, 03 = ¢*/n is the variance of X,
and ¢ is the error function
d(y) = 2n)~1? J’r e~ gy (5)
¥y

The integrand in (4) is smooth and not difficult to calcu-
late, so the Bayes factor can be presented as a program
with six input parameters, x, g,, ay, a,, 4, and A1, and
the user can try several priors.

The result contains several interesting special cases, in-
cluding some results given by B&S and C&B, except that
the Bayes factor of B&S will be one half of mine in the
appropriate special case. (See my miscellaneous comment
2 below.)

For example, if we take 4y = 4, = 0, a5 = a, = 1, 7/
o, large, and Pr(H,) = 4, and let H, denote the hypothesis
that § = 0, then

Pr(Hy | X = x) = ¢(x/o,) =

the single-tailed P value corresponding to the “null hy-
pothesis™ H,. Note that H, is not H,. We may also describe
P as the maximum P value over all simple statistical hy-
potheses of the form 6 = §,, where 6, < 0 as in C&B.
Because H, is not H, this case provides only a partial
reconciliation of Bayesian and Fisherian methods, espe-
cially as it is only one of many possible cases, and for this
reason I think that C&B have exaggerated. The result
certainly does not, and C&B do not claim that it does,
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justify the extraordinarily common error, mentioned in
“both articles, perpetrated by several reputable scientists
(“nonspecialists,” to quote B&S), of interpreting a P value
as Pr(H, | X = x) even when H, is a point hypothesis.
When I mentioned the prevalence of this error to Jim
Dickey he pointed out that even Neyman had perpetrated
it! {See Good (1984a).] (Most of my citations from now
on will be to papers of which I have read every word.)

Whenay = 0,2, = 0(so 1, = ), aila, is “large,”
and x > 2¢,, we have the situation of B&S (Th. 2, apart
from a factor of 2), and the Bayes factor against H, is
approximately

B =~ 2n~"(al1,)e", (s = x/a,, the “sigmage”™) (6)

o (2\PfL 125
P \nn S+ s+s+s5+ (7)

by Laplace’s continued fraction. [Compare Good (1967,
p- 410).] Since s is a function of P, it follows that, for a
given value of P, the Bayes factor against H, is proportional
to n™"2, and this is usually true when H, is a simple sta-
tistical hypothesis. This may be called the root n effect
and was perhaps first noticed by Jeffreys (1939, pp. 194
and 361-364). For some history of this and allied topics,
see Good (1982a).

As a special case of (7) one could append a further
column to Table 4 of B&S, giving the values of O(x)/t [or
B/t if it is not assumed that Pr(H) = %)]. These values
would be 1.414, 1.421, 1.391, and 1.350. They are nearly
constant because the continued fraction is approximated
by 1/s. This observation is a slight modification of Theo-
rem 2 in B&S.

The root n effect is closely related to the familiar “par-
adox,” mentioned by C&B, that a tail-area pundit can
cheat by optional stopping. This possibility is also implicit
in Good (1950, p. 96) and was made crystal-clear by ref-
erence to the law of the iterated logarithm in Good (1955/
1956, p. 13). This form of optional stopping is known as
“sampling to a foregone conclusion.” To prevent this form
of cheating, and to justify to some extent the use of P
values as measures of evidence, I proposed “standardiz-
ing” a tail-area probability P to sample size 100, by re-
placing P by min(3, n'2 P/10) (Good 1982b). This proposal
is an example of a Bayes/non-Bayes (or Bayes—Fisher)
compromise, or “‘synthesis” as it was called by Good
(1957, p. 862) and in lectures at Princeton University in
1955. An example for a multinomial problem was previ-
ously given by Good (1950, pp. 95-96). For other exam-
ples of the Bayes/non-Bayes synthesis see, for example,
Good (in press b). ‘ v

In most situations-that I have seen, where one tests a
point nuil hypothesis, the sample size n lies between 20
and 500, so if we think in terms of n = 100, the square
root effect will not mislead us by more than a factor of
V5 in either direction. This explains why I have found
that a Bayes factor B’ against a point null hypothesis on
a given occasion is roughly inversely proportional to P.
This leads to the useful harmonic-mean rule of thumb for
combining “tests in-parallel,” that is, tests on the same
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data (Good 1958, 1984b). This rule of thumb is not precise,

but it is much better than the dishonest precise procedure
of selecting the test that best supports what you want to
believe!

Miscellaneous comments.

1. B&S rightly emphasize the distinction between
knowing that P = P, (or only just less) and knowing only
that P < P,. The latter statement is of course “unfair’” to
the null hypothesis when P is close to P, (Good 1950, p.
94). If a scientist reports only that P < .05 we are some-
times left wondering whether P = .049, in which case the
scientist may have been deliberately misleading. Such a
scientist might have been brought up not to tell fibs, with-
out being told that a flam is usually worse than a fib. Or
perhaps he was just brainwashed by an “official” Neyman—
Pearson philosophy in an elementary textbook written
with the help of a pair of scissors and a pot of glue and
more dogmatic than either Neyman or Egon Pearson were.
If Neyman had been dogmatic he would not have made
the “nonspecialist’s error,” or error of the third kind, men-

tioned previously.

2. In the past, and frequently in conversation, I have
used a rough rule that a P value of .05 is worth a Bayes
factor of only about 4 when testing a simple statistical
hypothesis (e.g., Good 1950, p. 94; 1983, p. 51). B&S get
about half this value because they use a prior symmetric
about § = 0 given H,, whereas my rule is intended more

. for the case in which H, asserts that § > 0.

3. The topic of max factors, mentioned by B&S, with-
out the cosmetic name, was also discussed in Good (1950,
p- 91) as applied to multinomials, which of course includes
binomials, and where the maximum weight of evidence
(log-factor) is related to the chi-squared test. In the bi-
nomial case, the approximation given for the maximum
weight of evidence (in “natural bans) again H, naturally
agrees with the result 3* cited in Example 1 of B&S. Al-
though in multivariate problems the max factor is much
too large, the relationship to y? shows the relevance to an
aspect of the philosophy of the Bayes/non-Bayes or
Bayes—Fisher synthesis, namely that even a poor Bayesian
model can lead to a sensible non-Bayesian criterion (a
point that I have made on several other occasions).

Sometimes a multivariate test can be reduced to a uni-
variate one. B&S mention an example, and another ex-
ample is that of a max factor that is useful because the
maximization is over a single hyperparameter as in the
mixed Dirichlet hierarchical Bayes approach to multino-
mials and contingency tables (e.g., Good 1976, p. 1170;
Good and Crook 1974, p. 714).

4. In their concluding comments B&S state that when
considering a simple statistical hypothesis H, by and large
20 is weak evidence against H,, 3¢ is “significant,” and
so on. These conclusions agree roughly with Good (1957,
p- 863), where I judged that the Bayes factor in favor of
H, usually lies within a factor of 3 of 10P. (This can break
down if P < 1/10,000 and for very large sample sizes.)

5. The references in B&S cover much of the literature,
and this will presumably be more true when the comments
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are included. To aid in making the bibliography more com-
plete I exercise the rights of a senior citizen and list 28
additional relevant publications of which I have read every
word (10 of them are in the conscientious reference list of
B&S): (a) items C73, C140, C144, C199, C200, C201,
209, C213, C214, and C217 in Journal of Statistical Com-
putation and Simulation (1984); (b) Items 13 (pp. 91-96),
82, 127 (pp. 127-128), 174, 398 (p. 35), 416, 547, 603B
(p- 61), 862, 1234 (pp. 140-143), 1278 (regarding Ber-
nardo), 1320-C73, 1396 (pp. 342-343), 1444, and 1475-
Cl144 in the bibliography (pp. 251-266) in Good (1983);
(¢) Good (195571956, p. 13; 1981; 1983, indexes; 1986; in
press a,b). To these may be added the thesis of my student
Rogers (1974) and a further reference relevant to C&B,
Thatcher (1964).

ADDITIONAL REFERENCES
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DAVID V. HINKLEY*
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putation and Simulation, 20, 173-176.
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Treatments,” C272, Journal of Statistical Computation and Simulation,
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(in press b), “‘Scientific Method and Statistics,” in Encyclopedia
of Statistical Science (Vol. 8), eds. S. Kotz and N. L. Johnson, New
York: John Wiley.

Good, I. J., and Crook. J. F. (1974), *“The Bayes/Non-Bayes Compro-
mise and the Multinomial Distribution,” Journal of the American Sta-
tistical Association, 69, 711-720.

Jeffreys, H. (1939), Theory of Probability (ist ed.), Oxford, U.K.: Clar-
endon Press. '

Rogers, J. M. (1974), “Some Examples of Compromises Between
Bayesian and Non-Bayesian Statistical Methods,” unpublished doc-
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Thatcher, A. R. (1964), “Relationships Between Bayesian and Conlfi-
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Comment

The authors have added an impressive array of technical
results to the main body of work on this subject by Jeffreys,

Lindley, and others. The sense of surprise in the first ar-

ticle suggests that statistical education is not as eclectic as
one might wish. In my brief comments I should like to
mention some of the general issues that should be consid-
~ered in any broad discussion of significance tests.

First, the interpretation of P value as an error rate is
unambiguously objective and does not in any way reflect
the prior credibility of the null hypothesis. Rules of thumb
aimed at calibrating P values to make them work like
posterior probabilities cannot reflect the broad range of
practical possibilities: in many situations the null hypoth-
esis will be thought not to be true.

One area where null hypotheses have quite high prior
probabilities is model checking, including both goodness-
of-fit testing and diagnostic testing. Here specific alter-
native hypotheses may not be well formulated, and sig-
nificance test P values provide one convenient way to put
useful measures on a standard scale.

Rather different is the problem of choosing between

*David V. Hinkley is Professor, Department of Mathematics, Uni-
versity of Texas, Austin, TX 78712. :

two, or a few, separate families of models. Here the sym-
metric roles of the hypotheses seem to me to make sig-
nificance testing very artificial. It would be better to adopt
fair empirical comparisons, using cross-validation or
bootstrap methods, or a full-fledged Bayesian calculation.
The latter requires careful choice of prior distributions
within each model to avoid inconsistencies.

Significance tests will sometimes be used for a nuisance
factor, preliminary to the main test, as with the initial test
for a cross-over effect in a comparative trial with cross-
over design. Racine, Grieve, Fluhler, and Smith (1986)
recently demonstrated the clear merits of a Bayesian ap-
proach in this context. If significance tests are to be useful,
then they should have validity independent of the values
of identifiable nuisance factors.

In general, for problems where the usual null hypothesis
defines a special value for a parameter, surely it would be
more informative to give a confidence range for that pa-
rameter. Note that some significance tests are not com-
patible with efficient confidence statements, simply

© 1987 American Statistical Association
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because a test contrast has been standardized by a null
hypothesis standard error. Such a practice may be com-
putationally convenient, as with score tests, but its nega-
tive features should not be overlooked.

One must agree that the operational interpretation of
P values must be made relative to the amount of infor-
mation available in the data, as expressed through ancil-
lary statistics. Barnard (1982) argued cogently for this in
the context of repeated significance tests, where a fixed
cutoff for P values can lead to drastic loss of overall power.

JAMES M. DICKEY*
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Of course confidence statements automatically account for
available information, if proper conditioning is employed.

ADDITIONAL REFERENCES

Barnard, G. A. (1982), “*Conditionality Versus Similarity in the Analysis
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Amsterdam: North-Holland, pp. 59-63.

Racine, A., Grieve, A. P., Fluhler, H., and Smith, A. F. M. (1986),
“Bayesian Methods in Practice: Experiences in the Pharmaceutical
Industry” (with discussion), Applied Statistics, 35.

Comment

What should our reaction be to the results announced
in these two articles? What do they actually say to us, and
what difference should it make in statistical practice? Be-
fore attempting to answer these questions, I would like to
bring up a few relevant points.

Example 1, which runs through the Berger—Sellke ar-
ticle, is introduced by using the normal distribution, @ ~
90y, 0*), as the conditional prior uncertainty given the
alternative H,. This distribution has the same variance as
the sampling process. Consider, however, the generali-
zation to an arbitrary prior variance, 0 ~ 90,, %), say
©* = g’/n*. In this notation, n/n* represents the ratio t/
(0°/n) of the prior variance to the sampling variance of
the sample mean. Unless I am mistaken, the expressions
and tables in Sections 1 and 2 for the posterior probability
Pr(H, | x) hold again for the more general case by merely
replacing the variable n by n/n* throughout. (The variable
¢ retains its original definition in terms of the sample size
n.) In many, if not most, areas of application, the con-
ditional prior variance ¢* is typically larger than the sam-
pling variance ¢. So the ratio n/n* is larger than n, and
one would find oneself looking further over in the right-
hand (large-n) direction in Table 1 than if one pretended
one’s t” equaled 2. In such applications, the effect touted
here by Berger and Sellke is strengthened. The posterior
probability of the null hypothesis tends not to be as small
as the P value of the traditional test.

Theorems 2, 4, and 7 give lower bounds for the posterior -

probability of the null hypothesis in the case in which the
corresponding prior probability #, is equal to 4. Of course,
the Bayes factor B, the ratio of posterior odds for Hj to
the corresponding prior odds 7,/(1 — 7,), does not depend
on 7y. Hence one is tempted to ask for versions of these
theorems stated in terms of the Bayes factor. It is curious
to see that the limits claimed for large ¢ in these theorems
do not appear in the accompanying tables as visible ten-

dencies for increasing ¢. Rather, an opposite tendency, to
move away from the limit, is exhibited. So it would seem
that the limits are meaningless except for exorbitantly
large values of ¢. (That is, meaningless in practice: H,
would be strongly rejected by all methods before the limit
would have any effect?) Have the authors done any in-
vestigating to see where the limits begin to take effect?

To my mind, the Casella—Berger article further supports
the thesis of Berger and Sellke. Theorems 3.2 and 3.3 of
Casella and Berger concern an infimum over a class of
prior distributions. So the smallest corresponding poste-
rior probability of one-sided H, equals the traditional P
value, and this equality is attained for the extreme constant
prior pseudodensity. That is, reasonable prior distribu-
tions give posterior probabilities for H, that are larger than
the traditional P value, though perhaps not as much larger
as in the case of a point null hypothesis.

By the way, the constant prior pseudodensity appears
here in the second of its two legitimate roles in inference,
as follows. Bayesian scientific reporting requires a report
of the effect of the observed data on a whole range of
prior distributions, keyed to context-meaningful prior un-
certainties (Dickey 1973). “Noninformative” prior pseu-
dodensities are sometimes useful for such reporting in two
ways: .

1. Such a prior can serve as a device to give a simple
posterior distribution that approximates the posterior dis-
tributions from prior probability distributions expressing
relevant context uncertainties. This approximation is
quantified by L. J. Savage’s ‘‘stable estimation” or “pre-
cise measurement’”’ (Edwards, Lindman, and Savage 1963;
Dickey 1976).

2. Such a prior can serve as a device to give bounds on
posterior probabilities over classes of context-relevant
prior distributions.

* James M. Dickey is Professor, School of Statistics, University of
Minnesota, Minneapolis, MN 55455, This work was supported by Na-
tional Science Foundation Research Grant DMS-8614793.
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What should our attitude now be concerning P values?
Berger and Sellke note that nonstatisticians tend to con-
fuse the P value and the posterior probability of the null
hypothesis. As pointed out in Good (1984), even the most
respected statisticians can make the same mistake. The
present works reinforce the distinction between sampling
probability and posterior probability.

It has long seemed to me that the P value reports an
interesting fact about the data. [ once speculated to Dennis
Lindley that the P value might offer a quicker and cruder

Jouvrncl of the American Statistical Association, March 1987

form of inference than the Bayes factor. He replied by
asking whether what I meant was analogous to comparing
an orchestra with a tom-tom.

ADDITIONAL REFERENCES

Dickey, James M. (1976), “Approximate Posterior Distributions,” Jour-
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Comment

STEPHEN B. VARDEMAN*

~ Berger, Sellke, Casella, and Berger deserve our thanks

for a most readable and thorough accounting of the prob-
lem of comparing p values and posterior probabilities of
H,. They have laid out in very clear fashion the history
of the problem, a full array of technical points, and their
arguments from the technical points to general conclu-
sions. Their articles should help all of us, card-carrying
Bayesians, militant frequentists, and fence-sitters like my-
self, to sort this issue out to our own satisfaction.

My view from the fence is that in spite of the fact that
the articles are well done, there is nothing here very sur-
prising or that carries deep philosophical implications. We
all know that Bayesian and frequentist conclusions some-
times agree and sometimes do not, depending on the spe-
cifics of a problem. These articles seem to me to reinforce
this truism. For example, I read the Casella/Berger Theo-
rem 3.4, the argument behind it, and their subsequent
discussion as confirmation that essentially anything can be
possible for a posterior probability for H,, depending on
how one is allowed to move prior mass around on H, and
H,. (Of course, the simplest demonstration that nearly
anything can be possible can be made by using arbitrary
two-point priors in a composite versus composite case.)

Whether or not a Bayesian analysis can produce a small
- posterior probability for H, is largely a function of whether
or not (staying within whatever rules are imposed by the
problem structure and restrictions adopted for the prior)
one can move the prior mass on H, “away from the data,”
at least as compared with the location of the prior mass
on H,. If this can be done, the posterior probability of H,
can be made small, otherwise it cannot.

Take, for example, the Jeffreys—Lindley “paradox” dis-
cussed by Berger and Sellke. To maintain a p value that
is constant with n (i.e., a constant value of ¢), one must
send X, (the data) to 6. The nonzero mass on H, is trapped

at 6,, while the mass on H, is all passed by as X, — 0,.
Why should anyone then be surprised that the posterior
probability assigned to H, tends to 1?

Moving to a different point, I must say that I find the
“spike at 0,” feature of the priors used by Berger and
Sellke and many before them to be completely unappeal-
ing. In fact, contrary to the exposition of Berger and
Sellke, I think that the appeal of such priors decreases with
increasing n,. Unlike that of Casella and Berger, my ob-
jection has nothing to do with “impartiality” (indeed I
question whether such a concept can have any real mean-
ing), but is of a more elementary nature. The issue is
simply that I do not believe that any scientist, when asked
to sketch a distribution describing his belief about a phys-
ical constant like the speed of light, would produce any-
thing like the priors used by Berger and Sellke. A
unimodal distribution symmetric about the current best
value? Probably. But with a spike or “extra” mass con-
centrated at 6,7 No.

Competent scientists do not believe their own models
or theories, but rather treat them as convenient fictions.
A small (or even 0) prior probability that the current the-
ory is true is not just a device to make posterior proba-
bilities as small as p values, it is the way good scientists
think! The issue to a scientist is not whether a_model is
true, but rather whether there is another whose predictive
power is enough better to justify movement from today’s
fiction to a new one. Scientific reluctance to change the-
ories is appropriately quantified in terms of a cost struc-
ture, not by concentrating prior mass on Hy. In this regard,
note that although the “spike at 0, priors are necessary
to produce nontrivial Bayes rules (i.e., ones that some-
times “accept”) for a zero—one type loss structure in the
two-sided problem, other competing cost structures do not
require them for a Bayesian formulation of the testing

* Stephen B. Vardeman is Professor, Statistics Department and In-
dustrial Engineering Department, Iowa State University, Ames, [A
50011.
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problem to be nontrivial. Consider, for example, a cost
structure like

If

k[ - k2(0 - 00)2’
cost(*“accept,” 0) = k(6 — 6,)°

cost(“reject,” 8)

for positive constants k;, k,, and k,. Here it is clearly
possible to have Pr[H, is true | data] = 0 and at the same
time have “accept” be the preferred decision.

A largely nontechnical observation that I feel obliged
to make regarding both articles concerns word choice. 1
would prefer to see loaded words like “biased,” “objec-
tive,” and “impartial” left out of discus*"uns of the present
kind, albeit they are given local technical definitions. Too
much of what all statisticians do, or at least talk about
doing, is blatantly subjective for any of us to kid ourselves
or the users of our technology into believing that we have
operated “impartially”’ in any true sense. How does one
“objectively” decide on a subject of investigation, what

C. N. MORRIS*
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variable to measure, what instrument to use to measure
it, what scale on which to express the result, what family
of distributions to use to describe the response, etcetera,

. etcetera, etcetera? We can do what seems to us most ap-

propriate, but we can not be objective and would do well
to avoid language that hints to the contrary.

Having complimented the authors’ thoroughness and
clarity and expressed some skepticism regarding the depth
of the implications that ought to be drawn from their re-
sults, I will close these remarks by pointing out what I
found to be the most interesting issue they have raised.
That is the role of conditioning in the stating of the strength
of one’s evidence against Hy. I have never been particu-
larly comfortable while trying to convince elementary sta-
tistics students that having observed ¢ = 1.4 they should
immediately switch attention to the event [|{ = 1.4]. Al-
though I am unmoved to abandon the practice, I do find
it interesting that Berger and Sellke see this as the main
point at which standard practice goes astray.

Comment

These two articles address an extremely important
point, one that needs to be understood by all statistical
practitioners. I doubt that it is. Let us dwell on a simple
realistic example here to see that the Berger—Sellke result
is correct in spirit, although case-specific adjustments can
be used in place of their lower bounds, and that the Ca-
sella—Berger infimum, although computed correctly, is too
optimistic for most practical situations.

Example. Mr. Allen, the candidate for political Party
- A will run against Mr. Baker of Party B for office. Past
races between these parties for this office were always
close, and it seems that this one will be no exception—
Party A candidates always have gotten between 40% and
60% of the vote and have won about half of the elections.

Allen needs to know, for § = the proportion of voters
favoring him today, whether Hy: 8 < Sor H,: 0> 5is
true. A random sample of n voters is taken, with Y voters
favoring Allen. The population is large and it is justifiable
to assume that Y ~ Bin(n, ), the binomial distribution.
The estimate § = Y/n will be used.

Question. Which of three outcomes, all having the

* C. N. Morris is Professor, Department of Mathematics and Center
for Statistical Sciences, University of Texas, Austin, TX 78712. Support
for this work was provided by National Science Foundation Grant DMS-
8407876.

same p value, would be most encouraging to candidate
Allen?

(@)Y =15n = 20,0 = .75,

(b) Y = 115, n = 200, 0 = .575;
or
(¢) Y = 1,046, n = 2,000, § = .523.
Facts. The p values are all about .021, with values of

= (0 - 5)Vnlo, ¢ = .5, being 2.03, 2.05, and 2.03.
Standard 95% confidence intervals are (.560, .940), (.506,
.644), and (.501, .545), respectively. (For the application
with n = 20, exact binomial calculations are made, and
continuity corrections are used for ¢ throughout.)

This problem is modeled as § ~ N(0, ¢*/n), given 0,
with ¢ = .25 known, from binomial considerations. The
two hypotheses are taken to be, with 6, = .5, Hy : 0 < 0,
versus H, : 6 > 0, (6, is given essentially zero probability).
We use the conjugate normal prior distribution, and be-
cause of information about past elections, we take § ~
N(0,, %) with © = .05 so that Pr(H,) = Pr(H,) = % a
priori (as both articles assume), and so very probably, .4
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Table 1. Data, p Values, Posterior Probabilities, and
Power at 0, = .55 for the Three Surveys
Survey (a) (b) (c)

n 20 200 2,000
0 750 .575 523
t 2.03 2.05 2.03
p value .021 .020 .021

' .408 .816 976
Pr(H, | 1) 204 047 024
Power(@ 1.645) 115 .409 .998
Power(@ f) 057 .262 .993

= 0 = .6. Then ¢ is the usual test statistic, and the p value
is d(—1).
A standard calculation yields

Pr(HO I ()) = (I)(‘Cnt) (l)
with
C, = (2 + a¥/n) = nl(n + o*/1?). )

Note that the probability given in (1) decreases as n in-
creases, in contrast to Jeffreys’s formula reported in Table
1 of Berger and Sellke.

The results for the three surveys are reported in Table
1 here.

Survey (a) is far less comforting to Allen than is (b),
which is less so than (c). Only for (c), with C, = .976,
does P(H, | t) closely approximate the p value of .021. It
is understood in making this assertion that winning and
losing are the only items of interest, victory margin being
irrelevant (in a real setting, this would be untrue if there
were time to influence votes further).

Of course, other results might follow from the same
data, but different information. If the election were not
expected to be close, for example, if 1 = .25 were rea-
sonable, then Cy, = .91 and the p value .021 would be
near Pr(H, | t) even for n = 20. Indeed, this is the Casella—
Berger result for the normal distribution setting, that
Pr(H, | ¢) diminishes as T — o to its minimum ®( —¢), the
p value; check (1) and (2) to see this. Their result is correct,
but irrelevant when one knows that t is bounded above in
such a way that C, is substantially less than unity for all
reasonable 1.

The key to understanding these results from any per-
spective, Bayesian or non-Bayesian, is that the result =
.75 for Survey (a) is not much more likely for the values
of 0 that one expects to obtain under H, than it is if H, is
true. That is, taking 6, = .55 as a typical value for H,,

Pr( = .75| 6 = 0,) is 5.7% for Survey (a), and it only
rises to 12.6% when 6, = .60, the largest tenable value
for 0. To generalize, and perhaps to explain intuitively
when p values fail to reflect probabilities, we note that
rare event concepts underlie p value reasoning, but that

if a rare event for H,occurs that also is rare for typical
H values, it provides little evidence for rejecting Hyin
favor of H,.

Journal of the American Statistical Association, March 1987

The final two rows of Table 1 provide the powers for
the one-tailed tests in each survey at ¢, = .55, first for
test size .03 (rejecting H, if + = 1.645) and in the latter
row for test size P(—¢), the p value. These power formulas
then are ®(Vnd — 1.645) and ®(Vnd — 1), respectively,
defining é = (0, — 0,)/c as the signal-to-noise ratio. Here
0y = .50 and 6 = .1. We see from Table 1 that

the p value corresponds to Pr(H, | t) only when good
power obtains at typical H, parameter values.

I qualify this statement, however, here and in later re-
marks, by requiring that the parameter space H, include
the interval between 0, and ¢,. Otherwise, in the simple
H, versus simple H; case, for example, there would be
excellent power at §, = 0, + do when ¢ is large, but at
t = 0Vnl2, 0 = 0, + d0/2, one has Pr(H, | 1) = 4, even
with a statistically significant test statistic.

Practical statisticians, be they Bayesian or frequentist,
have to assess the possible “typical” values 6, in H, when
they design experiments, if only for the purpose of making
power calculations to justify the sample size. If we label
0, as a typical value when it falls one (prior) standard

deviation above the null value 6,, §, = 0, + t, then C?
= nd* /(1 + nd).
Thus
t5 = Cyt (3)

is the ““corrected”” standardized statistic, since then Pr(H,
| t) = ®(—+*) = p value if * had been observed in place
of ¢. Tables of the normal distribution can be applied di-
rectly to ¢*. In the survey example, taking t* = 1.645 for
5% significance, values of r = t*/C, equaling 4.03, 2.01,
and 1.69 would be required for n = 20, 200, 2,000. Such
corrections ¢* are in the spirit of the Berger—Sellke rule
of thumb for modifying standardized test statistics, but go
further because they also incorporate the particular fea-
tures of each problem.

The essential distinction between the results for two-
sided tests and one-sided tests, considered by the authors
of these two articles and various others before them, seems
not to depend on the number of sides of the test, but on
whether all prior probability mass is allowed to slip off to
infinity. When that cannot happen, and it automatically
cannot in two-sided situations, the p value will tend to be
too low. Otherwise, Casella—Berger type results will ob-
tain and p values will be more appropriate. The heuristics
of the one-sided survey example are relevant to the Ber-
ger—Sellke situation, but the example could easily have
been extended to their two-sided situation at the cost of
increased complexity.

When significant power is available at reasonable alter-
natives in f, p values will work well. But otherwise they
generally overstate evidence. Thus they usually would be
reliable for the primary hypotheses in well-designed (for
good power) experiments, surveys, and observational
studies. But for hypotheses of secondary interest, and
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when on “fishing expeditions” with data from unplanned
studies, adjustments to ¢ values like those suggested by
Berger and Sellke or in formula (3) are mandatory. These
facts need to be better understood by the wide population
of individuals doing data analyses or interpreting the re-

133

ports of such analyses. They need to be taught in intro-
ductory courses, perhaps when the power of tests is
introduced, and should be recognized by the editors of
journals that report empirical work in terms of significance
tests and p values.



JAMES O. BERGER and THOMAS SELLKE

~ Rejoinder

We thank all discussants for their interesting comments.
Our rejoinder will rather naturally emphasize any dis-
agreements or controversy, and thus will be mainly ad-
dressed to the non-Bayesians. We are appreciative of the
expressed disagreements, including those of Casella and
Berger, since one of our hopes was to provoke discussion
of these issues in the profession. These are not dead issues,
in the sense of being well known and thoroughly aired
long ago; although the issues are not new, we have found
the vast majority of statisticians to be largely unaware of
them. We should also mention that the commentaries con-
tain many important additional insights with which we
agree but will not have the space to discuss adequately.
Before replying to the official discussants, we have several
comments on the Casella—Berger article.

1. COMMENTS ON THE CASELLA-BERGER
ARTICLE

First, we would like to congratulate Casella and Berger
on an interesting piece of work; particularly noteworthy
was the establishment of the P value as the attained lower
bound on the posterior probability of the null for many
standard one-sided testing situations. It was previously
well known that the P value was the limit of the posterior
probabilities for increasingly vague priors, but that it is
typically the lower bound was not appreciated. And the
less common examples, where the lower bound is even

smaller than the P value, are certainly of theoretical in-
terest.

Our basic view of the Casella—Berger article, however,
is that it pounds another nail into the coffin of P values.
To clarify why, consider what it is that makes a statistical
concept valuable; of primary importance is that the con-
cept must convey a well-understood and sensible message
for the vast majority of problems to which it is applied.
Statistical models are valuable, because they can be widely
used and yield similar interpretations each time they apply.
The notion of 95% ““confidence” sets (we here use “con-
fidence” in a nondenominational sense) is valuable, be-
cause, for most problems, people know how to interpret
them (conditional counterexamples aside). But what can
be said about P values? Well, they can certainly be defined
for the vast majority of testing problems, but do they give
a “sensible message™? In our article we argued that they
do not give a sensible message for testing a precise nuli
hypothesis, but one could make the counterargument that
this is merely a calibration problem. The P value is after
all (usually) a one-to-one monotonic function of the pos-
terior probability of the null, and one could perhaps cal-
ibrate or ‘“learn how to interpret P values.” This is
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possible, however, only if the calibration is fairly simple
and constant. In our article we mentioned one well-known
source of nonconstancy in interpretation of the P value:
as the sample size increases in testing precise hypotheses,
a given P value provides less and less real evidence against
the null. One could perhaps argue that a different cali-
bration can be found for each sample size. But now Casella
and Berger have also demonstrated that one must calibrate
by the nature of the problem. For one-sided testing, a P
value is often roughly equivalent to evidence against H,,,
whereas for testing a precise hypothesis a P value must
typically be multiplied by a factor of 10 or more to yield
the same evidential interpretation. And these are not the
only two possibilities. Indeed, suppose that the null hy-
pothesis is an interval of the form Hy: |0 — 0| = C. If C
is near 0, one is effectively in the point null situation, and
as C gets large the situation becomes similar to one-sided
testing. For Cin between, there is a continuum of different
possible “calibrations.” .

Although somewhat less important than the sample size
and C, the dimension of the problem and the distribution
being considered can also necessitate different calibrations
between P values and “evidence against H,.” The bottom
line is simple: the concept of a P value is faulty, in that it
does not have a reasonable direct interpretation as to evi-
dence against H, over the spectrum of testing problems.
It may be useful to identify when P values are (and are
not) sensible measures of evidence, so as to allow reap-
praisal of those scientific results that have been based on
P values, but the future of the concept in statistics is highly
questionable.

Another issue raised in the article of Casella and Berger
has to do with the validity of precise hypothesis testing.
It is implied in Section 1 that one-sided tests are more
useful in practice, and in Section 4 that placing mass near
a point can be considered as “biasing the result in favor
of H,”; the practical import of our results is thus ques-
tioned. This issue is complicated by the fact that, in prac-
tice, many testing problems are erroneously formulated as
tests of point null hypotheses. There is undeniably a huge

_number of such tests performed, but how many should be
so formulated?

One answer to this objection is simply to note that we
have little professional control over misformulations in
statistics; we do, however, have some control over the
statistical analysis performed for a given formulation. It is
awkward to argue that a bad analysis of a given formu-
lation is okay because the formulation is often wrong.

At a deeper level, it is possible even to argue the other
way on the question of proper formulations of testing; one
can argue that it is actually precise nulls that encompass
the majority of “true” testing problems. This argument
notes that most one-sided testing problems have to do with
things like deciding whether a treatment has a positive or
negative effect, or which of two treatments is best. The
point is that, in such problems, what is typically really

“desired is an evaluation of how large the effect is or how
much better one treatment is than another. Such problems
are more naturally formulated as estimation or decision
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problems, and the appropriateness of testing is then
debatable.

Precise hypotheses, on the other hand, ideally relate to,
say, some precise theory being tested. Of primary interest
is whether the theory is right or wrong; the amount by
which it is wrong may be of interest in developing alter-
native theories, but the initial question of interest is that
modeled by the precise hypothesis test.

In such problems the key fact is that there is real belief
that the null hypothesis could be approximately true. If I
am an experimenter conducting a test that will show, hope-
fully, that vitamin C has a beneficial effect on the common
cold, I had better officially entertain the hypothesis that
its effect is essentially negligible. In other words, I should
not take the prior mass assigned to “no positive effect”
and spread it out equally over all ¢ < 0: this does not
correspond to the reality that most people may be quite
ready to believe that vitamin C is not harmful, yet give
substantial weight to a belief in no or little effect. Such
situations require substantial prior mass near 0.

We present the previous argument about what is “prac-
tical hypothesis testing™ only halfheartedly. The huge va-
riety of applications in which P values are used (see Cox
1977) makes questionable any claim that only “one type”
of situation need be considered from a practical perspec-
tive. Whether most situations are one-sided, have a precise
null hypothesis, or are really decision problems is irrele-
vant; our basic statistical theory should handle all.

2. REPLY TO HINKLEY

Hinkley defends the P value as an “unambiguously ob-
jective error rate.” The use of the term “error rate” sug-
gests that the frequentist justifications, such as they are,
for confidence intervals and fixed a-level hypothesis tests
carry over to P values. This is not true. Hinkley’s inter-
pretation of the P value as an error rate is presumably as
follows: the P value is the Type I error rate that would
result if this observed P value were used as the critical
significance level in a long sequence of hypothesis tests
[see Cox and Hinkley (1974, p. 66): “‘Hence [the P value]
is the probability that we would mistakenly declare there
to be evidence against H,, were we to regard the data
under analysis as being just decisive against H,.”’] This
hypothetical error rate does not conform to the-usual clas-
sical notion of “repeated-use” error rate, since the P value
is determined only once in this sequence of tests. The
frequentist justifications of significance tests and confi-
dence intervals are in terms of how these procedures per-
form when used repeatedly. _

Can P values be justified on the basis of how they per-
form in repeated use? We doubt it. For one thing, how
would one measure the performance of P values? With
significance tests and confidence intervals, they are either
right or wrong, so it is possible. to talk about error rates.
If one introduces a decision rule into the situation by saying
that H, is rejected when the P value < .03, then of course
the classical error rate is .05, but the expected P value
given rejection is .025, an average understatement of the
error rate by a factor of two.
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In the absence of an unambiguous interpretation of P
values as a repeated-use error rate, we have most fre-
quently heard P values defended as a measure of the evi-
dence against H,, via an “either H, is true or a rare event
has occurred” argument. It is for this reason that we con-
centrated on evaluating P values in terms of whether they
really are effective in conveying information about the
strength of the evidence against H,. We acknowledge the
difficulty in defining “‘evidence” in an absolute (non-Bayes-
ian) sense, and for this reason we considered a variety of
notions of evidence in the article, including lower bounds
on the Bayes factor (or weighted likelihood ratio). Indeed,
the lower bound on the Bayes factor sirikes us as having
a true claim to being “‘unambiguously objective,” since it
depends on no prior inputs at all (Th. 1) or only on a
symmetry assumption (Th. 3) and yet relates to a valid
(conditional) measure of evidence.

We indicated in Comment 2 that the results can be ex-
tended to goodness-of-fit testing and yield much the same
conclusions, even when the alternative hypotheses are not
well formulated. One can find lower bonds over essentially
arbitrary alternatives within the chi-squared testing frame-
work. Thus, whether or not the P value can really be
considered as a standard scale, its interpretation in terms
of evidence against H, should be sharply qualified.

We would disagree with the idea that usual confidence
ranges for a parameter are more informative than poste-
rior probabilities of hypotheses, when the null hypothesis
defines a special value for a parameter. As an example,
the density (on R')

fl0) = (1 + &) — 4elx — 4,

for x — 0] =4,
will yield, as a usual 95% confidence set for small ¢,
C(x) = (x — 475, x + .475);

but if 6 = 0.is a special value and x = .48 is observed,
we would be loathe to reject Hy : § = 0, since

f(.48l0)/05é1(p ) f(48]0) = (1 — &)/(1 + &).

The point is that a special parameter value outside a con-
fidence set can have virtually the same likelihood as any
parameter value inside a confidence set, and we would
then argue that the data do not indicate rejection of the
special parameter value. This phenomenon also occurs in
the normal testing problem we discuss, though to a lesser
degree.

We are wholeheartedly in agreement that proper con-
ditioning must be employed. To us, however, this is even
more important in testing than with confidence sets. We
feel that refusing to “‘condition” on the actual data x, and
instead using the set A of “as or more extremf;” values,
causes-more harm in statistical practice than other failures
to condition.

3. REPLY TO VARDEMAN

Our major disagreement seems to center again on the
issue of concentrating prior mass near ,. We argued pre-
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viously that (a) in examples such as the “vitamin C” ex-
ample, one often does have mass near 6,, and (b) even if
H, is a fair-sized interval, the contradiction occurs (the
agreement of posterior probabilities with P values only
occurring in the limiting case in which H, is a very large
interval with prior mass “uniformly” distributed over it).

Perhaps less controversy would have ensued if we had
used Bayes factors or weighted likelihood ratios as our
central measure. The argument then avoids the loaded
issue of “prior beliefs”” and simply says “how does the
support of the data for H,, given by the likelihood f(x |
0y), compare with the support of the data for H,, given
by some average of f(x | ¢) over 0 in H,.”” This is the
Bayes factor, with g being the averaging measure on H,,
and the various theorems find bounds on the Bayes factor
over g. If 0, has no distinction, as in the scenario of Casella
and Berger, one probably does not care if f(x | 0,) is a
substantial fraction of the weighted likelihood of H;; on
the other hand, if 0, has the distinction of being a particular
value for which it is desired to assess the evidence for or
against, it is hard to ignore a comparatively large value of
f(x | 0,). We chose not to emphasize this “likelihood”
argument, because we have found that the interpretation
of observed likelihood ratios as direct evidence (and not
just as inputs into a classical test) is less familiar to many
classical statisticians than is the use of posterior probabil-
ities as evidence.

This also relates to the issue of our agreed-upon dis-
comfort at replacing ¢t = 1.4 by the event || = 1.4]. In
the normal case (and most others), f(1.4 | 6;) is a sub-
stantial fraction of any reasonable average of f(1.4 | )
over H;. On the other hand, Pr([lf] = 1.4] | 0,) is much
smaller than reasonable averages of Pr([|¢| = 1.4] | #) over
H;. Thus, by likelihood reasoning, there is also a great
difference between knowing precisely that ¢+ = 1.4 and
knowing only that || = 1.4; the latter would yield much
greater evidence against H,.

Another illustration of the conditioning aspect of the
problem is described in our story about the “astronomer”
in Section 1. We would really like to see an explanation,
written for this astronomer, as to why he should believe
that £ = 1.96 is substantial evidence against H,. The gen-
eral point is that any method of conditionally measuring
evidence that we have considered indicates that the re-
placement of t = 1.4 by [|¢| = 1.4] is the source of the
huge discrepancies; and the replacement has no real jus-
tification except that of “convenience.” One of the pur-
poses of this article was to indicate a common statistical
situation in which it is essential to condition properly,
feeling that the issue of conditioning is one of the deepest
and most important issues in statistics.

We applaud Vardeman’s leanings toward decision-the-
oretic formulations, though we have argued that one
should not completely abandon the possibility of stating
how much the data support a special value 0,. We also are
not particularly at ease with the use of words like “objec-
tive,”” but we use them out of a certain defensive posture.
Many statisticians feel that it is possible and essential to
be objective; whether or not this really is possible, we
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would argue that the closest one can come to objectivity
is through the types of conditional analyses we have dis-
cussed. (See Comment 3 for our views concerning the
actual possibility of objectivity.)

4. REPLY TO DICKEY

The observation that » in Table 1 can, in general, be
replaced by the ratio of the prior and sampling variances
is a useful fact (pointed out also by Pratt). It is interesting
that the accuracy of the point null formulation (i.e., the
appropriateness of the approximation of a realistic small
interval null by a point) depends on ¢/Vn but not on %
thus if 7% is indeed larger than ¢°, one can move to the
right in the table without increased worry concerning the
soundness of the formulation. '

The asymptotic r arguments are given for completeness,
but it is true that the asymptotics take effect for ¢ too large
to be of much interest. We agree with all other comments,
except that the equating of a P value with a tom-tom strikes
us as somewhat overly positive.

5. REPLY TO PRATT

We are in complete agreement that Edwards, Lindman,
and Savage (1963) (EL&S) contained the essence of our
article. Indeed, had EL&S not been so mysteriously ig-
nored for so long, our contribution would have been
mainly a presentation of Theorem 5, its ramifications, and
the results in Section 4. Because very few people we talked
to were aware of the results in EL&S, however, a general
review seemed to be in order. We feel that the result of
Theorem 5 is a substantive advance for two reasons. First,
although the results for Gy are not greatly different from
those for Gy, this is not apparent a priori; non-Bayesians
tend to be very wary of a result established for only normal
priors, so verifying that the same answer holds. qualita-
tively for all unimodal symmetric priors can substantially
enhance the impact of the basic phenomenon. Second, the
techniques for working with large classes, such as Gy, are
important in general Bayesian sensitivity studies, and we
hoped that the application here would indicate the pos-
sibilities and kindle interest. Finally, the result on interval
hypotheses in Section 4 is valuable for both sociological
and scientific purposes.

Pratt’s Table 1 and the subsequent comments and in-
sights are all of value. We agree with his later comment
that our Comment 1 is probably not cautious enough; it
was given with the simple hope that a not-too-terrible rule
of thumb might be able to drive out a terrible rule of
thumb.

6. REPLY TO GOOD

There is virtually nothing in this interesting set of com-
ments with which we disagree. We would probably have
to align ourselves with the radical Bayesians, however, in
that we remain unconvinced that P values have any merit.
The number of “rules of thumb’" that have to be learned
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to “calibrate” properly P values in the various possible
testing situations is so large that it strikes us as simply
unwieldy to continue to use them. Why not just shift over
to Bayes factors (or bounds on the Bayes factors)? We
would agree that often (though not always) a P value of
.05 is an indication that more evidence should be obtained.

We thank Good for the additional references; we tried,
but knew we must have missed some.

7. REPLY TO MORRIS

Morris raises a number of interesting issues that bear
on the comparison of the one-sided and precise null testing
situations. For ease in discussion, it is helpful to consider
a precise null version of the example of Morris.

Example. Consider a paired comparison experiment
in which two new treatments will be screened. The out-
come for each subject pair is a 0 or 1, depending on which
treatment is judged to be superior. Let 8 denote the prob-
ability of obtaining a 1, and let n denote the number of
(independent) pairs in the experiment. These are two new
treatments, and it is judged that there is a substantial
probability (3, say) that they are both ineffective, which
would correspond to a f very near 3. All past experiments
with similar treatments have indicated that, when there
are treatment effects, 6 ranges between .4 and .6. Indeed
(as in'the Morris example), suppose that we view it rea-
sonable to model this ¢, a priori (conditioﬁal on there being
treatment effects), as having an 9u(3%, (.03)?%) distribution.
Assuming that the normal approximation for 6 is valid,
the entire model above falls within the framework of our
article, with X = 0 ~ oG, .25/n), the desire to test H, :
0 = 4 versus H, : 0 # &, my = %, and g(6) being the (s,
(.05)?) density.

The difference between this problem and that of Morris
is, of course, that there is substantial reason to suspect 0
= }; in a voting situation there is no reason to single our
@ = % as deserving positive prior mass. (We implicitly
assume that n is not enormous; the real hypothesis of “‘no
treatment effects” would be accurately modeled as H, : |0
— 4 = ¢, and if n is enormous it can be inaccurate to
approximate this by Hy: 6 = 3.)

By using an easy modification of formula (1.1), we can
calculate the posterior probability of H, for each of the
situations in Table 1 of Morris. The results for n = 20, n
= 200, and n = 2,000, respectively, are .436, .302, and
.387; compare these with the posterior probabilities found
by Morris of .204, .047, and .024, respectively. Note, in
particular, the huge difference for n = 2,000.

The example here makes clear that the insightful com-
ments of Morris, although valid for the situation in which
no special mass is to be assigned to a point §,, need not
be valid for the precise null situation. For instance, the
comment “‘the P value corresponds to Pr(H, | ¢) only when
good power obtains at typical H, parameter values” may
be valid for nonprecise nulls but is false for precise nulls;
the powers at 8 = .55 for our example are very near 1
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when n = 2,000, yet the P value differs drastically from
the posterior probability of H,.

The necessary distinction between precise nulls and im-
precise nulls only reinforces the exhortation (with which
we completely agree), in the last paragraph of Morris’s
comment, to the effect that it is crucial for all statisticians
and scientists using P values to learn exactly what P values
do and do not convey about the evidence against H, in
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the wide variety of testing problems to which they are
applied.
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