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SUMMARY

A general notion of positive dependence among successive observations in
a finite-state statibnary process is studied, with particular attention to the
case of a stationary ergodic Markov chain. Some useful conditions equivalent to
positive dependence are obtained for reversible chains, byt shown not to be
edquivalent for nonreversible chains. Statistical implicaf%oné of positive depen-
dence are considered in detail elsewhere. " B
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1. INTRODUCTION .

In this paper, we study conditions under which a stationary finite—sfate
stochastic process, and in particular a stationary ergodic Markov chain, is positive
dependent. The definition of positive dependence adopted here arises naturally
in the study of the effects of dependent data on statistica]—p;dcédUres that assume
iid observations. Gleser and Moore (1983) showed that positive dependence causes
classical tests of fit (such as the Pearson chi-squared and Koimogorov-Smirnov
tests) to reject a true null hypothesis too often. Gleser and Moore (1984) ex-
tended this result to tests for categorical data. It is in this last setting
that our notion of positive dependence for finite-state pfgcesées is of interest.
Markov chains are a common model, and various aspects of theﬂeffect of Markov
dependence among successive observations on tests for categorial data have been
studied by Tavaré (1983) and Tavaré and Altham (1983).

We call two jointly distributed variables X,Y with common sample space d

positively dependent if

cov {h(X), h(Y)} >0 (1.1)

for every function h: & + (-»,») such that E|h(X)h(Y)]| < . A_st§5h§stic process
{Xt} defined on the product space & ~is positively dependent if Xt’ Xs are
positively dependent for all t,s.

It is easy to see that when X,Y have identical marginal distributions, (1.1)

is equivalent to
E{h(X)h(Y)} > 0 (1.2)

for all h such that E{hz(X)} <, Thus (1.1) and {1.2) are equivalent for

stationary processes.



For categorical variables, we may take & = {1,...,M for some integer M. The
joint distribution of two variables X,Y on & is specified by the M x M matrix of

joint probabilities.

R = ((Y"IJ)), r'lJ = P(X=1’ Y=j). ]

Any function h: & »(-=,») can be represented as an M-vector h with ith component

h(i). When X,Y have identical marginal distributions, (1.2)”15 equivalent to

h'R h 3_0,5a11 M-vectors h. (1.3)

When R is symmetric (i.e., when X,Y are exchangeable), (1.3) states that R
1§¢a positive semidefinite (p.s.d) matrix. For conveniente, we will extend this
terminology, and call a general M x M matrix R p.s.d. if (1;5)-ho1ds. The following
theorem summarizes our discussion.

Theorem 1. Two jointly distributed categorical variables X,Y on the sample
space & = {1,...,M}, with jeint probability matrix R and identical marginal distri-
butions are positive dependent if and only if R is p.s.d.

A number bf concepts of positive dependence have been introduced; see chapter
5 of Barlow and Proschan (1975), Shaked (1979, 1982) and the references therein.
Our definition is of interest for its statistical imp1ications,_aﬂ5~js appropriate
for categorical variables because it does not depend on the arbitrary ordering of
the values (states) 1,...,M of X and Y. There is no implication in either direc-
tion between our notion of positive dependence and such notions as association
and orthant dependence (see Shgked (1982) for a survey) that assume a meaningful
ordering of values. On the other hand, common definitions of dependence among
successive categorical outcomes in terms of conditional probabilities do not imply
a sign for dependence as we wish to do.

For exchangeable random variables, Gleser and Moore (1983) discuss relations

between (1.2) and other notions of positive dependence. In particular, (1.2) is



equivalent in this case to positive definite dependence as defined by Shaked
(1979). We shall show below that for Markov chains, positive dependence in the
exchangeable case (i.e., reversible chains) has a number of properties that do
not extend to nonreversible chains.

Section 2 presents a necessary condition and a sufficient condition for a
joint probability matrix R to be p.s.d. Sections 3 through 5-concekn stationary
ergodic (i.e. aperiodic positive recurrent) Markov chains {Xt}. Section 3 con-
siders reversible chqins. A reversible chain is shown to be positive dependent if
and only if all characteristic roots of the matrix of one-step transition proba-
bilities are nonnegative. Equivalently, a reversible chan {Xé} is a positive
dépendent process if and only if X],X2 are positive dépehﬁént'varjables. Section
4 shows by example that these facts are false for nonreversib]é éhains.

One interesting special case of a-Mérkov chain is a chain in which Xt =(Yt,Zt)_
has states(y,z), where y is the row index and z is the column index of a contin- -
gency table (Tavaré and Altham, 1983; Tavare, 1983), and in which {Yt} and {Zt}
are (conditionally) independent Markov chains. In Section 5, we briefly state
some results concerning positive dependence of {Xt} when at least one of the

—

component processes {Yt}, {Zt} is reversible.

- -

2. A NECESSARY AND A SUFFICIENT CONDITION
FOR POSITIVE DEPENDENCE

Let X,Y be two jointly d{;tributed categorical variables on & = {1,...,M}

with common marginal distribution defined by

p; = PIX=i} = P{Y=i}, i = 1,...,M,

Let p = (pyseeeupy)’ 5 1 = (1,1,...,1)7,



and note that

p' = R = LR, p'ly = 1. _ (2.1)

The following are necessary conditions for X,Y to be positive dependent.
Theorem 2. If X,Y are positive dependent, then -

2 .
re; - Py > 0, i=1,...,M, . - (2.2)

or equivalently,

; [rst rji = 22pg] 0, 1= T2oeae (2.3)
J#i

o - _—

)

Proof. If X,Y are positive dependent, then R is p.s.d. in the sense of (1.3).

For a given i, define
h, =e., h, = ) e.,
1 i* "2 j;1 J

where ey is fhe jth column of the M x M identify matrix IM. Since R is p.s.d.,

it must be the case that

2 .
0 < (xhy=h,) 'R(xhy-h,) = x"re. - X { ; (roo v v )b+ Y ro
12 172 11 J i 1] J1 J,k#'l \_]Ak“ )
for all x, and hence for x° = J_;1(r'1‘] + rji)/Zr11 Thus,
2
0 {jzi(rij ¥ rm) ;
< - = + Y.,
- iy j.kpi Ik
From (2.1),
ro,o = l=r.. = L) (ris +r.)l,
j,E#i Jk 11 gj#i ij Ji

and



r + z r =p. =r.. + E s ) (2 4)
g 13 i 110 g5 I
so that
2
(p; - r:.) :
i ii _ 1 2y
0=~ MR E s T oouh U TR S

m
verifying (2.2). Equation (2.4),and the fact that .Z p; = l,imply that-

i=1
2(ry; - p%) = by - jgi Yig t P jgi rji - 20y |
) = 2p,(1 - p;) - j;i (ry5 * ry9) i; '  (2.5)
T b 4P 1 "ji)-
Hence (2.2) and (2.3) are equivalent. O

Recall that if X and Y are independent,
rii TPy s rij T Ty T pipj s 1,3 = T....0,M,

Theorem T shows that for X and Y to be positive dependent, the event {X=Y=i}
must be more probable than would be the case if X and Y were independent (assuming
that P; defines the marginal probabilities in both cases), i =‘i,1..lM. Equiva-
lTently, for X and Y to be positive dependent, P{X # Y, X or Y = i} must be less
probable than would be the case if X and Y were independent, i = 1,...,M. These
requirements coincide with our-intuition concerning positive dependence.

A sufficient condition for positive dependence is obtained by strengthening

(2.3) to require that

+r., < 2p.p all i # 3. (2.6)

“ij T Tji < ePiPy s



Note that (2.6) implies (2.3), and also (2.2). '
Theorem 3. If (2.6) holds, then X and Y are positive dependent.
Proof. Since h'Rh = h'R'h, R is p.s.d. if and only if the symmetric matrix
R+ R' is p.s.d.
Let ‘ : -
).

Since A is symmetric, it has M real roots iy >...> Ay. By Gersgorin's Theorem

A=R+R"-2p'p , A= ((aij

(Marcus and Minc, 1964, p. 146), for each k = 1,2,:..,M there exists an 1 = i(k)

such that

J

A - a4l .<_j;1_la1-j| : A (2.7)

However, by (2.6),

so that from (2.5),
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Hence, it follows from (2.7) that A >0, k=1,...,M, and hence A is p.s.d. Since

Ap.s.d =h'(RRDK >2(h'p)2 >0 allh: Mx 1,
R+R' is-p.s.d. Hence R is p.s.d., and X,Y are positive dependent. O
Although (2.6) is sufficient for X,Y to be positive dependent, it is not
necessary. For example, if
2 2 0

1
R=qz [T 2 1 ],

1 0 3



Then Pp = Py = Py = (1/3), Pip * Tpp = (1/4) > (2/9) = 2p]p2, but R is p.s.d.
(so that X,Y are positive dependent). However, (2.6) is necessary and sufficient
for X,Y to be positive dependent when M = 2, since in this case (2.2), (2.3) and

(2.6) are equivalent assertions.

3, POSITIVE DEPENDENCE FOR REVERSIBLE MARKOV CHAINS

Let now {Xt} be a stationary ergodic M-state Markov chain with transition

matrix
i) sty = POGEIINGET). . - (3.1)

-
Because {Xt} is ergodic, the stationary (marginat) probabf?i;ies p; = P(Xt=i)

satisfy Py > 0 for all i. Further,

ST = ) (3.2)

and

T, =1

M Mo (3.3)

where p = (p],...,pM)', 1M = (1,1,...,1)'. Define RS to be the joint probabi-

t

lity matrix for XS,X with (i,j)th entry P(Xs=i, Xt=j). Then

e

t

_ nrK
Rst = DT t

s+k, k = 1,2,...,
(T')kD t

S"'k,.k = ]923-"9

where D = diag (p],pz....,pM). According to Theorem 1, {Xt} is positive dependent
if and only if RSt is p.s.d. far all s # t.

The necessary condition (2.2) for positive dependence of successive terms
(say X],Xz) is now equivalent to tii < P; for all i. The sufficient condition
(2.6) 1is equivalent to pitij + pjtji 5_231p3 for all i # j. Since T determines
the properties of the chain, we might hope that positive dependence of {Xt} is

implied by positive dependence of X]’XZ’ and has a simple characterization in terms



of T. We shall realize these hopes for reversible chains.

The following facts will be helpful.

1 1
Lemma 1. Let U = D® TD”2. Then U has nonnegative elements and

(a) R_, is symmetric for all s # t if and only if U is symmetric;

st

(b) Ret ijs p.s.d. if and only if Uls'tlis p.s.d.; —
(c) U and T have identical characteristic roots.

, _grls-tl - pE ol stoE L s -
Proof. Note thqt_for t> s, Rst DT D= U D® , while RSt Rts

gives similar expressions for t < s. Parts (a) and (b) follow fkom this, and (c)
holds because U,T are similar matrices. a ‘
: | .
Recall that a chain (X } is reversible if R, = Ry for.alls #t, or

equivalently if all RSt are symmetric. Here is the main result of this section.

Theorem 4. Let {Xt} be a reversible stationary ergodic Markov chain. Then
the following statements are equivalent:
(a) {X;} is positive dependent;

D~ "(Rst - pp')D = is p.s.d.;

(b) 1y
b) Q = Tim —
n %=1

N ,
7

(c) DT is p.s.d.

Q. ctrct

(i.e., X4 and X, are positive dependent);

- -

(d) A11 characteristic roots of T are nonnegative.

Proof. If h: &+ (-w,») is represented as an M-vector h = (h(1),...,h(M))",

cov {h(X.), h(X.)} =_h'(Rgy - pp')h,
so that by (1.1), (a) implies (b) whenever the Timit defining Q exists. Let

L=u- (0E1,)(0%1,)", ) (3.4)

where U is as in Lemma 1. Then from the fact that the non-1 characteristic roots

-1

of T are less than 1 in absolute value, it can be shown that (IM - L) exists



and that
Q= (Iy -7 Ll -7 (3.5)

so that Q also exists. Note that Q is always symmetric; When {Xt} is reversible,
all R.; are symmetric. Hence U and L are symmetric by Lemma 1(a) and (3.4),
so that |
) -1
Q 2(IM - L) L.

Consequently, the characteristic roots_zi(L) of L are related to the characteristic

roots Ai(Q) of Q by

} Q) = 201 = 4 (L)L),
It follows that

]
—]
"
«
=
J

Q p.s.d. ®all 2;(Q) » 0 @all £;(L) > 0 =L p.s.d.
From (3.4) we see that L p;s.d. implies U is p.s.d., and fréﬁ Lemma 3(b) this in
turn implies that DT = Ryp is p;s.d. Hence (b) implies (c).
To see that (c) implies (d), apply Lemma 1T to show that
DTpsd{@Upsj,@aHA#U)iO@aHAﬁﬁ)io,
where Ai(U) and xi(T) are the characteristic roots of U and T, respectfve]y.

e

Similarly ' T

xi(T) >0 el p.S.d?'a Uls"tjp;sﬁd,,ta]1 s: #:t
© RSt p.s.d., all s # t
so that (d) implies (a). This-completes the proof of Theorem 4. O
In Gleser and Moore (1984), it is shown that the positive semidefiniteness
of the matrix Q .-~ defined in Theorem 4(b) implies thatlany classical chi-squared
test of fit for a model p; = pi(e), i=1,...,M, specifying the stationary
(marginal) probabilities of {Xt} will reject too often under the null hypothesis.

For reversible chains, Theorem 4 shows that Q is p.s.d. if and only if {Xt} is
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positive dependent.

It should be noted that the transition matrix T need not be symmetric, even
for reversible chains. When T is not symmetric, it is not true that Ai (T) > 0,
all i, implies that T is p.s.d. in the sense of (1.3). Indeed, every M=2 state
Markov Chain is reversible, but the transition matrix -

_I_ —

‘ool~ oY

1
8
which has characteriétfc roots .15 and 1.00, is not p.s.d. (For example, if

h = (8,-5)', then h'T h < 0.) Also T can be p.s.d., but not have nonnegative

L

-

characteristic roots. An example is -2

._'

1t
N —2 N =
© MN— N[—
o — |- O

which is p.s.d., but has two imaginary characteristic roots. Of course, the
explanation for the lack of relationship between the signs of the characteristic
roots of T and the positive semidefiniteness of T is that the posi?jye semidefini-
teness of T is related to the characteristiéiroots'of T+ T, nbt'T.‘

Theorem 4 provides two intuitively satisfying characterizations of positive
dependence for Markov chains {Xt} -- namely, the positive semidefiniteness of
R]2 = D T and the nonnegativity. of the characteristic roots of T. Unfortunately,
such characterizations are generally valid only for reversible Markov chains, as
will be seen in Section 4. A survey of Markov chain models used in scientific

practice (01kin, Gleser and Derman, 1980; see also Coleman, 1964) shows that the

overwhelming majority of such models (except for those which have only 2 states)
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are not reversible. Thus, the applicability of Theorem 4 is 11ke1y to be rather

1imited.
4. POSITIVE DEPENDENCE FOR NONREVERSIBLE MARKOV CHAINS

Consider aga1n the assertions (a), (b), (c), (d) of Theorem 4 In this section,
we will show that for nonreversible Markov Chains these assert1ons are not generally
equivalent. However, relationships among (a), (b) and (c) do exist, as shown in
the following theoremf ”

Theorem 5. If fxt} is a nonreversible M-state Markov chain (M > 2), then
(a) = (b) = (c). That is, |

o

X positive dependent = Q p.s.d. = DT p.s.d. =

Proof. The proof that (a) = (b) in Theorem 4 remains valid. Suppose next

that Q is p.s.d. It follows from (3.5) that for any M-vector h,

| - -1 ' ) . . |‘,']
h'Q h = [(IM - LY 'h] {L(IM - L") + (IM - L)L }(IM - L' 'h.
Consequently,
Q p.s.d. @ (I, - L") + (I, - L)L" is p.s.d.
oL+ L' -2LL" is p.s.d.
It is now easily shown that
L+L'-2LL' p.s.d. = U p.s.d.

and this implies that DT = R, is p.s.d. by Lemma 1(b). 0

12
The implication (2) = (b) shows that positive.dependence retains i1s

statistical importance even in nonreversible cases.

We now give counterexamples for all implications in Theorem 4 other than
those of Theorem 5. To show that for nonreversible Markov Chains: Q p.s.d. does

not imply that {Xt} is positive dependent, consider {Xt} having transition matrix
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1 1
7 0 37 -
|1 1 1
T= "—4 —'2 i s (4'2)
1 1

for which Py = 1/5, Py = P3 = 2{5. Here,

6 -4vZ 672
L=igg | vZ 2 -3
47 2 2
and 2 /7 0 ’ |
P R T <-/§ 10 /15 p.s.dh
0 o o/ ‘

Thus from (4.1), Q is p.s.d. However,

1 1 2

-l - 1
R]3 =DT" = 0 2 3 3
1 4 3

is not p.s.d., since (0,1,-1) R13 (0,1,-1)'< 0. Hence'{Xt} is not positive dependent.
Next, we give an example of a Markov Chain'{Xt} for which R12 = DT is p.s.d.,

but Q is not p.s.d. Let‘{Xt} have transition matrix

—
I

Wl— = o=
"

py = 1/3. Then D = 37

DT + T'D = %—1313' is p.s.d.,

1

for which Py = Py 13? and
implying that DT is p.s.d. On the other hand

L+l -2l = - (18)71(315 + 11 151,")

is clearly not p.s.d., so that by (4.1) Q is not p.s.d.
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Finally, for nonreversible chains there are no general relationships between
assertions (c) and (d) of Theorem 4. That is, DT p.s.d. neither implies or is
implied by the nonnegativity of the characteristic roots of T. The transition
matrix T in (4.2) is an example of a case where DT is p.s.d. but T does not have

nonnegative characteristic roots. (Here, two characteristic raots of T are

imaginary.) On the other hand,

N — By W

N
hég characteristic roots 0,1/12, and 1, but DT 1is not b.s:éle' 7

Note. We also considered the conjecture that the positive“sémidefiniteness
of DT is related to nonnegativity of thé real parts of the (possib]y imaginary)
characteristic roots of T. No such general relationship, in either direction, was
found.

To summarize, for nonreversible Markov chains {Xt} , there seems to be no
obvious way to use properties of the transition matrix T to infer that {Xt}'is
positive dependent (or even that Q is p.s.d.). Since the transition matrix T
determines the properties of the chain, a nécessary and sufficient relationship
between properties of T and the positive dependency of {Xt} must exist. We merely

have shown that this relationship is not the simple, intuitive relationship that

Theorem 4 shows holds for reversible Markov chains.

5. POSITIVE DEPENDENCE FOR MARKOV CHAINS WITH
INDEPENDENT COMPONENTS

Let {Yt}’ {Zt} be independent stationary ergodic Markov chains with state

spaces 5& = {1,2,...,r}, 52 = {1,2....,c} and transition matrices Ty, T,
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.. ' b
V1 y ZC) be the

vectors of stationary (marginal) probabilities for {Yds 12,3, and define

respectively. Further, let py = (p .;,p r)', p, = (pz],...,p

)» D, = diag (p 5 Pyps---sP,e)-

y

D = diag (py]? pyZ""’pyr

It is then well known (see Tavaré, 1983) that {Xt} = {(Yt,Zt)} is an rc-state

stationary ergodic Markov Chain with transition matrix -
T=Ty®TZ, | »
. where "®" is the Kronecker product. Further, the vector of stationary (marginal)

probabilities for {Xéy is

=]
n

Py

and , ~ .

®pz = (p]""’prc)l3

I‘O .

D = diag (p1,...,prc) = Dy®Dz'

Note that the joint probability matrix for Xgs Xq is, for t > s,

R, = DTItSl- DyTJt‘S|bQDZTLt‘S’. (5.4)

st

Clearly {Xt} is reversible (i.e.,'all RSt are symmetric) if and only if {Yt} and
{Zt} are reversible; this is the situation treated by Tavaré (1983), and Tavaré

and Altham (1983).

~

Theorem 6 If {Xt} is reversible, then the following asserfiéns‘are equivalent:
(a) {Xt} is positive dependent;
(b) both Y} and {Z,} are positive dependent;

(c) DyT and DZTZ are p.s.d.;

y
(d) Ty and T, have nonnegative characteristic roots.

4 . |t-s| |t-s| .
Proof When {Xt} is reversible, Rst’ DyTy and DZTZ .are symmetric

for all s # t. Consequently, the characteristic roots A]](Rst),...,ArC(RSt) are

the products
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ngRee) = g0, T T8I0, 185Dy, TR

1] st)

F= 1,000 3 = 1aueasCs
of the characteristic roots of DyTyIt's| and DZTZIt'S‘. These latter matrices
are just the joint probability matrices for Ys’Yt andZS,Zt,respective1y. When
(b) holds, these matrices are p.s.d. by Theorem 1, and (a) follows by-(5.1).
Conversely, if (a) holds, then x. ( ) > 0 all i,j, implying by (5 1) that

}\-(D Tylt-SI lt Sl

iJ
) must have the same sign for all 1,3. This sign

and AJ
must be positive (30}'since DyTylt'SI and DZTZ“:'s| are not zero matrices and
have nonnegative elements, and hence by Frobenius' Theorem (Marcus and Minc,
1964 p. 142) must each have one positive character1st1c noot  Consequently,
A (D Tylt s|) > 0, s (D, T, |t- SI >0, all i, all.j, all t # s. Therefore, by
Theorem 1, {Yt} and {Zt} are positive depgndent, proving that (b) holds. Thus,
(a) and (b) are equivalent. The equivalence of (a) and (b) to (c) and (d) is
now a consequence of Theorem 4. O

Now suppose that exactly one of {Yt}’ {Zt} is reversible. (This includes the
possibility mentioned by Tavare (1983) that {Yt} or{Zt} could be an iid sequence,

since any iid sequence is reversible.) Assuming (without loss of generality)

that {Yt} is reversible, it is easily shown that .

R

. |t-s | |t-s| iy | t-s]
Rt + Rey DyTy Q@(DZTZ +'(Tz) DZ)

= p 1 [t-sl
=0T, @B,

Consequently, the characteristip roots of the symmetric matrix RSt + R!

st are the

pairwise products
VY o |t-s|
Ay (R * R ) As (DyTy Y As (Bst)
of the roots of the symmetric matrices DyTylt s | and B Sst- (Note that since {Yt}

is reversible, D TyIt -s| is symmetric.) Using an argument similar to that used to

prove Theorem 6, plus the fact that D T [t-s] is p.s.d. if and only if B 1s p.s.d.,
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the following result can be obtained.

Theorem 7. If either {Yt} or'{Zt}ﬁs reversible, then {Xt}is pos}tive‘
dependent if and only if both {Yt}andf{Zt} are positive dependent.

If neither {Yt} nor {Zt}vis reversible, it is difficult to find conditions
which guarantee that {Xt} is positive dependent. In this situatjonz_it is not
clear even that positive dependence of {Yt} and {Zt} necessari;& 1mp1ies that {Xt}
is positive dependent, or vice versa. Note that any counterexamplés to these
assertions (if such cqqnterekamp]es exist) must involve {Xt} With at least 3x3=9
states, since if r=2 or c¢=2, at least one of {Yt}’ {Zt} is reversible, and Theorem
7 applies. o

i s
If at least one of {Y }, {Z } is reversible, the determ1nat1on of whether or
not {X } is positive dependent is simplified, since Theorem 4 can be used to check

the positive dependence of the revers1b1e component (either {Yt} or {Zt}) of

X
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