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Summary

Estimating a Ratio of Normal Parameters — .
The estimation problem of a function of normal parameters £/a?P is

considered. We proVe that a "natural" estimator of this ratio is admissible

for quadratic loss if and only if p is nonnegative.
<



1. Introduction and Summary. .

Let Xy5e005Xp > N2 2, be a random sample from a normal distribution with
mean £ and variance ¢2. We consider the statistical estimation problem of a
parametric function © = £/02P where p is a given real number. The most
interesting case is when p = 1/2, so that & is a dimension1e§§fchgracteristic,
which is a reciprocal of a commonly used coefficient of variation. The case of
general p presents certain interest from the point of view of sfétisticaj
decision theory. Since the admissibility proof for p = 1/2 is not any easier
we consider the general situation. Notice also that if p =1, 6 is a natural
pframeter in the corresponding exponential family. The ﬁgsts'of the hypothesis
;bout 9 with invariant power function have been- studied S;.Einnik_(1968),

Theorem 3.3.1, to whose memory the author would like to dedicate this work.

In this paper we use quadratic loss function of the form
L(g,038) =(8 - 8)2c4P-2

n n
which is invariant under scale transformations. If X = % Xj/n and S = % (Xj - X)2,

then (X,S) is a version of the complete sufficient statistic, and the unbiased

estimator $;(X,S) has the form ) .

-

sy(X,S) = c1X/SP ,

where ¢1 = 2P T((n-1)/2)/ T((n-1)/2 - p).
However for p # 0 and sufficiently large n this estimator can be improved
upon very easily. Indeed the risk function of any procedure cX/SP depends

only on £/ = n , and because of the independence of X and S it has the form
En1(cX/SP - n)2 = n2[c? Egy S72P - 2cEgy STP + 1] + c2n~TEgS2P

Assuming that n > 4p + 1 (otherwise the risk is infinite) we put
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01 - 2°r((n-1)/s-p) (1.1)
£ -2  T((n-1)/2-2p-p)’ -
01

o

Ifc-> o then the estimator cX/SP has larger risk than 60(X,S) = cOX/SP.

Since ¢y > ¢ the estimator 60 is better than the unbiased esEfmaidr GU'

Moreovér 60 is admissible within the class of procedures cX/SP, and it can be
shown to be minimax for properly rescaled quadratic loss function. Therefore

we shall investigaté'the admissibility of,ao. We prove that 89 is admissible

if p > 0 and inadmissible if p < 0. The admissibility part éeéms to be surprising
in view of the inadmissibility of cO/SP as an estimator ;¥'?TP (see Stein (1965),
Brown (1968), Brewster and Zidek (1974), Strawderman (1974)). "I Section 2 we
show that 60 iS»genera]ized Bayes procedure with respéct to a prior which admits
a good approximation (in terms of posterior risk) by probas%lity priors. Exactly
this fact is known to be responsible for admissibility (see Stein (1965)), and
our admissibility proof in Section 3 is just a modification of the standard one
(Blyth (1951)). Similar admissibility phenomenon also happens in the estimation
problem of exponential parameters (see Rukhin (1983)) and other functions of

normal parameters (Rukhin (1984a), (1985)). -
2. Generalized Bayes Estimators of 6.
We assume in this section that p is a positive number. We also use a convenient
reparameterization: < = 1/(262). Let A(g,7) be a density of a (generalized)
prior distribution over {(£,t), v > 0} with respect to invariant measure dt¢ dt/r.

Notice that the latter corresponds to the right Haar measure for £ and o, which

is traditionally used. The Bayes estimator GB(x,s) has the form



[+ [e o}

2P | J ng/Z-p exp{- nt(x-g)z-rs}x(g,T)dEdr ]
GB(x,s) = -~ 0
] J Tn/2—2p exp{- nf(x-ﬁ)z- tSIA(E,T)dEdT
- o ()
Denote . -7
R(x,y) = [ expl- ny(x-£)2}r(g,y)dE . T (2

Then (assuming: the convergence of needed integrals)

@

| & exp{- ny(x- £)2I(£,y)dE = xR(x,y) + Rx(x,y)/(ZnyZ,

i B
where Rx(x,y) = 5§-R(x,y). Thus

8g(x,s) = cox/sP

+ 2P [ [xR + R/ (2ny) - 2-P cg xs~Py=PR]yn/2-pe-ys dy/é RyN/2-2pe=ys qy.  (2.2)
0

Notice that the representation (2.2) holds also for some prior
distributions which are not absolutely continuous in which case A should be

interpreted as a generalized function.

~e o

- -

According to (2.2) 60 is a generalized Bayes procedure with respect to

prior density A if and only if
D= DR +R/(2ny) - 27 ¢ xs Py PRYV2PeYS gy - g (5.3
0 —

The equation (2.3) has a "trivia]® solution R(x,y) = y'3/2 which corresponds
to the conjugate (not uniform) generalized prior density A(g,t) =51, However
(2.3) admits many other solutions. Let

oo

R(x,y) = Zo nk(nx2y)kskr



where ro =1 and for k = 1,2,... r -

k .
e .H][B(j+n/2-2p,p)/B((n—1)/2-2p,p)-1]. (2.5)
J =

Term by term, differentiation and integration yields I1.=70.  In the

appendix we show that'{(-l)krk, k = 0,1,...} is a moment sequence of a

distribution function G = Gp over the interval [0,1], i.e. for k = 0,1...

] o i ) - . '
0 -

The distribution function G, is continuous for p. < T.and for p > 1’

it is continuous for 0 < t < 1 and has a positive jump g = gp at-t = 1.

Now define the generalized prior distribution Aq by the formula
dag = (1 - g)A(E,4)dedT/T + g de (2.6)
where

| 1
AE,r) = (ne/m)1/2 fO exp{-ne&2t/(1-t)}(1-t)-1/2 dG(t) .

In this case

| ] 1
R(x,y) = (ny/m)1/2 [ exp{-ny£t/(1-t)-ny(x-£)2}de fo (1-t)-1/246(t)

1
= fO exp{-nyx2t}dG(t)

z rk(nxzy)k/k!
k=0

Therefore R solves (2.3) and 8g is the Bayes estimator with respect to

the prior distribution Ag.



We have proven the following

Theorem 1. The generalized Bayes estimator GB of 6 = £/62P = £(21)P under
quadratic loss and prior density A has form (2.2) where the function R is

defined by (2.1). The estimator 8y is generalized Bayes for ;he-Prior

—

distribution (2.6).

Notice that the support of the measure Ag is the whole-parameter space

{(g,1), T > O}. Also although Ag is not a finite measure, for all <

[+ ]

] Aa(E,T)dE < =,

-C0 9
-

e

so that Ag is "less improper" than the uniform’distribution;
In terms of parameters n = /o and o, dAO(g,T) = g(n) dn do/o, where

1
a(n) = | exp{-nn?t/(1-t)1 (1-t) V2 da(t).

It can be shown that as 1 » «

g(n) ~ C[n|2P-N/2-1

—

R

Notice that 2p-n/2-1<-3/2, so that g possesses the properties of generalized
prior densities for admissible scale equivariant estimators of normal variance
discussed in Brown (1979) p. 991. Similar (but different from g) prior densities

have been also used by Brewster and Zidek (1974) and Strawderman (1974).

3. Admissibility Result.

Theorem 2. The procedure 8g(X,S) = coX/SP based on a random sample of
size n, n > 4p+l, is admissible for estimating the ratio of normal parameters,

® = £/02P, under quadratic loss if p > 0.
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Proof. If p = 0 the estimator 80 coincides with X which is known to be anJ}
admissible estimator of 6 = £. Therefore we assume p > 0, B

Because of the continuity of the risk functions the admissiBi1ity of )
will be proven if one finds a sequence hy, m = 1,2,..., of positive measurable

functions hp > 1 as m> =, [fh (T)dAg(E,T) < =, and

=] j “r1-2ppgg (60-6)2 - E(8;-8)2Tny(c)dAg(2,t) > 0.

Here Sy, is the Bayes estimator for the proper prior distribution Ap, dig
= hpda.
A straightforward calculation shows that

=CJ ety [8p(x,5) - 60(x,5)12 dx ds e

f_:fowyn/z‘ZP*]exp{-ny(X-E)Z-ys}s(”'3)/2dAm(£,y)-

Here C denotes a generic.positive'constant‘which depends only on n and p.

Calculation similar to this done in (2.7) shows that with
R(x,y) = Rn(x,y) = fol exp{-nyxzt}de(t)hm(y)
one has . .

o TR*Ry/(2nxy) - 2P s7Py™PRIyPI/ 2=y 12

p - C f wf (=]
-0 o 2=7 -
m 0 fO yn/ PR oSy dy

x2 dx s(n-=3)/2 ds.

Assume that

h (y) dy/y < . (3.1)

O 8
3

Then

[ ol g hy(2)dag (& ,7) = Jo"t ™ 2d6(t) [0 (y)aysy < o,



A straightforward calculation shows that

% 2
[g[R + Rx/(any) -‘2pco(sy)—pR] y”/z'Pe'Sydy}

(v)-h_(yv) Jdv de(t)y™ 2Pe SYay

[ - -1 —nvx2
={£ folfoan/z 2p(1_v)p 1,-nyx tv[hm

0

‘ —

2
/B({n-1)/2 - 2p,p)]

o 2p0 0 ipe1.-nyx2
< IO folfoan/z 2p(1_v)p le nyx tvhm(y)

[1-h, (yv)/h (y) 12 (1-ve Jdvag(t)e™SYy™ 2ay

o - -1 -nvx? -1, - -
x o folfolv"/z 2P(1-y)P~le-nyx tvhm(y)(l—vt) 1d\4.dG(t)e SYyn/2-2p4y

Bécause of Lemma 2

©o -} -] - _ - 2
o < Cf-wfo fO folfolvn/Z 2p(1_v)p lemnyx tv A
[1-hm(YV)/hm(Y)]2dvdG(t)hm(y)e'syyn/zdy 2 dx s(n=3)/2 4
= o[ WM BB (1-)Pth () 1-h(y)/h (v)1%dv dy/y.

Here we have used the fact that folt'3/2dG(t) < o,

Now we define the sequence:

ho(y) = (1 + (log y)2n2)~!

so that (3.1) is satisfied. Also

[so]

g () L1+t ()7 (1) ay/y

(o8]

é [hi(y)/hm(yV'])] dy/y - Z'hm(y) dy/y

)2 m2 h.(y) dy/y = C(log v)en] -

(log v

O 8



and

as m > o, -

For comp]efeness sake we formulate the following resu]prroo% of which can
be found in Rukhin (1984b). -

Theorem 3. The estimator 8o is inadmissible for estiméfing 6 under

quadratic loss if p‘< 0. In fact the estimator & of the form

5(x,5) = 84(x,5) - 260(x,s)h(|x|(n/s)1]~_/2)-v

where
h(z) = max{0,1-(1+2%)1 Pz 72 3,
d, = max k B(n/2+k-p,-p)/B((n-1)/2-p,-p),
k>0
improves upon 8-
Acknowledgement. The author is grateful to Bill Strawderman‘%br

interesting discussion. Thanks are also due to the referee for mény helpful

remarks. In particular he pointed out a aap in the original proof of Theorem 2.



Appendix
We use here the following notation:

b = B(((n-1)/2-20.p), by = b™1B(§+n/2+1-2p,p).

Lemma 1. For any p, 0 < p < (n-1)/4, and n > 2, there exists a distribution

function G(t) over the interval [0,1] such that for all k = 0,1,2-..

| k
e = T eby) = ) e (5.1)

1

I ==

J

[, % °

Also

o

[ot™2da(t) < -

For p < 1, the function G is continuous. For p > 1, this function is continuous

for 0 < t < 1 and has a positive jump g at t = 1,

g = I

1-b.).
=0 (b

Proof. Let for complex z ' .

1= 8

o(z) = .

(1-bj)(1-B(j+z+n/2+1-2P,P)b-])
J

0

It is easy to see that ¢(z) is an analytic function of z in the region

Rez>2p-1-n/2.

We show that ¢(z) is a Mellin transform of a distribution G, i.e.

[y thd6(z) = o(z).
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Since o(k) = (-l)krk, k = 0,1,..., the first part of Lemma 1 will-then be

proven.

If.distributions Fir § = 01, are such that

f§ X2dF5(x) = (1-b;)[1-B(3+zn/2+1-20,p) ' =T (5.2)
and if infinite multiplicative convolution of Fj, j=0,1,..., exists, then it
satisfies (5.1). )

First let us demonstrate the existence of such distributions Fj' Denote

<
m-1- :
oplu) = f”.f ¢1(U/(U1---Um_1)) ng ¢1(Uj)duj/uj
A, -
where ‘integration is over the set
Ay = Llupseeestipg)s 0 < uy < 1, i=1,..0m=1uq.uy g > ul
and
py(u) = uMEEP(L - u)P-l, 0<u <L, .
Thus
J’ 1 z-1 ( )d _ [‘f 1 UZ-1¢ (u)du]m-
g U Teplwidu =g 1

[B(n/2 - 2p + z, p)I".



Notice that since (1 - u)p/2 <1 for0<u <]

m-1
¢ (u) < u"/2-2p [ ] T du,/u,
L 1 \] \]

m
AU
= u"2-2P (L 10g W)™ L/(m - 1)1

Now let

Tpis series converges. Indeed because of (5.2)

3 (- Tog w)™ /o™ (m-1)11
m=1

= u"/2°2P oyp{- Tog u/b3/b.

¢(U) < un/2-2p

For positive z

=,B(z+n/2-2p,p)b'1 [1—B(z+h/2-ZD,P)b_]]'1.

-z [B(z+n/2-2p, pp 1"

11

(5.2)
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Now if
aF5(u) = (1=by) (W (u)du + deg(u),

where the distribution €, puts unit mass at u = 1, then (5.2) is valid.

Notice that the infinite convolution of Fy,F,,... converges since, as is

easy to check,

z fol Tog u dF, < =
] J

and

1 1 2 -
? fo (Tog u - 4™ Tog u dFj) dF 5 < =,

which in our case is a sufficient condition for the convolution's convergence

(see Hennequin and Tortrat (1965) p.202).

Thus the distribution function G such that &(z) is its Mellin transform
exists. Since ¢(z) is analytic for Re z > -3/2, folt'3/2dG(t) < o,

It is known (cf. Hennequin and Tortrat (1965) p.205) that G is continuous

if I fk’ where fj is the largest jump of Fj’ vanishes. Clearly

o

j=0

R

and

Tog f; ~ - I((n - 1)/2 - p)/[iPr((n - 1)/2 - 2p)].
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Thus H§=O fj vanishes if and only if p < 1. If p > 1, the distribution
function G has a jump g = H;=0 fj at t = 1, and is continuous for t > 1.

Lemma 2. If the distribution function G is defined as in Lemma 1, then

—

[l etaa(t)

_ jolfol Vn/72-2p(l_V)P‘leZtV(l-tv)'1dG(t)dv b1,

This formula is proved by expanding both sides of (5.4)'ih powers of z.
)

-
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