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Proof. The nonzero eigenvalues of Cy+ are vxlk +np+1-2k

and vxlk'1+mp+1 with nultiplicities (v/2)-1 and v/2, respectively. We also

have without loss of generality -z
T a2 -(b4l) S - b b
-(b+1) = 2 b -b -b b -
_ -b -b a -{b+1) . -h -h
o 1 -h )
Cd* = 'E' -h -b | \—(b"‘l) a | b
-b -b -b -b a (b+1)
L -b -b’ -b -b . =(b+1) a__J

with a=(v-1) Ayt k('np+1) (np2+2p+1).=kr- 10 + k(np+l) - (np2+2p+1)' and

b=x1+mp2+2p.

.

Lenmia 6.2.1 says d* E-betters all d with min (rli)“<*r+mp.

1<1<v

Therefore any d that is to E~hetter d* must have Pqq = r+np+l =

rgxq (1< 1% v). Lenma &2 also says d* E-betters any d with Pai = Pgj =

o ~
r+np+1l and ldij < 11+ﬂrp“+2p-(q-1)=>1+mp('+2p-1, for 1 # j. Therefore the only

d that d* might not E-better are those with all Py = r+p+l  and all

xd%j > A1+np2+2p “for i £ j. This Teaves us wit; only two.possib11it1es.
d can have maxinum trace, or tr Cd=tr Cd In this case each row (and

co]umn) of Cy4 has its d1agona1 e]ement equa1 to that of Cd*’ v-2 of

the Adij s equa] to x1+np2+2p and one-;dij equal to 11+np2+2p+1.. .Then Cd

1s equivalent to Cyx in the sense.that it w111-have the same eigenvalues.

‘The other case is where d is not of full trace., Then at Tleast two rows

[e
-~ - (. - - = - - - -
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loss of generality these rows correspond to treatments 1 and 2 then €411 =

_ 2 L
Cgpp = THIPH-K Lg+n*+20+2) and ¢y, = = KT +p242p). Using (11) of
' Theoren z,z,[)

uyp < r+np+l - k'1(10+nb2+2p+2) + k'l(,\1+np7'+2p)

- -1 =1z

" This conpletes the proof.



CHAPTER 1
INTRODUCTION

—

1.1 The Model and Notation

In the one-way elimination of heterogeneity setting of analysis
of variance we are applying v treatments or varieties to N experimental
units which are organized into b blocks of size kjé J Q-i,...,b. If
we define r, (i =1,...,v) to be the number of timég.tfeatment iis
applied to an experimental unit in the whole experiment;vWe see that

b v | |
N = jZ] kj = 121 r;. Since for v, b, and k, through™k, fixed we can
apply the treatments in different ways, we will label particular
applications of the treatments with d, d*, or a subscripted d, calling
each application a design. This also means that quantities like the
ry may be subscripted, and for the remainder of this chapter quantities
that change from design to design will be subscripted for i{iustration.
) = a; +B: (m=T1,...,N;

1 J
being the observation on the m-th

We assume the additive model E(Ydmij

i=1,...,v3 j=1,...,b) with Ydmij

experimental unit, which is in block j and was treated with treatment

i. The N observations are assumed to be uncorrelated with common

variance o. Defining the vectors a' = (ay,...5a ), B' = (Byse..5B),

v

= = s nd rt =
Yy (Yd11j""’YdN1j) (Ydl""’YdN)’ k (k], k) and rj

’rdv) we can write the model in matrix form:

b)

(rd1,...



2y = xge = T, %P1 (5).

Here Xd is the N by (v+b) matrix whose m-th row consists of all 0's
except for a 1 in the i-th and (v+j)-th columns, since E(Ydm) =

E(Y = q, + B.. X(]) and X(Z) are N by v and N by ¥, respectively,

dmij) % J d d
and partition Xd into columns corresponding to treatments and blocks.

The normal equations for the full model are xaxdg = XéXd where

FONORNOINOE I ]
A0 ] [, ]
XKy = |- ... R =l. . ... i;_
2)' (1 2 (2 | ., . .
_XS)X().XS)XS)_ K

Here 56 represents the diagonal q by q square matrix‘with X; in the

ii-th position, X; being from the vector X' = (x],...,xq). Ng = (ndij)

is the v by b incidence matrix whose elements "dij equal the number of

b
times treatment i appears in block j. Note that ) "dij = Tyi and
J=1
)
n,.. = k.. .
=1 93 |

-

In the one-way elimination of heterogeneity setting we are not
interested in the block effects, only the treatment effects. The

reduced normal equations for o are

[rg - nak"ngla= D1~ ng 82 1y,

where g'd = (ga)']. Cq = rg

matrix for the o in the design d and is also known as the C-matrix for

- de_aﬁa is the coefficient or information

d. Cd is a symmetric, v by v, positive semi-definite matrix whose row



(and column) sums equal zero. Hence rank(Cd) < v-1 and'Cd will

always have at least one zero eigenvalue. In fact rank(Cd) = v-1

v v
if and only if all treatment contrasts LW, ;% (where ¥ w; = 0) are
i=1 i=1

estimable. Designs with rank(Cd) = v-1 are known as cqnn€¢ted
designs. o

The eigenvalues of Cd will be used in determining the optimality
of a given design d. Let Hgo = O SHgp 2. 2 “d,v-i be the ordered
eigenvalues d?'Cd.

It will be useful to name the collection of possib]é designs for
a given v, b and k. So we define 8(v,b,k) = {d: alhgs parameters
Vsb,k}. 8 will be used instead of @(v,b,g) when v,b'andhg;are clear

from context, and k instead of k'will mean k] T e =k =k

) = My Ny This

Another useful matrix of parameters is Ad = (xdiJ

di; is the

V by v matrix gives Mij = Z NgisNgjs> and for i # j a
total number of times treatments i and j are paired in the design.
If all the blocks are of the same size, then Cd -d - —-nd nd

'l .
ra " K iy | SR

At this point we present an example. Herevand always a design
will be represented as an array of elements of {1,2,...,v} with the b

columns representing the blocks.

Example 1.1.1: Hedayat and Federer (1974). v = 5, b =6, and

d beTow is variance balanced (see Definition 1.3.1).



rd = (353:3’394),

7Zd =
Ad = ‘?2d 72& =
where "sym"

C =

5 -5,
d T Tq-ngkony

4

(1 1
1 1
1 1
1 1

K 0

3 2

3

L sym

4 -1

sym

o o o

[N -]

w N N N

k' = (4,4,2,2,2,2),

4]

will indicate the matrix is symmetric, and




1.2 The Problem and Motivation v

The problem considered in this thesis will be how we can best
allocate the treatments to the experimental units so that Cd has as
large a trace as possible and its nonzero eigenvalues are as equal
as possible. More rigorously, we will search for a de§{§n7 ,

d* € 8(v,b,k) that will minimize the value of a function ?(Cd) for
all.d € 8. d* will be called ¢-optimal, and the function ¢ is an

optimality criterion. Before 1isting the classes of optimality

criteria in the next section, some heuristic motivation .for the

problem will be given. o

Historically experimenters have used designs like complete

block designs (CBD's, with k

block designs (BIBD's, with k] = ... = kb < v). These were chosen

15 e = kb = v) and balanced incomplete

because they make the rqi equal and the Adij (i # j) equal.

Example 1.2.1:

a) 1 ] 1 ] ] 1 1 1 1

2 2 2 2 2 2 2 2. 9
L 3 3 3 3 3 3 73
4 4 4 4 4 4 4 4 4
This is a CBD.
b) 11 1 Z 2 3 1 1 1 2 2 3
d: 1 1 1 2 2 3 2 3 4 3 4 4

2 3 4 3 4 4 2 3 4 3 .4 4
This is variance balanced by Definition 1.3.1. It is a BIBD by some

definitions, but not in this thesis.



This is a BIBD according to Definition 1.2.1.

Each of the designs in Example 1.2.1 has Cd of'Hmérfth.
(a+b)Iv-va,v where I is the v by v identity matrix, and Jv v
the v by v matrix with all elements equal to 1. Cd in this form is

called completely symmetric, and has v-1 equal nonzero eigenva]ues.

Also note that since the trace of Cqe call it tr(Cd),’is Z cd11 =

2 .
E ( tZ) nd1.j) N- - E Z t d when f h

r,.- = N~ + n s 'l is max1m1ze W en or eac
g 4l 55 K 5217427 diy) L

J the ndij are as equal as possible. (This is under the restrictions

v
>0, _Z Ngij = k for each j.) This means the designs in a)

v-1

Zu = ) Mg
j=o 4T 35 i

In this thesis the BIBD will be required to have the maximum

Ndij

and c¢) of the example also maximize tr(Cd) =

possible trace in its class, so the CBD and BIBD will maximize the
sum of their v-1 nonzero and equal eigenvalues. Kiefer (1958, 1975)
generalized these maximum trace and balanced designs with thé following

definition.

Definition 1.2.1: For given v, b, and k a design d is said to

be a balanced block deg}gn (BBD) if (1) all the rqi are equal, (2)

all the Adij are equal (i # j), (3) all the Agiq are equal, and (4)
for each (i,j) [ndij-k/v] <1. The CBD has k = v and we will define a

BIBD to be a BBD with k < v.



Optimality criteria used in this thesis to measure the ~

"goodness" of a design will allow the BBD defined -above to be
v-1

optimal, and reward larger ) ug; and My (i =1,...,v-1) that are
i=1

nearly equal when a BBD does not exist. Two such criteria will be

v-1 -

v-1
_ 5 NRSLI B s
@A(Cd) = iZ] ug; and @D(Cd). 121 Mg (defined to be + » if rank

(Cd) < v-1). |
Alternately, one can look at a solution to the normal equations
) - !
for g. If Cqe = (XS])_ - Ny k 6X§2) Wy then-one'solqtion is

] b
52) )Y where Cq is the Moore=Pefrose inverse

q The covariance matrix of é = Cov(é)'= czca ih this case. We

~ o= ooy -8

of C

want to make this covariance matrix small in some sense, and one
v-1 - v=1

sense :is through tr(Cov(é)) = ) (variances of &i) = ) qzkdi
i=0 i=0

where -the Aqi are the eigenvalues of Ca. Now rank (C,) = rank(Cy)

and each nonzero eigenvalue of Cd is the reciprocal of a nonzero
eigenvalue of Cd' Without Toss of generality let Adi = Hys if

= = =1 . e _ c e e
Hdi = 0 and Adi = Hg3 if Hei > 0 (i = O,J:i..,v 1). IT$n minimizing
2 P =22h;=
di T 0 L M

tr(Cov(a)) corresponds to minimizing'a :
i=]

2
o @A(Cd). |
In regression settings the determinant det(Cov(a)) is minimized

if Cov(a) is nonsingulars So in this model minimization of

v-1 v-1 '
= -1 _ . ..
iE]Adi = 121 Hdi @D(Cd) for Hq1 > 0 is also considered as a

means of making Cov(é) small.



Finally, we choose to work with Cq and Hyp S v e e < Hd,y-1
because we are not interested in any particular v-1 linearly
independent contrasts. If that were the case,we would use the

appropriate reparameterization of the model.

1.3 The Optimality Criteria

In this section we will give the various-optima}jty criteria
2(C4) to be minimized by some d* € 8(v,b,k). Recall that C4 has
the eigenvalues Hao = 0 = mgp = --» < Mg,y-1? and noterthat the
symbol & will be used with subscripts to label large classes of
optimality criteria. Let“3v,0 be the set of‘vay ngyhmetric non-
negative definite matrices with zero row sums. Then any»ﬁptima1ity
criteria o(-) will be a functibh fkomnav’o intd (==,=] satisfying
restrictions that will vary from criterion to criterion. Unless
otherwise stated, @(Cd) =+ w if g = 0.

, v=-1
(1) @A(Cd) = ) “&} . This is the A-optimality criterion
-i:

from Kiefer (1959, 1975).
v-1 -1 , v-1 -
= 1 * [ - -
(2) @D(Cd) . 121 Hgi Oor equivalently @D(Cd) 121 1og My

This is the D-optimality criterion of Kiefer (1958, 1959,
1975).

(3) @E(Cd) = : max.](p;}) = “5%- This is the E-optimality
<T<y-

criterion of Kiefer (1958, 1959, 1975). It is sometimes
easier to think of this as‘maximizing Hqle
v-1
= ) = ) -Pp. o T ]
(4) Jp {ép(Cd) 121 Hgit 0 <p < =}. These criteria are

essentially the @S criteria from Kiefer (1975).



v-1 T
= ) f(ud1): f is real valued on [O,co];

(5) Iy = {Qf( d L
f is continuous, strictly convex and strictly decreasing
on [O,co]; f is continuously differentiable, and f' is

strictly concave on (0,c,)}, where c, = max{tr €,). Also
0 07 Gao ¥

we allow f(0) = 1im f(x) = + ». These are the typé 1
x>0+ -

optimality criteria of Cheng (1978).

(6) I, = {Qf(Cd) Z f( “d1 : f is real va]ueq Qn [O,co];

f is cohtinubus, strictly convex and coniinuoUsly differ-

entiable on (O,co); f' is strictly concave on (O,CO);

lim f(x) = f(0) = + 3. Cheng (1981a).
x~+0+

(7) Iq = {Qf(Cd) = Z f( “d1 : f is real valued, nonincreasing,
convex and cont1nuous on [O,co]}. This class of criteria
was introduced by Cheng (1979).

(8) J4 = {@F(Cd).= F(“d,v-l""’“dl): F is Schur-convex and
nonincreasing in each argument on [O,CO]V']}. This was
introduced to the author by Cheng via a persoqa];tommuni-
cation, but is also in Constantine (1983).

(9) I, = {o: o is conveX on B, 43 ®(bC,) is nonincreasing in

U v,0 d

the scalar b > 0; ¢ is invariant under each permutation of
rows and (thé“same) columns}. This is the Universal
Optimality class of Kiefer (1975).

A1l these criteria are minimized by a design d* if Cd* is

completely symmetric and of maximum trace in 8 (v,b,k). A BBD of

Kiefer will satisfy these conditions, as also will any variance
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ba]anced design d* with Cd* of maximum trace (see Definition 1.3.1,
Corollary 1.4.4, and Theorem 2.3.1). If such designs do not exist™
for a given 8(v,b,k), then these criteria allow competing designs to
be ranked. This is not the case with the following classical
criteria, where a design satisfying the conditions doggjbkques not

exist, and no optimality function is given.

Definition 1.3.1: A design d is variance ba]ancéd if and only

if 4 = u(IV-'%-JV) with u = tr(C,)/(v-1). Rao (1958) and Puri and

Nigam (1977).

-

-

Definition 1.3.2: A design d is efficiency balanced if and

only if Cd = A(rg - rdra/N) with A a constant of proportionality.
Williams (1975) and Puri and Nigam (1977).

Definition 1.3.3: A design d is pairwise balanced if and only
§

if A =% + ¢1v1¢ where 6. and ¢ are real,c > 0, and 1, 1s the v by
1 vector of ones. See Puri and Nigam (1977).

It should be said that variance balance and efficiency
: _

e

balance are Specia] cases of Calinski's (1977) X ' balance, which

is new but still does not allow for ranking competing designs that

]-ba1anced.

are not X~
Finally we must mention the hierarchical relationships among
the optimality criteria. @A is a member of Jp, J], 32,”33, J4

and JU' ¢, is a member of J1, Jz, J3, J4 and &, .. @E is a member of

D U
J4 and JU' Jpc- ch c93<: <94c\. cqu and Io I3. And with the

definition of generalized criteria (given below) we see that 2y
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and o are Timiting cases of Jp, and o is also a limiting case of

J] s ‘92 and ‘93‘

Definition 1.3.4: A wide sense criterion @0 for a class 4 is

—

the composition ¢° = F o o where & ¢ J and F is non-decyreasing.

Definition 1.3.5: A generalized criterion ¢* for a class d is

the pointwise Timit of a sequence of wide sense criteria @? for J:

- s = 0
o*(C,) = Tim @1(Cd).

)
d fveo
Cheng gave these two definitions for £]'in his péper of
°
(1981b) so o would be a generalized J] criterion.Without the
nonincreasing'F; oF is not a 1imit of type 1 criteria, anhe'origina]—

L. " . 1 Vil -p\1/p
ly stated in his 1978 paper. Actually @D(Cd) = 1im (V:T ) udi)

v-1 p~0+. i=1
Zoqaor 1y =py1/p
and @E(Cd) = 11m(v_] _Z ’“di) .
peo i=1
The symbol that will be used to represent a class of criteria
and its generalized criteria will be gd, where J was the original
class of criteria. Note that ¢ € & is- a generalized criterion for
J so dc gd. In the case ofqu, I 32 and 33, o is not included

in & but in gd. J4 = 934 as J4 is a closed convex cone of functions.

1.4 Results of Others

We will begin with four theorems that are important to this
thesis and to this area of statistics. Then some other results that

are called upon in later chapters will be presented.

Theorem 1.4.1: (Cheng (1978) Theorem 2.2) LetcC ='{Cd: ded}

be a class of matrices inﬁav 0 with v > 2. Suppose Cd* € C has two
L
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distinct nonzero eigenvalues Ho > 1y with multiplicities 1 and v-2,
respectively, and that

(1) tr(Cy) = rggﬁ(tr Cq)>

(i) tr(Cg*) < (terd*)z/(v-Z), and

=

1

(ii1) Cyx maximizes tr Cd-[(v—1)/(v—2)]% [tr(Cg)jktr Cd)z/(v-l)]§

for all d € &.

Then d* is optimal with respect to all generalized type 1 criteria

(gJ}-optima1) over all d € 8.

Cheng applied this theorem to a subclass of the following

class of designs.

Definition 1.4.1: A design d¢ € 8(v,b,k) will be called a

regular graph design (RGD) if (1) Pql = oo = Ty (é) for each (i,J)

we have Indfj’k/v| <1, and (3) for i # j, i' # j' we have

- Adi'j'l =0 or 1. An extreme RGD of type 1 has C, with two

%415
distinct nonzero eigenvalues My >l with multiplicities 1 and v-2

respectively.

o

Let A](d) be the smaller value that the Adij take onjs and
Ay(d) = 27(d)+1. Also let n(d) = the number;of.xdij in each row of A

equal to A](d).

Theorem 1.4.2: (6%eng (1978) Theorem 3.1) Let d* € 8(v,b,k)

be an extreme RGD of type 1 with A](d*) >0 or A](d*) = 0 and
n(d*) < v/2. Then d* is 931—0pt1ma1 over all d € 8(v,b,k)
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Note: In Cheng's Theorem there is a uniqueness resulf not
stated here.

In particular THeorem 1.4.2 can be applied to d* € 8(v,b,k) when
d* is a most balanced group divisible partially balanced block
design of type 1 (MB GD PBBD of type 1). That is d is & GO PBBD
with 2 groups and Ay = x1+] in the notation of GD designs.

Theorem 1.4.1 is important in the following way.. If-no design
exists with maximum trace and all its eigenvalues equal, then
Cheng's eigenvalue structure of 0 <a = ... =a <b is a logical
guess for the next best form, and as it turns out,;ﬁis“sthucture
with maximum trace and two conditions does givé-ob%gmaijty,over a
large class of ©. In Chapter 2 an optimality result wifh the
eigenvalue structure 0 < a < b =;:.= b will be proved as Theorem
2.1.1.

Theorem 1.4.2 has a proof for the situation where the r i
are all equal. This proof is modified in Chapter 3 to apply
Theorem 1.4.1 to two situations where the rq are not equal.

Constantine (1981) investigated some situations where BIBD's
did not exist and proved the E-optimality of some desigasj In this
thesis we will adopt his terminology for those classes where no
BIBD exists, somé of the E-optimal designs will be proved optimal
over a larger class of criteria, and his techniques for proving
E-optimality will be extensively applied. Other authors, including
Cheng (1980), Jacroux (1980a, 1980b, 1982), and Constantine (1982),
have written papers on E-opfima]ity techniques, but the straight-

forward techniques of Constantine (1981) are most useful here.
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First we explain the terminology used for classes 8(v,b,k)
where no BIBD exists. The class #(4,5,3) does not contain-a BIBD,
but 8(4,4,3) does. We can refer to 8(4,5,3) as a é]ass defined by
a "BIBD plus one block". Another example of such a class is
9(4,7,2) since 8(4,6,2) contains a BIBD. In general the "BIBD plus
m blocks" (1 < m < v/k) defines a parameter set 8(v,b+m,k) wﬁere no
BIBD exists, but one exists in 8(v,b,k). Also the "BIBD minus m
blocks" (1 <. < v/k) defines 8(v,b-m,k) which does not contain a
BIBD but where 8(v,b,k) does. .

In many cases a BIBD plus or minus m blocks w{]] also describe
a particular design in 8(v,b+m,k) or ﬁ(v,b-m,k) tH;;fﬁg-constructed
by adding or removing m blocks pairwise disjoint with‘respect to

the treatments that they contain.

Example 1.4.1: Here is a design in 8(4,8,2) that is a BIBD plus

(the last) two disjoint blocks.
1 1 1 2 2 3 1 3
2 3 4 3 4 4 2 4

i

Secondly Constantine proved the E-optimality of a BIBD plus m bi-

nary ( = 0,1) blocks for 1 < m < v/k in the classes 8(v,b+m,k)

Ndij
where 8(v,b,k) allowed a BIBD to be constructed. He proved the E-
optimality of a BIBD minus m (binary) blocks for v/k2 <m < v/k in the
classes 8(v,b-m,k) -where 8(v,b,k) allowed a BIBD, and he proved the E-
optimality of a GD PBIBD plus s binary blocks where s < (v-m)/k, theGD
PBIBD has A= 1]+1, m groups, and the blocks are compatib{é with the

partition defined by the m groups. These theorems were Theorems 3.1,
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3.3, and 3.4 in his paper. As will be shown in Chapter 3,.some of
these E-optimal designs are actually optimal for larger cldsses of™
criteria.

The third aspect of Constantine's paper that is relevant to
this thesis involves his Theorem 1.4.3 below and the techniques
used to prove it. As he points out, if {oi} is a collection of
n permutations on the symbols 1,2,...,v and Cd is a v_by Q information

' ' o n
matrix, then we can define C (1/n) Z Cd (1/n) z dP'; P. being

the v by v matrix representation of o;. If p,n =0 <p . < ... %<

i d0 o+ — "dl — —
g yoq and ugp = 0 < ugy < .- <My o A€ the eigenvalues of C,
and Cd, respectively, then Cd is nonnegative definite w%th row sums

zero, tr Ed = tr Cd, Hg1 < Mg and Hd,v-1 2 Mg, v-1 AThis technique

can be applied to an information matrix Cd by selecting subsets of
' {1,2,...,v} and applying all the permutations of the symbols in
each subset to that same subset. This smooths out the matrix Cd by

averaging out the c 's in blocks defined by those subsets. In

dij
particular Constantine used the fact that ngy > uyq- Here_are two

R

of the three parts of his theorem.

Theorem 1.4.3: (Constantine (1981) Theorem 3.2) In any block

design d € 8 (v,b,k) thg_fo]]owing inequalities hold:

(1) < 2 tf
1 vy < min .
dl < V=T 1<i<v d1 591 d1J

g S 2
(i1) wyq < min | Lr. + YT A
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This theorem will be extended to unequal kj with the same

method of proof in Theorem 2.2.1. For (i) above (v/(v-]))(rdi -

2

b
k"] 2 ndij) is an eigenvalue of Cd if you permute over the set of
3=1

treatments excluding i. Then Mgt <M which is less than or equal to

=
—

this particular eigenvalue.
Kiefer (1975) proved the following theorem and applied it to.
BBD's. )

Theorem 1.4.4: (Kiefer (1975) Proposition 1) Suppose there

exists a d* ¢ 8(v,b,k) such that (1) Cd* is comp]eig]y symmetric,

and (2) tr C,, = max(tr Cd). Then d* is Universally Optimal
& 11T

(JU-optima1) in 8(v,b,k).

d*

Corollary 1.4.4: (Kiefer (1974) p. 28) If d* € 8(v,b,k) is

a BBD then d* is JU—optimal in 8(v,b,k).

Theorem 1.4.4 will be applied in the proof of Theorem 2.3.1, an
extension of Corollary 1.4.4 to unequal kj‘

We conclude this section by presenting some less pivotal but

-

nonetheless needed results due to others.

Theorem 1.4.5: (Cheng (1983)) Leta g’ .

If there exists a

p*' = (u¥_qs...5uf) € a_such that
(1) wrq= ... =8>y
v-1

(ii) p* maximizes ) u; over G,
- 1

v-1
(iii) u* minimizes } u;q over G for some q > 0,
- 1
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v-1 v-1 -
then p* minimizes } u;p for all 0 < p < q and minimizes T u;],
i=1 i=1

the generalized Timiting case.

Lemma 1.4.1: (See Constantine (1981) Lemma 2.2.) Let Cd be an

information matrix of the form —=

= -

+ - -
(a b)Ip bJp,p CJp,V—p
- + -
“v-p.p (dre)ly p-edy p,v-p
Then C, has the eigenvalues (a+b), (d+e), vc and 0 with multiplicities

p-1, v-p-1, 1 and 1 respectively. N

Lemma 1.4.2: (a: Rao (1973) p. 68. b: See Remark 1.4.1)

Let i = (a+b)I -bJ_ , B=-cl_ ,D=-
et the matrices A = (a+b) q Jq’q ch’q aqu,v-mq and

and E = (e+f)I fJ

v-mq,v-mq”
a) The v by v information matrix

v-mq

" A B ... B B
A ... B B

A B

| sym A

with v = mq, g > 3 has the eigenvalues 0, vc, and (a+b) with multipli-
cities 1, m~-1 and m(g-1) respectively.

b) The v by v information matrix



B B
B B
A B

A

D

E

with v-mq > 1, q > 2 has the eigenvalues 0, vd, (a-(q:])b¥§c),

(at+b) and (e+f) with multiplicities 1, 1, m-1, m(g-1) and v-mg-1

respe

ctively.

L
Remark 1.4.1: Part b)might have been used by-Eonstantine

(1981

). In any case the eigenvectors cofresponding to the‘eigen-

values in the order given are 1y

- (g g
Lomg |5
-T111q 1
Y1m]q seees
| Ov-ng, 1 J
B2 i [20-1 ]
q,1 .1
Oq.1 Oq. 1
| ®v-mq, 1) | Cvemg, 1)

and

{ Ym-1,1-q

1

va-l,mlq

f}v-mq,l

qu,'l

O'q’-l

18
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[Cq,1] [Cq.1 ] )

%a,1 | Can

.§1 J i ﬁv-mq—1- __;=' .
where the g by 1 vectors SRR ]q are pairwise orthogonal;
the v-mq by 1 vectors §1""’§v—mq-1’ ]v-mq are pairwise orthogonal;

the m by 1 vectors Yps-+esYp 1 1, @re pairwise orthogonal with

. ] . ,
i = (Yi1""’Y1,m)’ andc}x’y is the x by y zero matrix.

-

Lemma 1.4.3: (Essentially Cheng (1978) Lemma_gflj »

v
2)  For '21 dij = kj (3 =T,...,b), tr(C,4) is maximized if the
i= .

integers ng.. (i = 1,...,v) satisfy |n

i3 -kj/v] < 1, for

dij
each j.

b) For tr(Cd) fixed, tr(Cg) is minimized if the Cqjj are as
equal as possible and the cdij (i # j) are as equal as

possible.

2
d

Cd is completely symmetric.

¢) Py = tr(C%)-(tr cd)z/(v-]) > 0 with equality 1f“aqahgn1y if

Lemma 1.4.4: (Essentially Takeuchi (1961) Lemma 1)

Let F = aCy + bIV + (c/V‘)JV y Where a,b and c are constants. If

0= Hg S Hp Se..2 W are the eigenvalues of Cd with corresponding

v-1

eigenvectors A 7 1 Ayse-+sd,_q then the eigenvalues of F are b+c,

au1+b,...,apv_1 + b with the same corresponding eigenvectors.



20

1.5 Final Assumptions and Definitions with Outline of the Text

We begin with two restrictions on the collections 8(v,b,k) of
designs that will be adhered to in the remainder of this thesis.
ﬁ(v,b,g) will contain only connected designs and connected designs
where every block contains at least two treatments. T~

The first restriction is chosen because we want to be able to
estimate no less than v-1 linearly independent contkasts. -This is
~ always possible except in the most trivial cases, and in fact most
of the optimality criteria take on the value + « in tho;e cases.

The second restriction comes from the fact thé} a block with
only one treatment applied to its experimental Qnigg,péqvjdes no
information in Cd. Since Cd = Cg]? L Cgb) where Céj) is the
C-matrix for the j-th block, if block b, say, has only treatment 1,

then

(b) . 11 _
Co ' =10 0...0]|-f0 [k -[k0,...,0] =¢

_ (1) (b-1)
Therefore Cd Cd +...t Cd .

Definition 1.5.1: ~A binary block is a block of size kj where

the n (i =1,...,v) are as equal as possible, thus taking on only

dij
two consecutive values.
In an incomplete block, kj < v, the ndij take on 0 or 1, and this

corresponds to the classical definition. If kj = pjv+qj, then qj of
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the n = pj+1 and v-q; of the n ;5 = p.

dij 1J

Definition 1.5.2: The extra-replicated treatments of a binary

block j are those for which ndij = pj+1.

=

Definition 1.5.3: Binary blocks are called disja?ht if the

extra-replicated treatments of each block, when considered as sets,
are disjoint sets. .

Definitfbhs 1.5.1 through 1.5.3 are useful for kj > v. Note
that our BBD has binary blocks by definition. »

If k = 2, then our second assumption above'an;LDgfinition 1.5.1
force all blocks to be binary in Q(v,b,z) for any v and'b. Lemma
1.4.3 says all d e 8(v,b,2) will have the maximum trace.

A design d € ® with all blocks binary will be o} maximum trace in
S by Lemma 1.4.3.

A BBD in g (v,b,k) is sometimes represented as a BBD(v,b,k,r,x)
where r and A are the common values of the rdi and Adij (i# 3)
respectively. We will use this notation when it is useful.

~

Definition 1.5.4 d1 is said to be Jd-better than d2 if ahd

only if @(cd]) 5_¢(cd2) for all ¢ € 4. Strictly d-better is used

when the inequality is strict.

The notation int[x3 will denote the greatest integer less than
or equal to x.

Recall that the subscript d on various quantities may be dropped

in Tater chapters if the context allows it.
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Before concluding,a brief outline of the remainder of the
thesis follows.

Chapter 2 contains original works inspired by Theorems 1.4.1,
1.4.3 and 1.4.4. Lemma 2.4.1 was inspired by Lemma 1.4.1. and
necessity. T -

Chapter 3 looks at applications of Theorem 1.4.1 and Theorem
2.1.1 to BIBD's plus or minus 1 block. -

Chapter 4.looks at applications of Theorem 2.1.1 to the BBD
plus one block of size v-1, and Chapter 5 at the BBD minus one
observation. ;‘

Chapters 6 and 7 discuss the BBD plus or mfnuggh“bquks,
respectively, with app]ications‘of Theorem 2.1.1.

Chapter 8 gives selected A-,.b- and E-efficiencies for various
interesting designs discussed in Chapters 3 through 7.

Finally Chapter 9 discusses trend-free block designs of

Bradley and Yeh (1980) in the 1ight of applying Theorem 2.1.1 and

extending one of their later results.
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CHAPTER 2
GENERAL THEORETICAL RESULTS T

2.1 Results for Schur-convex Optimality Criteria

Before stating and proving the original results in this section
some definitions and theorems from the theory of majorization must be
presented. They will be paraphrased from Marsha1];gnd_01k1n (1979)
with their Tocation in that book given parenthetica]]j._<For this
discussion on majorization, any yector x' = (x],...,xn) € ﬂn will have

X(1) -+ 2 X(p) and X[172 -+ 2 X[p] be the ordered ..

Definition 2.1.1: (Definition 1.A.1) For x, y € ", y majorizes

X, written y » x, if and only if we have

_ K K
(i) 121 X[41 5_121 y[i],' k=1,...,n-1

n n
and iZ] X[i] = 1;] Y[i]

or equivalently we have

[

(i)

Il b~ &
e—t
>
P
—
A
|v
— a
o~ =
<

(1)9 k = ],..f,n-]

—

Hi~—3
<
—_
-,
~—

-l

)
>
[«
—
e~
—_—
>
——
—
~
I
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Definition 2.1.2: (Definition 1.A.2) For x, y € R"; y weakly

majorizes x, written y w x, 1f and only if we have

-
T —_— -
——

Remark 2.1.1: This is the weak supermajorization defined by

Marshall and Olkin (1979).

Definition 2.1.3: (Definition 3.A.1) A function F: G C:Rn > R

is said to be Schur-convex on G if and only if x <y onG implies

F(x) < F(y). F is strictly Schur-convex if in addtfion F(x) < F(y)

whenever x < y but x is not a permutation of y.

Lemma 2.1.1: (Proposition 4.B.2) §‘<W y if and only if

n n
yofx;) < f(yi) holds for all continuous, convex nonincreasing

Lemma 2.1.2: (Theorem 3.A.8 with definition p. 443) A function

F: Ggc Rn + R satisfies e
X < y on G implies F(x) < F(y)

if and only if F is Schur-convex and nonincreasing in each argument on

G.

Lemma 2.1.3: (Theorem 3.A.8a) F is a real-valued function on
Gc ﬁn. Then x <" y onGg and x is not a permutation of y 1mp1y
F(x) < F(y) if and only if F is strictly Schur-convex and strictly

decreasing in each argument on G.
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Lemmas 2.71.1 and 2.1.2 provide some motivation for Jé and 34
optimality criteria, respectively. Lemma 2.1.3 is presented to
illustrate what is needed for strict inequality in F(x) < F(y).

Since optimality criteria are thought of as functions of Cd we

write o(C,) = F(uy) where y' = (“d,v-]""’“dY) is the Vector of
eigenvalues of Cqand 0 < Mgl < ver S HgLye1t

Now we begin the original work.

Theorem 2.1.1: Let C = {Cd: d € 8} be a class of matrices in

By.0 with v > 3. Suppose Cd* € C has .,

(i) two distinct eigenvalues u§ >'uT > 0 with multiplicities
v-2 and 1 respectively,

(ii) tr Cyx = max(tr Cd),
des

(iii) d* E-optimal in 8.
Then d* (or Cd*) is optimal with respect to all I, criteria over all

de 8.

Proof: Let d be an arbitrary design in & with the eigéﬁyg]ues of

C4 being 0 SHpSHp 2.l S Let tr C* = (v-2)p§ FuystrCyt

v-1° d

g = z M + e with e > 0. Now (uv_-l,...,u]) W> (uv_-l + e, Hyopse e

v-1 v-1
’U'l) > ((€ + 122 U.i)/(v"'z)s---s(e + 122 U-i)/(v'z)al-l'l) > (UE,---,ué‘,u?’l‘)
with the last majorization justified as follows. uf LT by

v-1
E-optimality implies (v-2)u§ <e+ ) u;- Using the first-definition

i=2

v-1

of majorization we have ku§ < k(e + ) ui)/(V-Z) for k = 1,2,...,v-2
i=2
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v-1
and (v-2)ux + u¥ = (v-2)(c + .22 uid/(v-2) + ..
'l:

Noting that y » x= y " X we have (”v-1""’”]) L (p;,...,ug,u7)
so for any d, criterion F(u§;...,u§,u?) 5-F(”v—1""’“12* ?hd that
completes the proof. -

The following two theorems are similar in statement and proof, but
are for the eigenvalue structures O<a=..=ac< bs(of Cheng) and

O<a<b=...=b<c.

d€ 8} be a class of matrices in

Theorem 2.1.2: Let ¢ = {Cd:

Bv,o with v > 3. Suppose Cd* € C has

(i) two distinct eigenvalues u* > u* > 0 with multiplicities
- r2 1
1 and v-2 respectively,

= max(tr C ),
des

(ii) tr Cd*

(i) ug = Har,y-1 SHq,y-1 Torall des.

Then d* is optimal with respect to all J4 criteria over all d € 9.

Proof: Let d € 8 be arbitrary with Cd having eigenvalues’

0 SHp 2. <Myl and tr Cd*= u2 + (v—2)uf = tr Cd + e = .Z] M + e,
'|=

v-2
€ 2_0' (Uv_]:---sU]) V 1° Z U /(V'Z)s---s(ig] ﬂi)
-2

V- V-2
/(V-Z)) w> ( v-1° (E + z U V 2)9 . a(e + _Z U-)

/(v=2)) = (pz,u1,...,u]) with the last majorization following from
v-2

the fact that n3 <uyq implies (v-2)u? > e + .Z u, so



27

v-2 YT
ku? > k(e + ¥ ui)/(V-Z) for k = 1,...,v-2 and (v—2)uf + u§ =
i=1

V-2

(E+ %: u1)+uv_]-

Theorem 2.1.3: letc = {Cd: d € 8} be a c]ass-efama€kices in

By,0 With v > 4. Suppose Cqr € C has

(1) three distinct eigenvalues u% > ud > u¥ > 0 with
multiplicities 1, v-3 and 1 respectively,

(i1) tr Cqx = max (tr Cd), )
des -

-

(i11) d* E-optimal and uy = Hax,y=1. SHq, vy Torall d e s.

Then D* is optimal with respect to al] Jy criteria over all d ¢ g.

Proof: Let d ¢ © be arbitrary with Cd having eigenvalues

0_<_u-|_<_...§_u LettY‘Cd*=tY’Cd+82(6230),uv_]-u§=

v-1°
8330, andui’l‘-u]=e]_>_0.

(UV_]s]JV_Zs- . -3112911])

_ V-2 V-2
> (IJV_'Is( ; U.i)/(v'3)s---a( ; H.i)/(v‘3)sll'|)

(IJV_'I ,(t]" Cd'U]‘H3)/(V'3) LIS ,(tY‘ Cd-u]-us)/(v-fi) sli'l)

(U§ + 53: (tl" Cd* = €2 - (U:’f = 8])'(U§ + 53))/(\/'3)9

cees(tr Cd* T &y - (UT - 81)"(U§ + 83))/(V-3),Pu’f -‘e-l)
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€q97E€,-E Eq=E,h=C N
1
= (U§ + 533“5 + V?3 35---9“’5 + 1 V?S 33 U?r "S-l)

> (Ug:ugs-- . ,ugau?)

where the last step follows from the definition of weak majorization

=
—

as follows:

) - ey <y

8]‘8 £
RS IR R IRt R

K k .
T o1 - 309) - 353 (ep + ) Suyt kg

for k = 1,2,...,v-3.

= u? + (V-3)u§ + u§ - & j_u? + (V-3)U§

Hence (Uv_]:uv_zs---sUZsU]) w>- (u"é‘,u’z*,---,ué‘,u]) which 'imp]ies
@(Cd*)_i @(Cd) = F(Ed) for all Schur-convex F nonincreasing in each

argument, ' o

Remark 2.1.2: Theorems 2.1.2 and 2.1.3 are not as useful as

Theorem 2.1.1 for the following reason. One can often find a
connected design in any 8 that has Wg,y-1 < “3,v-1 if you let tr Cq
be much less than tr Cd*' If 8 allows only one value for tr Cd,
however, then the theorems could prove helpful.

If Theorems 1.4.1 or 2.1.1 fail to work, then the following

Theorems 2.1.4 and 2.1.5, respectively, might be of use.
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Theorem 2.1.4: Let C = {Cd: d € 8} be a class of matrices in

@v,o and v > 3. Suppose Cdo, Cd* € C satisfy

2) tr(C ,) = tr(C,,) = max(tr C,), - T
0 d* des d

3) UO < u¥ < pX <...< u* , with the u*'s being the e%genva]des
1-"1—-"2— v-1 i
f

Then @(Cd*) < o(C O) for any @(Cd) = F(ud,v_],...,gd])-where Fis

d
v-1 o. *
Schur-convex on [0,=)" °. 7 w3 for some

If in 3) we also have u
ie {1,2,...,v-2} then @(cd*) < @(Cdo) for any @(Cd)'= F(“a,v—]’

-+sugp) where F is strictly Schur-convex on [0,0)"° 1.

IMP1Y (W15 eesng) = (WA s..ooud) which implies o(C o) > o(Cy) for

d
the Schur-convex 4. If in addition some u? < u? for some ...
O oo -
and @(C 0) > Q(Cd*)

i€ {1,...,v-2} then u* is not a permutation of yu
d

if & is strictly Schur-convex.

Corollary 2.1.4: lLetC = {C,: d€ 8} be a class of matrices in

it
@V,O with v > 2. Suppose Cd* € C has

1) 0 <,uT = .. = u§ < ”3-1 for its eigenvalues.

2) tr Cyx = max(tr Cd),
des
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3) o(Cyw) < 2(C,) = F(

¢
strictly Schur-convex.

“d,v-]""’“d1) for any d € & and F

Then any strictly E-better d0 € 8 has tr C g < tr Cd*' Hence d* is

d
E-optimal among full trace designs.

-
- — -
——

Proof: Suppose C 0 had eigenvalues 0 < u? <oen< “3-1 and
d ~

u? > uf- If tr C 0= tr Cd* then by Theorem 2.1.4 we would have
d

o(C O) < ¢(Cd*3; contradicting Condition 3). Therefore an E-better dy
d .
is not of full trace. ’

-

-

Theorem 2.1.5: LetC = {Cd: d€ 8} be a c1ass-6f_matr1ces in

By.0 with v > 3. Suppose Cdo, C g € C satisfy

= = “3-1 for the eigenvalues of C 0°

1) 0 < U? <1, cen y

2) trC tr C ., = max (tr C,),
£ e T R o

fA
A

MY i_ue_] with the u¥'s being the eigenvalues

v o

3) 0«< u?

of Cd*' : -

Then @(Cd*) 5_@(Cdo) for any F(“d,v-]""’“d1) where F is Schur-convex

on [O,m)v']. If in 3) we also have u? < u? for some i € {2,...,v-1}

then @(Cd*) < @(Cdo) for any @(Cd) = F(”d,v-l”"’“d1) where F is

strictly Schur-convex.
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v-1 0 0 v-1 '
Proof: ) w; = (v-k)u 12 Y u¥, k=2,...,v-1 and
— P v-1-= ¢ _

v-1
; u? so we have (“8-1""’“?) - (ﬁc_],...,u?) which implies

v-1
0
S

o(C O) > @(Cd*). If in addition we have u¥* < uq for some.
>~ o S

—

i€ {2,...,v-1} then y* is not a permutation of EO and o(C 0) > @(Cd*)
d

if @ is strictly Schur-convex.

Coro]]ary 2.1.5: LetC ='{Cd: d € 8} be a class of matrices in

By.0 with v > 2. Suppose C . € C has

-

-

1) 0«< p? < u§ = ... = “3-1 for its eigenVa]ﬁés,_-v
2) tr Cyqx = max (tr Cd),
des
3) @(Cd*)_i @(Cd) = F(“d,v-l""’”dl) for any d € ® and F

strictly Schur-convex.

0 : 0
Then any d” € § with u 4 < uf_; has tr Cd0 < tr €.

Proof: Suppose uo < pu* . for some d,, C , having eigenvalues
— v-1 v-1 : 0 0 S

d
0 < u? 5,.-§_u3_1- Iftr Cy=tr Cd* then by Theorem 2.1.5 we would
d
have o(C ) < 5(C4x)» contradicting condition 3).

d
Theorem 2.1.1 1is a‘34 optimality result for d* with a given
eigenvalue structure, Cd* of maximum trace, and d* optimal for some
criterion in the class J4. The eigenvalue structure is

0 <a<b=...=b and the single criterion is @E(Cd). A logical
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question is whether other global optimality results for J4 exist when
given 1) an eigenvalue structure, 2) maximum trace and 3) - optimatlity
for one or two of the criteria in Ip-

Here we present four numerical examples where a d* in a hypotheti-
cal 8 has one of four eigenvalue structures and is of.ggximum trace.
Then for d* considered optimal for one or two of A-, D- and E-optima]ity
examples are given which are strictly better than d* for the remaining
criteria, indicating other global results of a similar kind do not
exist.

Before we begin we must discuss v =2 and v =_3. For v = 2 the

-

lone eigenvalue is just tr Cd and the reader 1s‘re¥érréd to Corollary
2.3.1. For v = 3 there are just two eigenvalues and they are equal or
different. The eigenvalue structu}e corresponding to them being
different is just a special case of Theorems 1.4.1, 2.1.1 or 2.1.2

and the reader is referred to those.

In the tables below the nonzero eigenvalues for the hypothetical
designs are given along with the criteria for which d* is optimal (in
the column "d*"), the criteria for which di is optimal (in the column

"di") and how tr C, compares to tr C, (in the column “fk"3. )

Example 2.1.1: 0 < ugy < Hgx = -ov = ugw y_1» V2 4. IF d* is
T4 ;

A-optimal we have Theorem 1.4.5. If d* is E-optimal we have Theorem

2.1.1. Otherwise see Table 2.1.1.
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Table 2.1.1: Examples for 0 <a <b= ... =b

4oy I T
a4 5 (5) ... (5) 5 x  x %
dr 4.1 45 (5) ... (5) 5.4 AD E_. =
dy: 4.1 4.6 (5) ... (5) 5.3 D AJE =

Example 2.1.2: 0 < udT ... = “ﬁ,v-z < Mgk oy V > 4. See

Table 2.1.2. Note that if d* is not E-optimal but A- or D-optimal
Corollary 2.1.4 says the E-better design cannot be,of full trace.

For d1
is taken as small as needed.

e > 0 and is taken as small as needed. Forva4ﬂe,c > 0 and each

Table 2.1.2: Examples for 0 <a = ... =a <b

d* d; tr

", - Hd,v-2  Hd,v-1 i

d*: 4 (4) ... (4) 4 5 * * *
dy: 4e e A+e 4+¢ A,D E <
d: 3.7 (4) (4)  4.65  4.65 A,E D- . =
dy: 3.9 (4) (4) 4.185 4.9 D,E A <
v-1
~ (‘? u¥-o)
d4: dte Lol 4+¢ (4+€)v-2 D A,E <
d5:

3.8 (4) (4) 4.6 4.6 E A,D =
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Example 2.1.3: 0 <u = ..o = H 4 < ¥ = L. T M s V> 5,
di‘ @ty &t

2 < i< v-3. See Table 2.1.3. Note that d], d5, d6 and d7 are speéia]

cases. d7 is for 2 < i < v-3 only. In d2 and d6 take € > 0 small

enough. In d7 take €,0 > 0 as needed with (i-2)e = (v-i-3)o.

y

Table 2.1.3: Examples for 0 <a=...=a<b=...=b

Ay Gl layg) my o wgg (ggpdeenlny o) wyy A 4y Er
d* 4 (4):.. (8) 4 5 (5) ...(5) 5 ok
4 41 (i=2) 8.1 41 (5) ...(5) 5.7 AD E =
d, 4 .. e dre (5) ...(5) le-(i))AD E =
dy 3.85 (4) ... (4) 419 4.96 (5) ...(5) S5 mE D -
d, 3.995 (4) ... (4) 40546 (5) ...(5) 5.3 DE A =
ds 4.1 (1=2) 1.2 4.3 (5) ...(5) 5.4 D A =

d d+e ces 4.1 4.2 4.3 (i=v-3)  (5.4-(v-5)e) D A,E

d dte . 4.1 4.2 4.3 (5-0)...(5-0) 5.4 D A,E

3.9 (4) ... (4) 4.5 4.5 (5) ...(5) 5.1 _ E A,D=

Example 2.1.4: 0 < “d? < pd§ = eee T Hgw oy < Hgw oyt v > 4.

The examples in Table 2.1.4 are for v = 4, but for v > 5 just add the

eigenvalue 4 with multiplicity v-4.
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Table 2.1.4: Examples for 0 <a<b=...=b<¢ _
U u U d* d. tr
d, d2 : d3 - _1_ -
d* 3 4 5 * * *
d] 3.2 3.4 5.4 A,D E = =L
d2 2.9 4.5 4.6 A,E D =
d3 2.96 4.5 4.5 D,E A <
d4 3.2 3.6 5.2 D A,E =
d5 2.98 4.51 4.51 E A,D z

-

Remark 2.1.3: 1In Examples and Tables 2.1.2, 2.1.3 and 2.1.4

no single d, was found to be D- and E-better than an A-optimal d*.

For our purposes, d] and d2 must be taken together t; show an A-optimal
d* is D- and E-bettered. There may exist such a single design, or a
result saying such a single design will not exist, but it is unknown to

the author.

2.2 Bounding the Extreme Nonzero Eigenvalues -

R

In this section we will extend Theorem 1.4.3 of Constantine
to unequal kj and to give two lower bounds on u, | 1.

We begin with two upper bounds on My,
1

Theorem 2.2.1: In any block design d € ®(v,b,k) with replications

rq and eigenvalues of C, being 0 = udo 5_pd1 < e S Mgy e have
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( ‘) ) lais :
i) wy < (=) min [r - ]
dl v-17 4oy L di 21 kj
2
b n,..
1 0 dij
and (1) uyy < min {—~ 7 (r -7 ) +
a1 = el M 2\ di 7 58 T
2 "dig"djg)l -7 -
7 11 (1 N.-
n{n-1 1<i<j<nte=1 kl

Proof: (i) Let d € & be arbitrary. By definition of Cd’

2 b
dw d (i -
——an cd i#3)=- Z

1 J

d12 dJE
2

-

We now

=
[«
—

]
He~10T -

take all permutations of the rows and (the same) coTumns except for
the ith row. Averaging the resulting (v-1)! matr1ces we get Cd With-
out changing the eigenvalues of'Cd”we can interchange the first and

i-th rows and columns. Then we have Cd equivalent to

2
Ydi ~ E nd;j - Bl
i35 i i
- Bilyg (Ai#B )Ty 17B3dyq vt
v b n,. n,. - - *«53
where 8, = — ) < ) dis dJQ). By Lemma 1.4.1 we know that one

i v-1 .2 £ 3

J=T1 =1 2

J#1

eigenvalue of Cd is VB, Since Cd has zero-row sums along with Cd’

- 2
b n,..

' dij

VB.=——_—(Y'.- z ).

i v-1\di =1 kj
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Since i was arbitrary, we get M1 less than VB for each { and hence
the result.
(ii) Now we average over varieties 1,...,n and n+l,...,v

separately, for some 2 < n < v. The averaged matrix Cd equals

-
—

(a +an)In - ald -8.J

n nn,n nn,v-n

~ Bpdven,n (d#a )1y p - AnJv-n,y-n

2

’ b n,..
dij =
re = ) and o_ =
1 < S I ) "

2 g oy (E ndizn-djlt),. -
n(n-T) 1<i<j<n \ 2=1 ) -

By Lemma 1.4.1 one eigenvalue of Cd is an+an, so we have

where a_ = 1
n n

He~-1=

.i

U < pmq < @ ta_. Therefore u . < min (a_+a_) and-we get the result.
1 = n di = 000 18"

This ends the proof.

Remark 2.2.1: Part (i) of the theorem was proved by Kiefer (1958)

and Chackrabarti (1963) by another method.

Theorem 2.2.2: In any block design d € 8(v,b,k) wfth“replicétions

rq and C4 having efgenvalues 0 = nuyy < wyp < ... 2 Hg,y-1 W€ have

v % "dij
(i) wu > —= max |[r,. -
d,v-1 V_1~1§j5y di 551 kj
2
. 17 B Mg
and (ii) w > max ;-— YAr. -} +
d,v-1 2<n<v L8 ds. =1 kj
2__ 5 Z(E ndiz"djz)f
-1 12ican\es1 Ky
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Proof: The proof of (i) is analogous to the proof of (i) in
2

b n.: .
) A .V _ dij
Theorem 2.2.1. One eigenvalue of Cq 18 v (}di JZ o ) except

=P ;
2

that h > u= > Y _p - E ndij for each i
a ere we use Ud’v_'l . Ud’v_'l . v_'I d.l j=] kj N .

=

Hence uy 1 must be bigger than the largest of the (V/(V'1))Cdii'
Similarly for the proof of (ii) we use Hd,v-1 > ¥a,v-1 > a to of-

the Cd given in the proof of (ii) of Theorem 2.2.1.

2.3 Uniform Optimality and Unequal Block Sizes

The following result extends that of Kiefer (1975), given
earlier as Corollary 1.4.4, to unequal kj} Hedayat (1974) had extended
the result to unequal kj < v, but here no such restriction is made.

A11 three proofs are analogous.

Theorem 2.3.1: (Corollary to Theorem 1.4.4)

Suppose there exists a connected variance balanced block design
d* ¢ @(y,b,g) with parameters N, v, k  and rﬁ satisfying for each

block Jj .

* = . . i i i = oco’~ [ r
1) ndi; kJ/v when kJ/v is an integer (i = 1, v), or

2) the ngij

when kj/v is not an integer (that is kj - v-int[kj/v] of the

's (i = 1,...,v) are as close together as possible

1 Cho * ]
"gij s equal 1nt[kj/v] + 1 and the rest of the n§ij's equal

1nt[kj/v].)

v .
. . . s . .
subject to 121 ngs 5 kj. Then d* is 3,-optimal in 8(v,b,k).
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Proof: By Definition 1.3.1 Cd* is completely symmetric, so all
that remains is to prove Cd* is of maximum trace in &. For an
arbitrary design d € 8,

v b n,.

. b v
rgi - L L N ] )

n,..
i=1 351 K 351 Kyo gy 41

2).

I~

tr Cd =

i=1

= -

v
Maximizing tr C, subject to )
=1

i (i =1,...,v) as equal as possible for each fixed j,

ndij = kj for each j is accomplished by

making the Ny

v
since this minimizes } (ndijz) for each fixed j. (See Lemma 1.4.3).
i=1 T
But this has been accomplished by d*. Thus ends tQje proof.

Theorem 2.3.1 can be applied to the case of v = 2. This case is

trivial but is given here for the sake of completeness.

Corollary 2.3.1: If v =2 andk; > 2 for j 1,....b, then

d* € 8(2,b,k) is J,-optimal in 8(2,b,k) if Ngsi5 = €3 for kj = 2cj

. . = C. + . = 2c.t . , . q
(kJ even) and Nge15 = © or ¢ 1 for kJ 2cJ 1 (kJ odd), where cs is

a positive integer.

Proof: For any d € 8(2,b,k), .
Ca= 1C%1  Ca12 | 7| Sd11 ~Can
Cd12 - Cd22 1 L"%11  Cdan

since Cd is an information matrix. So Cd* is completely symmetric
making d* variance balanced. d* is connected since kj > 2 so treat-
ments 1 and 2 are paired at least once in d. Finally the Ngxjj are

as equal as possible, so by Theorem 2.3.1 we are done.
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2.4 An Eigenvalue Lemma -

The following result gives the eigenvalues for an information
matrix with three blocks down the diagonal. In a sense it extends

Lemma 1.4.1 of Constantine for two blocks down the diagonal.

-
P o -

Lemma 2.4.1: The eigenvalues of the v by v 1nf0;ﬁation'matrix

C:
(a +b J . -C.,J -C JJ .
b1 12°m, ,m, 13%m,
( +0,)1 -b,J -Cood
2 2 2 2 m2,m2 23 mz,m3
(a b )I
, my °3! M3sMMs

(where my + m, +ms; = v and Mys Moy My > ]) are 0, (a1+b ), (a +b2),

1 1
(a3+b3), (A+(B$+BZ)2)/2 and (A—(B$+B )2)/2 with multiplicities 1,

m]-l, m2-1, m3—1, 1 and 1, respectively, where A = (m]+m2)c]2 +

(mytmg)eqs + (mytmg)e, s, By = (my-my)c, - (my+mg)ey 3 + (mytm) c,g
and 82 = 4m]m2(c]2—c]3)(c12-c23).

Proof: The eigenvector for 0 is of course 1,- Let

be pairwise

My

apseeesan 1o 1o be pairwise orthoggnal, §]""’§m2-1’1

orthogonal and Ypsee oYy _1,1 be pairwise orthogonal. Then (ai+bi)
3

_m3

= 1,2,3 have the eigenvectors

=J m1,1
Ghz’] j=1, ,m]-1, B, 2 =1, sM, 1
& G

m3,1 m3,1
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G .-

and| ¢ p = 1,...,m3—1 respectively. If m; = 1, we do not

get the eigenvalue (ai+b1) and of course also do not haye the corre-

—

sponding eigenvectors.
The last two eigenvalues remain the same if C1ps Cy3s and C23 are
distinct Cyo f_c]3, or €y, = €13 = Cos3- The proofs in the three cases

differ, but if 195 C13 and Cyg are distinct the proof is as follows.

By Lemma 1.4.4 if C has eigenvalues 0 < 5_;;. <.”v-1 and

corresponding eigenvectors Ep> E72---sEy_q then F = aC f<blv + (c/v)JVv
has the eigenvalues b+c, auq * b,...,auv_]+b with the same corre-
sponding eigenvectors. This method was used to get the eigenvalues

(a1+b1) and 0, and leaves

~ 1 n
_m_l
[C + C]3Jv,v_(a1+C13)Iv] yjlmz
m_ m
1 2
(= + == y:)] -
m3 m3 J -m _ -
B 1 ]
—m_l
= . = Ao.(i=1,
3 Yiln, gl = 1.2.)
m _
'(Eg'+ gg'yj)lm
3 M3 3

to be solved for the eigenvalues of C + c]3J (a +C13)Iv with their

v,V 91
corresponding eigenvectors g5 We get the following three equations,

with the Tast a linear combination of the first two.
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(my=1)(cq5b7) + myys(eq3mcy ) = ; (3.4

my(ey3-cp) + (apmaglyy + (my=1)(cq3-b,)y;

M
- m3(c]3—C23)(ﬁg + Hs—.y:]) = )\Jy\]
mm, -
mzyj(c13-c23)-(a3-a1)(ﬁg + ﬁg-yj)
m m ms- m
1 2 1 2
- (m,- b ) (= + L y.) = A (- + L y.).
= (mg=1){cq5 b3)(m3 s y;) J(m3 n y;)

Substituting the value of Xj from (3.4.1) into the second equation

-

we get ) -

2 N
Yjmy(eypmcqz)ty;(ap-ar-(my=1)by* (i -1)by+myc, o= ey 5)

tmy(cyg-cq,) = 0.

Solving for y., plugging back into (3.4.1), and solving for Aj+(a1+c13)

J
which are the eigenvalues of C (recall they have the same eigenvectors)
1
gives (A = (B% + 82)2)/2 for the last two eigenvalues of C.

Remark 2.4.1: An analogous result for four blocks down..the

diagonal has three of the eigenvalues as the solutions of a cubic

equation and did not prove useful.



43

CHAPTER 3
THE BIBD PLUS OR MINUS M BLOCKS -

3.1 The Eigenvalue Structures of Cheng and this Thesis

In this section we present two lemmas that give the eigenvalues
for the C-matrices of designs constructed by adding disjoint binary

blocks to a BIBD or removing disjoint (binary) blo&ks from a BIBD.

Lemma 3.71.1: When adding m disjoint binary blocks 6f~size k to a
BIBD d in 8(v,b,k) with 1 < m < v/k, the eigenvalues of the C-matrix
of the resulting design d* in 8(v,b+m,k) are
0 with multiplicity 1,

%l with multiplicity v-m(k-1)-1, and

%1-+ 1 with multipTicity m(k-1).

In particular Cd* has the eigenvalue étructure 0 < (vA/k)h<”(vi/k)+] =
eor = (VA/k)+1 when m = 1 and k = v-1 (v > 3) or when m = 2 and
k=v/2 (v>4). C4x has the eigenvalue structure 0 < (va/k) = ...

= (vA/k) < (va/k)+1 when m =1 and k = 2 (v > 3).
Proof: Cd* = Cd + C0 where

C

r(k-1) , a A
(S +'E)Iv %Y

d k V,V

and C0 is the C-matrix for the blocks added. Without loss of
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generality we can relabel the treatments 1 through v so fhat"C0 is of

the form
M Ok e Ok S, v-km
A2 L Y Gk’k Gk’v_km -'__,,
: : . - T (3.1.1)
Am ok,v-km
- Sym O\/-km,v-km

= -1 . .
where Ai = Ik?7 k Jk,k for i = 1,...,m. Then Cd* 1s of the form

r B, C...C D - _
“‘
B,... C D T
I . T (3.1.2)
Bm D
i i
sym Bm+1
where
- {re1)(k=1) . a+1 A+1 .
Bi = ( i o )Ik - _E—'Jk,k i=1,...,m,
= (rk-1) . A oA
"1 T T D kn T Yok, vk =
and C = (-A/k)Jk’k and D = (-A/k)Jk’v_km.

Note here that if v = mk then C0 and Cd* are of the form, respectively,

M On e Ok
Ay Oy (3.1.3)
sym . Am

and
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B1 c ... C .
: 82 g (3.1.4)
sym : Bm

From Lemma 1.4.2 the eigenvalues of Cd* are (vA/k)de,vA/k and
0 with the multiplicities given in the hypothesis. m(Ell) = y-2 for
m=2,v=2kandm=1, k = v-1, and m(k-1) = 1 form = 1, k = 2.

Lemma 3.1.2: When deleting m disjoint (binary) blocks of size k
from a BIBD d in 8(v,b,k) with 1 < m < v/k, the eigenvalues of the
C-matrix of the resulting design d* in ﬁ(v,b-m,k) é{g _.

0 with multiplicity 1,

L’—* - 1 with multiplicity m(k-1), and

l‘(’l with multiplicity v-m(k-1)-1.

In particular Cd* has eigenvalue structure 0 < (va/k)-1 < (va/k) =
.= (vA/k) whenm =1 and k = 2 (v > 3) and Cd* has eigenvalue
structure 0 < (va/k)-1 = ... = (va/k)-1 < (va/k) when m = 1, k = v-1

(v>23) andwhen m =2, v =2k (v > 4). s

Y

Proof: C,, = Cq = Cg where Cq is as shown in the proof of

d 0
Lemma 3.1.7. Without loss of generality we can relabel the treatments

so that CO is as shown at (3.1.1).

Then C,, is of the form of (3.1.2) but now with

_ 1) (k=1) , A1 A1 .
B1 = ( K + K )Ik = K Jk,k, 1 = 'l,...,m, and Bm+-l,

C and D still of the form given in (3.1.2). As before if v = mk then
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CO and Cd* are as given in (3.71.3) and (3.1.4) respectively, -but with
B, through B as defined here. '

From Lemmas 1.4.2 the eigenvalues of Cd* are (vA/k)+1, vA/k and
0 with the multiplicities given in the hypothesis. The rest of the
proof follows easily. T -

The BIBD plus 1 block for k = 2, the BIBD minus 1 b]ock for
k = v-1, and the BIBD minus 2 blocks for k = v/2 give. Cheng S e1gen-
value structure. The first two cases were proved E-optimal by
Constantine (1981) and are shown to be gJ]-optima1 in Section 3.2.
The third case is just that of a MB GD PBIBD with 52 = A*1. This
was proved gJ] optimal by Cheng (1978). See Theorem.T.4.2f

The BIBD plus 1 block for k = v-1, the BIBD plus 2 blocks for

= v/2, and the BIBD minus 1 b]ock for k = 2 yield the eigenvalue

structure 0 <a<b = ... =b. The first was shown to be E-optimal
by Constantine (1981) and will be shown in Section 3.3 to be &4—
optimal. The second and third cases wil] also be discussed in that

section, though the former is not necessarily optimal and the latter

does not yet have a full solution. e

Y

3.2 The Eigenvalue Structure 0 < g = ... = a<b and gJ]:gptima1ity

We will begin with the BIBD plus 1 block, k = 2,

Theorem 3.2.1: Let d° be a BIBD in #(v,b,2), v > 3. Add to d°

one binary block of size 2 and call the resulting design d*. Then d*

is gd,-optimal in 8(v,b+1,2).
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Proof: We will apply Theorem 1.4.1. Since k = 2, d® is the
union of e copies (e > 1) of the BIBD in &(v,v(v-1)/2,k) that has .
the v(v-1)/2 unique pairs of the v treatments as blocks. Therefore

c = (e/2)(vIv—J ). Without loss of generality assume we add the

£ V,V
block consisting of treatments 1 and 2. Then T

- e(v-1)+1 -(e+1) -e - ... -e 7

-{et+1) e(v-1)+1 -e -e " ... -e

Cd* =*%— e(v-1) -e -e

e(v-1) -e

sym . 2,‘_

i sym S -e(v-1)]

From Lemma 3.71.2 and the fact that A = e for the BIBD do, or

directly from Lemma 1.4.1, we have for Cd*: Hawo = 0, Hyx1 =

- T Hgx,yop = €V/2, and wgy g o= (ev/2)+1.

Since k = 2 then from what was said in Section 1.5, d* satisfies

condition (i) of Theorem 1.4.1 trivially.

Now tr Cd* = g(v-1)+1 + e(v-1)(v-2)/2 = (ev(v-1)+2)/2 and

v b o

2
)= 1 1 ¢
S 4 B S B

tr(C

[(e(v-1)+1)2+(e+1)%+(v-2)e?]

I
Sro

# L22) 1e2(y1) 24 (v-1)e?]

%-(ezvz(v-1)+4ve+4).

For condition (ii) of Theorem 1.4.1 we need to check to see if
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(v-2) tr(Cu?) < (tr Cu)®s or if

(—V-ng)— (e2ve(v-1)+4vets) < % (ev(v-1)+2)? = }; (e2v2(V—1')2+4e-\/(v—1)+4).

This is true if and only if

(v-2)(ePvP(v-1)+hverd) < €2V (v-1)%4heu(v-1)34,

if and only if

2( 4 ,3 4 , 3,2

e (v -3v +2v2) + e(4v2—8v)+4v-8 < e2(v -2V Tty

+ e(4v2-4v)+4,

if and only if
0 < e2(v3-v2) + e(4v) + 12-4v ST

= e2(v3—v2) + 4v(e-1) + 12,

which is true as e > 1 and v > 3.

Now since every design in 8(v,b+1,2) has the same trace, condition

(111) of Theorem 1.4.1 is equivalent to proving C g, minimizes

. 2y _ v 2 2
/(v-1) or minimizing tr(Cd) = 3 cgij * 2 D) Caij*

)2
i=1 T<i<j<v

2
tr(Cd) - (tr Cd

as equal as

e

as equal as possible. Clearly since ('zedij)

From Lemma 1.4.3 this is accomb]ished by making the Cdii

possible and the Cdij

must be an integer, making (-2cd]2) = mt1, ('chij) = m for

i=1,2and j = 3,...,v and (-2cd1j) =m for 3 < i < j < v does just

that for the ¢ In the case of k = 2, 2cd11 is an integer, so

dij °
making 2cd]] = 2cd22 = m(v-1)+1 and 2Cdii = m(v-1) for i = 3,4,...,v
makes the Cqij 23S equal as possible. Hence tr(Cg) is minimized by d*

and we satisfy condition (iii).
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Therefore by Theorem 1.4.1 d* is gJ1-optima1, and the proof is

complete.

For an example of such a design use the design in Example 1.4.1

but without the Tast block.

—

Theorem 3.2.2: Let d® be a BIBD in 8(v,b,v-1), v > 3, Remove

from d° one (binary) block and call the resulting design d*. Then d*

is gdi-optimal in 8{v,b-1,v-1).

Proof: Again we will apply Theorem 1.4.1. Since k]i v-1, d° is

-
the union of e copies (e > 1) of the BIBD in B(v;v,v512'that has the
v subsets of size v-1 from {1,...,v} as b]bcks. Theréfoﬁé B = ev and

e(v-1)(v-2)  -e(v-2) ... -e(v-2)

_ 1 e(v-1)(v-2) ... -e(v-2)
C o = . : (3.2.1)
sym *e(v-1)(v-2)d.
That is r = ... =1r _=e(v-1), A = e(v-2) for 1 <1i < J < v and
d? d° 2. -
1 v i
k-1 = v-2. We then have Cy = C - Cj where Cy is the C-matrix for

4
the removed block. Without loss of generality

R

((v-2) -1 ... -1 0
1 (v-2) ... 1.0
CO = Fl— _‘ - : (3.2.2)
*(v-2) O
| sym 0

and then
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(e(v-1)-D(v-2)  ~(e(v-2)-1) ... ~(e(v-2)-1)"| Ze(v-2) ]
(e(v-1)-1)(v-2) ... -(e(v-2)-1) | -e(v-2)
Cy - V%T : : :
sym /(e(v-l)—l)(v-Z) -e(va)
i sym S €(v-1)(v-2)].

The eigenvalues of Cqx are 0, (va/k)-1 and (vA/k) with mu]tjp]icitjes

T, v-2 and 1 respectively, where A = e(v-2) and k = v-1. So d*
satisfies the eigenvalue structure of Theorem 1.4.1.

The condition (i), Cqx being of full trace, is satisfied since d*
is binary. That is for each j, nd*ij is 0 or 1 foréi}=_1,...,v.

We must now check condition (ii), that (v—2)tr(Cd;2)u<J(tr Cd*)z.
Well

tr Cgue = =i ((v=1)(e(v=1)-1)(v-2) + e(v-1)(v-2))

(v-2)(ev-1)

tr(Cye) = GPPLO-1)1(e(v-1)-12(v-2)2 + (v-2)(e(v-2)-1)2

+ ez(v-2)2} + (v-])ez(v—2)2 + e2(v-1)2(v—2)2]

~iea

- V}T [(v-2)2(ev—e-1)2 + (v-2)(ev-2e-1)2" -

+ 2e2(v—2)2 + e2(v-1)(v-2)2].

Condition (11) holds if and only if tr(Cu,2) < (v-2)(ev-1)2 or

(v—2)(ev-e-1)2 + (ev-2e-1)2 + 2e2(v-2) + e2(v—1)(v-2) < (v-])(ev-])z.
With algebra we get the equivalent statement 0 > - ev(ev-2). This is

true since v > 3 and e > 1.
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The proof that condition (iii) holds will be more difficult than

in Theorem 3.2.1. We begin by defining Pd = tr(Cﬁ) - (tr Cd)z/(v-1)

for a design d. Then condition (iii) asks if Cqx Maximizes

tr cd-[(v-1)/(v-2)]%pf. 2.3

2-22__Zc

v
Now (v-1)P , = (v-2)} Cdiiz +2(v-1) } ) Cqij
1 j T<i<j<v-

e s C 4o
d 1<i<j<v dii qu

v
For )

fixed, Lemma 1.4.3 says (v—])Pd is minimized, or (3.2.3)
i=1

Cdii

maximized, with the €4 and the Cdij as equal as possible

.i
respectively. o

Now (v-1)P ., = v-2, which follows from simple sub;titution and

d*
some algebra. Hence tr C, - [(v-])/(v-Z)]%Pd*% = (v-2)(ev-1)-1.
Clearly then for d € 8(v,b-1,v-1) with tr Cd < (v-2)(ev-1)-1 then
(ii1) holds for those d and d* because by Lemma 1.4.3 Pd > 0.
Therefore all we need to do is consider designs d with tr Cd =

tr Cd* - a/(v-1), a = 0,1,2,...,v-2.

For o = 0, or d with the same trace as d*, we see d* maximizes

i

(3.2.3) since the Cqriq are as equal as possible and the-edyij,are as
equal as possible. If tr Cd = tr Cd*’ d must also be binary, so

Caqii = rdi(k'1)/k = rdi(v-Z)/(v-l). So the Cy4ij are as equal as
possible if and only if the rqi are as equal as possible, which is

true for d*. If (-2) ) .Z C

- = tr Cg = (v-2)(ev-1) =
1<i<j=<v

dij
EV(V-])(V—sz;(V"-I)(V-Z) - (V-])(V-Z)(e(:ll:ﬁ)--l) .

e(v-2)
v-1

+ 2(v-1) -
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and (-(v-1)c,..) is always an integer, then the Cyxij are as equa] as

dij 1J
possible.

The difficulty then is when o = 1,2,...,v-2. Here reducing tr Cd
a little may minimize P | enough to make condition (iii) fail. We will
now fix a € {1,...,v-2} and Tet d be arbitrary in the class
8(a) < 8(v,b-1,v-1) where 8(a) = {d: tr Cq = tr Cyu -';}(v—1)}.
(3.2.3) will still be maximized (for the fixed trace) if the diagonal
and off-diagon§1 elements of Cd are as equal as possibie for all
d € 8(a). Actually we will work with a Cq which may not correspond

64 .
to a design d € 8(a), but satisfies this smoothness-requirement. The

L
hypothetical design, which we will designate da,'wiTT have the C-matrix
that maximizes (3.2.3) over 8(a), and (3.2.3) evaluated for da will be
less than (3.2.3) evaluated with d*.

d_will have (v-1)(v-2) +a 's equal to (e(;;Z)-1)/(V-1)

Cdij
and 2(v-1) - « Cdi ; 's equal to e(v-2)/(v-1). Note that for any
real design o would have to be even, but for the purposes of the
proof it does not matter. The question of how equal the diagonal

elements can be in 8(a) remains to be answered. o

First note that tr C, for d ¢ 8(a) s a(V—])_] less than tr C g

v
because the design is no~ longer binary. tr Cd = Z rdi "
NN T ! g o
n and we cannot reduce r.., so the n,..'s no longer
satisfy lnd13 v-1)/v| < 1 for all (i,3).

Secondly we note that for d € 8(a), ry;(v-1) Z nd]J

< rdi(v-1)-rdi = rdi(v—z) 5'(rd1+1)(v-1)'(rdi+1)'“
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=-(rd1+1)(v-2)-a = rdi(v—2)+(v-2)-a. ‘ -
Therefore given ai < g then (V'])Cdii 5_(v—1)cdjj even if we maxi-
mize c .. and minimize Cqyj STnce 1 <a<v-2,

We claim that the Cqij are most equal in 8(a) if v-1 of the
((V"1)Cd11) = (r-1)(v-1)=(r-1) = (r-1){(v-2) and the remaﬁhiﬁb 
((V'])Cdii) = r(v-1)=r-a = r(v-2)-a, where r = rdo = ... =r

1 - dv
e(v-1). Let ah.arb1trary d € 8(a) have Pql S Tgp S oo S Tgyr

= ... = rd*,v-] = r-1, LS T the most equal configuration

Fd*1

of the ryi and is the one used in the claim. A]so.]ef'aé,z 0 be such
v 'Y 2

that 12 oa; = a. Then d has ((V'])cdii) = rdi(v—])- ) niif_—di(v'])'rdi

1 j=1
-, = rdi(v-Z)-ai, i= 1,00V,
Now (rdv(v-Z)-av,...,rd1(v-2)—a]) - (rdv(v-Z)-a, rd,v-1(v_2)’
--srd](v'z)) > (Y;(V-Z)-OL,(Y'-.I)(V-Z),...,(Y‘-])(V-Z)) = (rda,v(v_z)’
ceesly 1(v—2)). Therefore d, makes the Cqis 35 equal as possible and
o2 11

maximizes (3.2.3) for all d € 8(a). So all that remains is to compare

(3.2.3) for d* and da.

(v-2) [(v-n (r-0?2)? (P(V-Z)—a)z] "

~ o

-1)p
(v-1)Pg (v-1)2 (v-1)2

Qo

2
(v-2) + “(if;fg - (%?¥) ¥ (v??) (3.2.4)

"
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with algebra and substitution of e(v-1) for r.

1

tr Cyp - L1/ (v-2)FPZ = (v-1)(ev-1)-1 >

tr Cy -[(v-1)/(v=-2)FP 3 = (v-1)(ev-1)- 2p-[v-1)/(v-2) FP,

a a Q

if and only if (v-1)P, > (v-2)(1-a/(v-1))%. That is if7and-only if
o
20(v-2) , o(v-2)
(v-1P 4 > (v-2) - %VY1) + L5
o (v-1)
- tV-Z) + az(v-2) _ 2av + 4o,

(V_-I)Z v-1 v-1

which is obvious from (3.2.4) and the fact that « > 8. -
Since o was arbitrary in {1,2,...,v¥2} we have shown~Ca* maximizes
(3.2.3) for all d € 8(v,b-1,v-1).- Therefore condition (iii) of Theorem

1.4.1 is satisfied and d* is gd,-optimal in 8(v,b-1,v-1).

Example 3.2.1. 1In 8(5,4,4) d* given below is gd;-optimal.

1 1 1 1
3
d*: .
. 4 :
4 5 5 5

3.3 The Eigenvalue Structure 0 <a <b = ... =Db and 34—opt1ma11ty

We will begin with the case of the BIBD plus one block, k = v-T1.

Theorem 3.3.1: Let d° be a BIBD in 8(v,b,v-1), v > 3. Add to

d® one binary block of size v-1 and call the resulting design d*. Then

d* is 34-opt1ma1 in 8(v,b+1,v-1).
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Proof: Here we will apply Theorem 2.1.1. From Lemma:3.1.1 we
know the eigenvalues of Cd* are 0 < va/k < (va/k)+1 = ... = (va/k)+1"~

where k = v-1 and » /= A for T <1 <J<v. d*maximizes tr C,
d’ij

for a1l d € 8(v,b+1,v-1) because the blocks in d® and the block added

to d° are binary. Finally, as mentioned in Section 1.4:dConstant1ne

(1981) in his Theorem 3.1 proved the E-optimality of the BIBD plus one

binary block. Hence we have satisfied conditions (i) - (iii) of

Theorem 2.1.1 and the proof is complete.

Example 3.3.1: 1In 8(5,4,6) d* given below is @4-opt1ma1.

1 1 1 12 1
2 2 2 .3 3 7)

d*:
3 3 4 4 4 3 B
4 5 5 5 5 4
Another case for the eigenvalue structure 0 <a <b= ... =D

js the BIBD plus 2 disjoint binary blocks with v = 2k, (v > 4).
Constantine (1981) referred to an example of Cheng (1979). There the
BIBD(8,14,4,7,3) plus two disjoint binary blocks is A-, D= qﬁH¥E-
bettered by an RGD that was given by John and Mitchell (1977), which
is the union of the two cyclic designs generated by the blocks
(1,2,3,5) and (1,2,3,6). However the BIBD(4,6e,2,3e,e), e > 1, plus
two disjoint binary b]ocE; is‘$3-optima1 in 8(4,6e+2,2). This was
proved by Cheng (1979).

The final case for the eigenvalue structure of this thesis coming

from Section 3.1 dis that of the BIBD minus 1 block, k = 2. A BIBD



d® ¢ 8(v,b,2) must be the union of e (e > 1) copies of the:BIBD in
8(v,v(v-1)/2,2), which contains all pairings of the treatments 1
through v, so b = ev(v-1)/2.

Cheng (1981a) and Constantine (1983) proved the 3= and 9"
optimality, respectively, of d® minus one block if e =_lf_hBoth proofs
were graph theoretic, and do not hold for e > 1.

Theorem 2.1.1 can be applied, and will be in somescaséé, but ft
is the proof of the E-optimality of d® minus one b]oék that is
difficult.

We begin a discussion and a series of 1emmqs tﬁpt wﬁ]] become the
proof that d* € 8(v,b-1,2), where d* is -d® minus one block, is E-
optimal for v = 3,4,5, and 6. Then Theorem 2.1.1 will be applied in
the form of Theorem 3.3.2.

Constantine (1981) proved the E-optimality of the BIBD minus m
-1

disjoint (binary) blocks for vk™2 <m < vk™'. If k =2, v/4 <1 for

v = 3 and 4 only. Hence we will get 34-optima11ty for v = 3,4, e > 1.

Cdo = (e/z)(VIv—Jv,v)’ and so C ., without loss of generality,
can be written as ' -

e

= 1
1 (r-1)  -(a-1) e N U -\
-(a-T1) (r-1) S S =\
1 ) - 5
r -\

| sym sym " r

where r = e(v-1) and x» = e, the replication and pairing parameters

of d°, respectively.
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As in Constantine (1981), let 8(v,b-1,2) = S] U S2 U S3 where

) >r-1,7andd ©

w
It

{de 8:, min(rdi)_i r-2}, S, = {d €8s min(rdi

ry =ty = r-1, say, with Mo < -1} and 53 = {d € : min(rdi)_z r-1

Qu
=
o
>
— e
\

> A for all i,J such that Py =Ty T r-1}.

—

Lemma 3.3.1: If d* € 8(v,b-1,2), v > 3, then o(C ) < oc(Cy) fo

all d G‘S] U 52.

Proof: The prcof of Constantine's (1981) Theorem 3.3 holds for
T<m<v/konS US, Itis for Sy that he needs.m j;Vk'z.

L

Lemma 3.3.2: If we let m be the number of treathénts.with r4i s
r-1 for d € S5, then @E(Cd*) 5_®E(Cd) for any d with m > v/2. Assume
v > 3.

Proof: Here we will apply Proposition 2.1c of Jacroux (1982),
which says that if for all i # J with Pqi = rdj = r-1 we have
Xdij > X, then

V((Y‘-])(k-])-(m-]))\) e (3.3'])

Ha1 = (v-m)k
For k = 2 the right hand side of (3.3.1) is Tess than or equal to
Uge] = (va/k)-1 = (ev/2)-1 when

V[(E(V-]-)-])-(m-])e] - Vv (e(v_m)_-l)

2(v-m) 2(v-m)
5_%——1.

This is true when ve(v-m)-v < ev(v-m)-2(v-m), if and only if v < 2m.

This ends the proof.
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Letting 53 = 53.] U S3.2 where 83.] = {d ¢ 53; m < v{2} §nd

S ={deS m > v/2}, then d* is E-optimal in S;US, U S3 or -

3.2 3
So only the d € 53,] remain.

Lemma 3.3.3: For d € &(v,b-1,2), v > 5, if rgi = r-1 and rai =

J

r+b then gt < (ev/2)-1 for Agii S A-a, a > (bt+3)/2 (a5b aré non-

J
negative integers).

Proof: Without loss of generality we let i =1, j = 2 and we
average Cd over the permutations of {1,2}, and {3,...,v}.separate1y.
Then Cd = s

-

(3.3.2)

where C]1 = (r+((b—1)/2)+x-a)I2 - (x-a)JZ’Z. By Lemma 1.4.1 one‘
eigenvalue of Cd is (r+((b-1)/2)+xr-a)/2 = (ev/2)+((b-1)/4) - a/2. But

Hal = Mg =

ev . b-1 2
e ail e B

[¢)
rl 2

if and only if a > (b+3)/2.

Lemma 3.3.4: For d € 8(v,b-1,2), v > 5, if r. = rix and

= r+y then ngp < (ev/2)-1 for Agis < A-a, a > ((x+y)/2)+2 (%, ¥,

"dj ij

a are nonnegative integers).

Proof: Without loss of generality let i = 1, j = 2 and average

Cd over the permutations of {1,2} and {3,...,v} separately. Again
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Cq is of the form of (3.3.2). From C;y and Lemma 1.4.1 uy3 < ugq <
(en/2) + ((x+y)/4) - a/2 < (ex/2)-1 if and only if a > ((xty)/2)+2. -

Lemma 3.3.5: For d € 8(v,b-1,2), v > 5, if rgi = Tdi " r-1 then

< (ev/2)-1 for x .. > a+l.

Y41 dij -

Proof: Without loss of generality let i =1, j = 2 and
Ad]Z = xta, a > 1. Averaging over Cd as 1in the two previous 1emma;s
we get Cd of the form (3.3.2) with C]] = (r—1+A+a)12-(A+a)J2’2, C12 =
-(A-(a+1)/(v-2))J2,v_2 and C22 = (r+A+(2+2a)/((v-2)gv-3)),)IV_2 -
(2+2a)/((v-2)(v-3))Jv_2 -2+ One eigenvalue of Cd,jgia_Lemma 1.4.1,

is from C]2 and equals

This is no bigger than {ev/2)-1 (and bounds U3y 3—“d1) if and only if
(v(1+a))/(2v-4) > 1 if and only if a > (v-4)/4 or a > 1 (since a is an

integer and v > 5).

Lemma 3.3.6: For d € 8(v,b-1,2), v > 5, if ry. = r+x and rej "

rty then uy; < (ev/2)-1 for Adij > ata for a > ((x+y)/2)t2—A79; (XY,

a are nonnegative integers).

Proof: Follows as in Lemma 3.3.5 with C]2 yielding Hgp S Mgy 2

if and only if
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Lemma 3.3.7: For d € 8(v,b-1,2), v > 5, if rq; = r-1 and rd;

r+b then Hy1 < (ev/2)-1 for Agji 2 Ma where 2a-b > 3-8/v (a,b are "

J
nonnegative integers).

| A

Proof: Follows as in Lemma 3.3.5 with C]2 yie]dingtydl g

( Za-b’*']) i_e_V_ 1

€ - 3v-oy 2
3-8/v.

y
2

if and only if 2a-b

|v

Lemma 3.3.8: Let d* ¢ 8(5,10e-1,2) be a BIBD from 8(5,10e,2)

with one block removed. Then d* is E-optimal in 3(5,10é41,2).

L 3

-

Proof: Lemma 3.3.1 says we need only look at d é‘s3,;and in
fact we can eliminate consideration of all but a few of the d € 53']
with Lemmas 3.3.2 through 3.3.7.

Lemma 3.3.2 with v = 5 implies 2 < m < 5/2, or m = 2 of the rdi
will equal r-1. The rest will be equal to r.

Lemmas 3.3.1 and 3.3.5 say that if Pagi = Ta2 = r-1 then
Az T

Lemmas 3.3.3 and 3.3.7 with b = 0 eliminate kdij 5_%73[2“?nd
Adij > Aa+.7 for i =1,2 and j = 3,4,5. That is Adij for those i and
J will be A-1 or A.

Lemmas 3.3.4 and 3.3.6 with x = y = 0 eliminate < A~-2 and

dij
A+1.2 for i # j € (3,4,5}. That is if rgp = fgyt T then

|v

Apgss = A=1, X or A+l.
With a little work it is easy to see only two possible.cases
remain, and we will call them d] and d2. Without Toss of generality

we have
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[ S A :
(r-1) - -\ -(2-1)
2Cd] = ro -(x-1)  -(x+1)
r ~(a+1)
| sym r J T
and
Fkr—]) -2 -2 -2 -(x-1) il
(r-1) -2 -(a-1) -\
2Cd2 ) r -2 -2
r -(A+1) i:
. o

Now if we think of Cd as a blocked"matrix with C]] and C22 each
1

being 2 by 2, then we can apply Lemma 2.4.1 to get thé eigenvalues
of Cg - They are 0, (Se-1)/2 twice, and (A + (82+8,))/4 where
A= 4x + 3(x-1) + 3(at+1) = 104, By = 0-3(x-1)+3(x+1) = 6 and

82 = 4.2.2-1+(-1) = -16. The last two eigenvalues are then

(Se = (5)%)/2, and (5e-(5))/2 < (5e/2)-1 = e

— o

For Cdb we average over the parameter sets {1,2}, {3} and {4,5}

to get the blocked matrix

Qr-]) X - -(a- %) -(x- %0_
(r-1) -2 -(a- %) -(2- %)
%Cdz = r -2 -2
r -(A+1)
- r -

Applying Lemma 2.4.1 we get the eigenvalues of Cdz to be 0,
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(5e = 1)/2, and (5e-1 * 1)/2 or (5e-2)/2 and 5e/2. (5e-2)/2 =
(5e/2)-1 = Mg -
Therefore d* has Hgr1 2 My for all d ¢ 53;] and hence for all

d € 8(5,10e-1,2). This completes the proof.

For v = 6 we need one more lemma. R

Lemma 3.3.9: For d € &(v,b-1,2), v > 5, if rq1 = Tge = r1s
Aqi2 = *s Ty3 = r and Aqr3 = A-T+a, Agp3 = A-1+b then M < (ev/2)-1

fora=b =0 and atb > 4 (a,b are nonnegative integers).

Proof: We average Cd over the treatment sets i],Z};'{3} and

{4,...,V}. Cd =

—

a+b

(r-1) -2 -(A-1+(atb)/2) -(x- §TVT§Y)J1,V—3

S (1) -(14(a)/2) (- Sty s
1
1 -
2 r -0 8A9
sym 033

o

Y

The eigenvalues of Cd are 0,(ev-1)/2, (ev/2)+ (a+b-1)/((v-3)(v-4)) with

multiplicity v-4 and then two from Lemma 2.4.1 of the form

(A + (B$+BZ)%)/4.

3(a-1 + a—J“£)+(2+v-3)(x -

A 5

2VA=3 + = o3 -
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+ '-_

By = 01+ Z2)-(20v-3) (0 - 5 2) + (1rv-3) (3 - b2
= (v-1)/(v-3)

- a+b atb atb atb-2

82-421(A1+~—->\+7-v——3)-)x]+ - A+ SE)

s(Lifleb) Ly Lell(asn) w1y -

. .
#)/4& < (va/2)-1 if and only if (A- 2vA+4)2 < B

1+ B

2 :

Now (A—(B]+B ) 5"

With algebra we see this is true if and only if
(v-3)[(a+b)?2v-8(atb) (v-2)+8] > 0.

But F(w) = 2w2v 8w(v-2)+8 > 0 for all v whenw = 0 6% W'3-4'

Remark 3.3.1: gy < (ev/2)-1 in Lemma 3.3.9 for atb = 2, v =5

and atb = 3, v = 5,6,7,8,9.

Lemma 3.3.10: Let d* ¢ 8(6,15e-1, 2) be a BIBD from 8(6,15e,2)

minus one block. Then d* is E-optimal in 8(6,15e-1,2).

Proof: Lemma 3.3.1 says we need only look at S3 . As in the
proof of Lemma 3.3.8 we eliminate all but a few d ¢ S3 1° e

Lemma 3.3.2 with v = 6 says that exactly two rai = r-1. w}thout
lToss of generality let Pa] = T2 = r-1.

Lemmas 3.3.7 and 3.3.5 force Ad]z = A,

Lemmas 3.3.3 and 3.3+7 with b 0 force Adij =xTora, 1=1,2

and j = 3,4,5,6.

Lemmas 3.3.4 and 3.3.6 with x y =0 force x .. = x-1, A or A+]

dij
for i # j € {3,4,5,6}.
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There are only two cases to consider at this point for the first

two rows of Cd. One case has the first two rows of 2Cd =

(r-1) -\ -(x-1) -\ -\ -\
-\ (r-1) -(x-1) -\ -\ -\

This is eliminated by Lemma 3.3.9. Hence all that remains is the case

where the first two rows of 2Cd Took 1ike

(r-1) -2 -(x-1) -2 -\ -\
-\ (r-1) -\ -(x=1) -2 -\
Now there are only three choices for Ayq,: -1, Ay A+, -1
k3

will not yield a C-matrix as it forces 3d56 = A=2. BUt_Ad34 = Ay At

give possible designs. The only two cases will be ca]]edvd1 and

d2. i

r— oy

(r-1) -2 -(x-1) -) -A -)

(r-1) Y -(x-1) -2 -\

-1 - -
Cd] =3 r Ao -(a+1) -
r -2 =(a+1)
r -(x-1) [..

| sym QA ;

No averaging technique works here using Lemma 1.4.7 or Lemma 2.4.1.
However it turns out that x' = (1,-1,1,-1,1,-1) is an eigenvector of
Cd1 and yields the eigenvalue (r+ix-2)/2 = (e(v-1)+e-2)/2 =

(60/2)-1 = u 4y
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(r-1) A =(x-1) Y S N
(r-1) -2 =(x-1) - -1
1 r -(A+1) - -1
CdZ 2 r -\ -
r =X |-
- ro_j

If we try averaging over {1,2}, {3,4} and {5,6} we get-a block matfix
5 = ~—-l = . = ]
with C]2 = ~(x 2)J2’2, C13 AJ22 C23. C]], C22 and C33 yield
the eigenvalues (6e-1)/2, (6e+1)/2 and 6e/2 respectively, and of -
course have 0 also. Lemma 2.4.7 yields A = 12x-2, él =_0, 82 =4 so

»)

the last two eigenvalues of Cd are (12x-2 £ 2)/4 or (be/2)-1 and
2

6e/2. (6e/2)-1 f_ﬁd*] so we are done.

Theorem 3.3.2: Let d° ¢ 8(v,ev(v-1)/2, 2) be a BIBD. Let d* be

the design constructed from d° by removing one block from d®. Then d*

is 3,-optimal in 8(v,(ev(v-1)/2)-1,2) for v = 3,4,5 and 6.

Proof: d* maximizes the trace in 8 trivially since k =_2. The
eigenvalues are of the form 0 < (ev/2)—1 < (ev/2) = ... = (ev/2) by
Lemma 3.1.2. E-optimality for v = 3 and 4 comes from Constantine
(1981) as mentioned above. E-optimality for v = 5 and 6 comes from
Lemmas 3.3.8 and 3.3.105 respectively. Therefore by Theorem 2.1.1 we

are finished.

Remark 3.3.2: Actually the author has proved the E-optimality of

these d*'s for v = 7. In this case m of Lemma 3.3.2 can be 2 or 3,

and so a few more Temmas were used, each being proved in a manner
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similar to Lemma 3.3.9. About a dozen cases remained to be checked
with most not yielding to Lemmas 1.4.71 or 2.4.1. The eigenvectors of
these cases were found for e = 1 on MINITAB, and they generalized to
e > 1. Each case had one eigenvalue bounded above by (7e/2)-1. Be-
cause of its tedious nature, this method was not extended ta v > 8.
For the cases v > 7 and e > 2 the A-, D- and E-efficiencies were

calculated. They may be seen in Chapter 8.

e
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CHAPTER 4
THE BBD PLUS A BLOCK OF SIZE V-1  _7 -~

4.1 Preliminaries and the Cases k = v-1, v

Throughout Chapter 4 let d® and d* be as follows. Let d° be a

. Moo M M .
BBD in 8(v,b,k). Then Cdo = (r - -t —E)IV - —E-qv,v»w]th s Aq and
A being the unique values of r 0.° Ao (i = 1,.72,v) and A o
d% %1 - d%ij

(1 <i<J < v) respectively. Recall that this desién has maximum
trace in 8(v,b,k) since all of its"blocks are binary.

Let d* be the design in 8(v,b+1, k*) that has da»for its first
b blTocks and the treatments 1 through v-1 in the (b+1)-st block, where

(k*¥)' = (k1{, v-1). Then € = Cdo * Cy where Cy is the C-matrix for

the added block. We have

-1
. - v-1) Jy-1,v-1° Cv-1,1 a

v-1

-
o

O1,v-1

and SO Cjyis = r-(AO/k) + (v-2)/(v-1) for i = 1,...,v-1, Cry, v

= -1 . .
r-(xg/k) Cyxij —(A]/E7—(v-1) for 1 <1 <j <v-1and cyy.
—(A1/k) for 1 = 1,...,v-1. By Lemma 1.4.1 the eigenvalues of C g%
are 0, VA /k and r-(o/K)+(v=2)/ (v=1)+(a;/K)+(v-1)"1 with

multiplicities 1, 1 and v-2 respectively. The last eigenvalue
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simplifies to (vA]/k)+1 since r-(AO/k) = (v-])A1/k. Note'that d* has
binary blocks and is of maximum trace in S(v,b+1,5*). - i

Throughout this chapter, without loss of generality we will
assume r, = min (rdi) for any d € 8(v,b+1,k*).

dv I<i<v -

—

Lemma 4.1.1: Let d, d* € §(v,b+1,k*), v > 3, where d is arbitrary

and d* is as defined above. Then if

2
rooo 1 E 2 "dv,b+] <r- %o
dv. k .& dvj v-1 = k
j=1 ,
we have d* E-better than d. N
Proof: By Theorem 2.2.1 we have
- 2
b n
v 1 2 dv,b+1
Mg <ot (rgy - E-jzl avj = "veT -

Since udT = (vx]/k) = (v/(v—]))(r-Ao/k), simple algebra gives us the
rest.

We will now attempt to get the J4-optima1ity of d* by applying
Theorem 2.1.7 and Lemma 4.1.1. The cases k = v-1 and k = v wil] be
discussed in this section. In Section 4.2 & < v-1 will Bé }ovéred, and
in Section 4.3 we shall see that d* is not 34—optima] for many cases
of k > v+1,

The case of k = v-1-has been covered in Theorem 3.3.1. Here is

the case k = v.

Theorem 4.1.1: Let d* ¢ 8(v,b+1,k*) be a BBD plus one binary

block of size v-1 where (k*)' = (vlj, v-1) and v > 3. Then d* is

Jg-optimal in 9(v,b+1,k*).
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Proof: Since k = v, d° is a CBD and for any d ¢ S(v;b+1lg*),

]T}SV (rd')-i r=>b < b+l. If this minimum rqi 1S gy then there

exists at least one j € {1,...,b,b+1} for which ndvj = 0.

b r ?"-YL-(V'])
. _l 2 _ 0 - dy:= dv
If § = b+l then r y jZ] Mavi = v=T 2 Tav v v hS
A
r(v-1) _ 0 .. = 0
v = r-—ysince ay = r for d.

If j < b+l then without Toss of generality Tet J=1. MWe have
2 2

b n b n : r
1 2 dv,b+1 1 2 dv,b+1 - dv
Pav Vb Nys - e < SV L Mgy T T < vy - =
dv v =2 dvj v-1 dv. v =1 dvj | 13 _ dv v
\ =
0
Y‘-—F.

By Lemma 4.1.1 d* E-betters all d in S(v,b+1,g*). Since d* is
of maximum trace, has binary blocks and the right eigenvalue structure,

Theorem 2.1.1 gives us the 34-opt1ma11ty.

4.2 The Cases k < v-1

In these cases we shall prove that d* is 34-better than some of

~va

the d € 8(v,b+1,k*).

Y

Lemma 4.2.1: d* is J4—better than any d € 8(v,b+1,k*) with

“dv,p+1 = 0 (V2 3).

Proof: We use Lemma 4.1.1. r-(2/k) = r=(r/k) = r(k-1)/k, and

by Lemma 1 4 é roo- 1 E n2 -9 . r 1 E n2 r,-(r, /k) =
Y T v Tk sy Tavd T VT Tav Tk 351 dvj = "dv™ ' dv

"otk (i)
k - k
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Therefore d* is E-better than d, and by Section 4.1 and Theorem 2.1.1,

d* is J4-better.

Lemma 4.2.2: d* is E-better than any d € ﬁ(v,b+1,g*), v > 3, for

which Ngv,b+1 = & 2 1 and any one of the following holds: - -

o
~
~
N
jal)
>
Q.
o
<
A

r,

c) For Yy fixed, 0

|A

r-rgy < TEleTy With 1< 8 < (v-1 -

“

a(rg, /2 or 1 > (v-1 + a(ry E)/2k where ary) = (v-1)2 -
4k(k-1)(v-1)(r-rdv),

; 2 2k
d) For fixed ¢, 1 Srgy -y (- 1)

e) 2 =1 and 1< Pgy < I

Proof:

Suppose ndv,b+1 =2 > 1. We have

with 1 < g < min(ry,s v-2) and 1 < Fqy < r- For E-optimality of

d* we need

ray(k-1) 22 r(k-1) ) (4.2.1)
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by Lemma 1.4.1, which is true if and only if rdv(k-1) + g - lzk/(v-1)§_

r(k-1).

_ 2
dv) =Lk -

(v-1)g + (r-rdv)(k-l)(v—1) > 0. Solving for g, P-F 4y > (v-1)/(4k(k-1))

If we fix L (4.2.1) is true if and only if A(z,r

implies A(2,ry ) > 0 for all g, If r-ry, < (v-1)/(4k(k71))- then
1
2

1
Al,ry,) > 0if 0 < ¢ 5_(v-1-a(rdv) )/2k or g > (v—1+a(rdv?2)/2k where

)2

a(rdv) = (v-1 -4k(k-1)(v-1)(r-rd]). This follows from the quadratic

formula, and proves a) and c).

If we fix 2, (4.2.1) is true if and only if 1 < rgy <7 -

T v-1!- In the special case of 2.=.1, we'get”jﬁi rdv_g r -

(k-])'](l-k/(v-1)) or since rqy is an integer, 1 < Tay jjr;1. This
proves d) and e). o ~

Going back to A(z,rdv), if (v-1)/(8k(k-1)) < 1 then d* E-betters
all designs except those for which Pqy = F» but (v-1)/(4k(k-1)) < 1
if and only if k > (Vv + 1)/2. Thus b) holds and the proof is

finished.

Looking at the left-hand-side of (4.2.1) we might ask when is

r, (k-1) 2 r : 2
dv )3 2=1  (2-1)
B S vy He S vl i vl v B

This is true if and only if ¢ > (v-1+k)/2k. So if 2 > (v-1+k)/2k we

can get a 1argerbupper bound for g using Theorem 2.2.1 by letting

Ny .b+] = 2-1 and not ¢. The maximum for the left-hand-side of (4.2.1)
is
2
v (rdv(k-]) + ig - f_q_)
v-1 k k  v-1
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where % = V£;+k - 1if V';k t[v Lhs k] and 2 = int[X2 ]+k] if
V-;Ek S 1nt[v 1+k]

We can reduce N v, b+] to 2 = 1 4f (v-1+k)/(2k) < 2 or k > (v-1)/3.

From this we get the following lemma. T

v

Lemma 4.2.3: For r = min (r,), ] r,. = vetv-1,
—_— dv l<i<v di 527 di

r. (k-1) 2 r, (k-1) 2
a) _dv L8 dv 2=1 _ (2-1)° . v-1+k

Tk TKTvTE T vt - e for k2 5 and

<

r, (k-1) 2 ST

b) —QXE———— + %—- %:T is maximized by %q = !3%%5 - 1.4f
. + -1+ +
20+1 = int[X X 2kk] and 20 = 1nt[V 1 h] if ¥ %kk > 1nt[V ] h]

To summarize what has been said about the optimality of d* we have

the following theorem.

Theorem 4.2.1: Suppose d* € 8(v,b+1,k*), v > 3, is a BBD plus one

binary block of size v-1. Then d* is 34-better than all d € 8(v,b+1,

g*) except possibly d for which ndv,b41 = g and .

a) v>7,k> Vé] > 1&%1’ Pgy = 1> 0 < ¢ < V;], (and 2y = 1),
b) v> 7, !%l > k_é'iygl’ Pgy = 7 0 < 2 < VE] (and 2q > 1),
c) v>7, X%l > /VZ] > Ky 0 < rory, < 1E%i}TY’ (v—]-a(rdv)%)/Zk <
2 < (v-1+a(rdv)%)/2k (and 2 > 1),
v-1 Y+l v-1

d) 3 Pgy = T 0 <y < —E—-(and % = 1),

| A
<
|A
[«
-
w'
A
N
A
=~
w
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2

where a(rdv) = (v-1)° - 4k(k-1)(v-])(r—rd1) and % is defined in

Lemma 4.2.3.

Proof: Vé] > VVZ] for v > 7 and X%l < ii%l for v < 6. Then

a) through d) follow from Lemma 4.2.2, parts a), b) aﬁaic),;Lemma
4.2.3, Section 4.1 and Theorem 2.1.1.
For the cases of a), c) and d) of Theorem 4.2.1 A-, D- and E-

efficiencies will be calculated in Chapter 8.

4.3 The Cases k > v+l -

-

We begin with two general lemmas for the céseha%ﬂk > v+1 and

another for this situation analogous to Lemma 4.2.1.

Lemma 4.3.1: Let B(cb+d; b,k) = cb+d-k'](d(c+1f2+(b-d)cz) where
k>2,¢>0,b>0,0<d<bandb, c, d and k are integers. Then

B(c]b+d]; b,k) < B(c2b+d2; b,k) if either of the following holds
a) C; = ¢ and d] = d2 or d1 < d2 with (k-1)/2 > ¢ > 0.
b) ¢y < ¢, and (k-1)/2 > ¢y > ¢ > 0. n

Y

Proof: If ¢y = ¢, then B(c,b+d,; b,k) - B(c]b+d]; b,k) =

£t (k=(2¢,#+1)) > 0 if and only if dy = dy or dy > d and k > 2c,+1.
If C} < Cps B(c]b+d]; b,k) §_B(c]b+b; b,k) = B((c]+1)b+0; b,k). If

cy = c]+1 we finish with 5_B((c]+1)b+d2; b,k). If c, > c]+1 we finish
with < B((ci#1)b+bs byk) < ... < B(cyb#05 b,k) < B(c,b+d,s b,k). In

each case we need (k-1)/2 > ¢y > ¢y > 0 and the inequalities follow as

in the case for c] = Cy.
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Lemma 4.3.2: Suppose we are investigating d € 8(v,b;k) with

k> v2>3and min (ry) <r=intlbk/vl. Then B( min (r ); b.k)
I<izv 1<i<v

< B(r; b,k).

Proof: Let r = c,b+d, and min (r,.) = c.b+d,. We apply Lemma
—_— 27 2 l<i<v di 1 1" = ,

4.3.1, 1If c1 = ¢ and d] = d2 we are done. Otherwise we must show
(k-1)/2 > C,.
(bk-vd2)/vb < (bk)/vb

But vr = v(c2b+d2) = v-int[bk/v] < bk so c, <

k/v < (k-1)/2 with the last inequality follow-

ing from k > v > 3.

L

Lemma 4.3.3: d* ¢ ﬂ(v,b+1,g*), a BBD p]us’onélbihahy block of

size v-1, is E-better than any d ¢ 8(v,b+1,k*) with Ndv 3 = 0,

J=1,2,...,b,b¢1. (v > 3).

>

a M
1

<

1

—
A
[ws]
_—
~

o

<

v
o
v
.
g
| A

) . _ 1
Proof: If j = b+1, T dv K

B{r; b,k) = r-AO/k with r = int[bk/v]. If j =1, say, Pay -

2 2 2 2 2
Mdvi  "dv,brl | E "dvj _ Mdvbrl b§1 n
1 K v-1 dv & ko v-1 = dv &

ne~-1go

J
B(rdvj; b,k) < B(r; b,k) = r—AO/k. Therefore by Lemma 4.1.1 we are
done. o

This last Temma is most useful when j = b+1. It says a design -
that is E-better than d;_must have its minimum replicated treatments
(at least treatment v) appearing in the block of size v-1 at least
once.

We will now Took at the cases g = 0, 1, v-1 and 2 < g < v-2

separately, where k = pv+q (p > 1). In each case a design & will be
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described as a candidate to be J4-better than d*. Then a theerem will
be given where d* is proven 34-better than a subclass of the

de 8(v,b+],g*), and possibly a is proven J4-better than d*. Proving
d* is J4-better than the subclass will consist of four steps. Lemma
4.3.3 will be applied to show an E-better (than d*) d_néédééndvj > 1,
1 <Jj < b+tl. Then Lemma 4.1.1 will be applied to show an E-better d

needs Fgy = ° for ndv,b+1~3 1. Thirdly Lemma 4.1.1 will be app]iéd

v
to show that an E-better d needs Ndv.b+] - 1 or possibly 2 with some
conditions. Finally Theorem 2.1.1 will be applied to d* (recall it

is of maximum trace and has eigenvalues 0 < (VX]/k;‘< (VA]/k) +

1=...= (vx]/k)+1) and the designs it E-betters.

For k = pv (p > 2) d® has b-b]dcks, each containing p applications
of the v treatments. d* has these blocks as its first b blocks with
the (b+1)-st block of size v-1 and containing treatments 1 through v-1.
Let d have d*'s first b-1 blocks, the b-th block containing p applica-
tions of treatments 1 through v-2, p+1 applications of v-1 and p-1
applications of v, and its last block containing treatments 1 through
v-2 and v. To create d we have traded an application ofnv*??qm the
b-th block with the application of v-1 in the (b+1)-st. Note that

_ _ 2
T M T bp~.

Theorem 4.3.1. For k = pv, p > 2, d* is 34-optima1 over all

d € 8(v,b+1,k*) with v > 3 and (k*)' = (pv]B, v-T) except possibly
those for which r . = r, Nav,b+1 = 15 Ngyg 2] (1<Jj<b)andv >3

with p > 3 or v > 4. There exists a d with ry, = r and N&v,b+1 = 1
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which E-betters d* for p > v/(v-2) but is E-worse for p < 'v/(v-2)

and is always A- and D-worse.

Proof: We apply Lemma 4.3.3. o 5
b n n
_ dvj dv,b+1
If rqy < r-1andb > 2 then ry, jz] al L
B(rdv-1; b,k)+]-(v-1)'1.5 B(r-2; b,k)+1-(v-1)’] = p-2 -
2 2
Aq-2p"+2(p-1)
0 B 4p-2 _ 1 ;
K -+ 1 - wae il Ao/k+( c 1 - v-1)‘ The first
inequality follows from the fact that
2 2 2 2 .
2 n (241) (n-1) % .
K ™15 7k 7 N

forn>2, 220, Ifb=1then B(r-2; bk)+1-(v-1)7" = r-(a,/k) +

(ﬁE:é’— 1- —l—) since p > 2. But &Eiﬂ-- 1 - ng-f_ﬂﬂlg S1- o

Pav =
If ry, = ' Ndv,b+1 > 1 and b > 2 then
2 2
b nj . n 2
- dvj _ _dv,b+l] . X
Cavy r—jz] - v .5'B(r X3 bsk) + x - =3
< g/ + X2 (g )
0 k v-1 T
for x = 2 or 1 with (4.3.2) larger for x = 1. The first inequality
x(2p-1) x2
follows from (4.3.7). = -7 20forv=3,p=2,x=1and?2,
but for x = 2 only when v=3,p>30orv>4,p>2. Ifb=1and

Nav.b+l = 1 we can use (4.3.2) above and the same result holds. If

b=1and N gv,b+1 > 2 we must again use p > 2:
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2 2

n . n
dvj _ _dv,b+1 _ 4p-4 4
K o1 2 r-Og/k) + = -

-
|
I ~10

J=1

which is less than r-(AO/k) for p > 2, v> 3. We apply Lemma 4.1.1,

so an E-better d needs gy = r, ndv,b+1 = 1 (unless v = ?f,p = 2).
Now we apply Theorem 2.1.1 to d* and all d except.ihOSijith

Pav = 7> Ndy,bt1 = 1> Ngyj =

For the second part of the theorem

1(1<j<b)andv=3,p>30rv>4,

11 Cr2 C13
; = | Cop Cys , (4.3.3)
L Y
sym C33 . o - '
I 1 -

where C,, = (r+1)I -(EEE-+-—1—)J Cqi, = -k_](b 2, )1
11 v-2" VK T T Yy-2,v-22 V12 PTP)1y 2>

2 - 2
- _(bp"-p ., 1 _ _ bp~+2p+1 - VRl
C3 = - i)l Cp = 1 - TET Gy = KT (bp®-1) and
2
Caz3 =1 - bp ;29%1 - v11‘ From Lemma 2.4.1 the eigenvalues of Cy are

(va;/k)+1 = r+1 with multiplicity v-3, 0, and
-I .

which is true if and only if p < v/(v-2). Straightforward but lengthy
calculations comparing @A(Ca) with @A(Cd*) and @D(Ca) with“®D(Cd*) show

d* is strictly A- and D-better than a. The proof is now complete.
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For k = pvtl (p > 1) d° has b = ev blocks (e > 1) and comprises e
copies of the BBD in 8(v,v,pv+1) with each treatment appearing oneahore
time than all others in exactly one b]ock. Assume the b-th block of d*
(or do) has treatment v extra-replicated. Then let d be the design
with blocks 1 through b-1 exactly those of design d*,'f;é B:fh block
W1thnd,v-1,b= ptl and n . = p for i = 1,...,v-2,v, and the (b+1)-st
block with treatments 1 through v-2 and v. We have traded an applica-
tion of v in ;.block where treatment v-1 is not extra-replicated (here

block b) with the application of v-1 in block b+1.

-

-

Theorem 4.3.2: For k = pv+l, p > 1, d* is 34—optima1;over all

d € 8(v,ev+l,k*), (with v > 3 and (k*)' = ((pv+1)]5, v-1), except

possibly those d for which Pav = > Ngyj >1(1<Jxsb), Ny, b+l = 1

. _ . v-3 . .
with e > 1 or ndv,b+1 =2 withe> 2, p < 5 There exists a d with

ray = ' nav’b+1 = 1 that is 34-better and strictly A-, D- and E-

better than d*.

Proof: We apply Lemma 4.3.3.
.2 2 s

-

b ny . n -
_ _ dvj _ dv,b+i T
If ry, < r-1, e =1, " dv jZ] K ves ] B(rdV 1; b,k) +

1-(v-1)'1 < B(r-2; b,k) + 1 - (’v-1)—1 = r-(xo/k) + ((4p/k) - 1 -

(v-1)_]) by the same argument used preceding (4.3.1). Ife > 2

. dprz T, _ 1 - ;
Capy < 7 (Ao/k)+( K 1 v—1) by a similar argument, with

(EE" 1- v]1) 5.(4pE2 -1- v11) <0 forp>1, v>3. We apply

Lemma 4.1.1, so an E-better d must have ray = for Mgy, b+1 > 1.
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b n -
= - “dvj 1
hosume gy = T I Mgyper T ez 1 L -y s
. k ST 7 Mgk Ifngy peq =2 e = 1 (and v > 4),
b nczivj 4 Ao'(p+1)2+P2-P2+(P—1)2 . -
r_j; K TvTE T | K - ot = r(g/k) #
4 4 .
_E - V—]-i r-$§0/k) for p z_]s v 2_4. If ndV,b+] =2, e Z.] (and
2,, 2
An-2(p+1)“+2p _
0 4_ _ L Aptd 4
vz 4) then CdVV =r- k YA r'(Aq/k) + . V—]'i
r-(xg/k) if and only if p > (v-3)/2. If 3 <n, | 7 <v-2 (and

v > 5) then the three cases e = 1, e = 2 and e > 3 all yield d* as

E-better with similar arguments. 1In each case above we used the fact
b n2 . n? 2
—r- 3 dvj _ _dv,bt]
k v-1

. - X
that ¢ < B(r-x; b,k) + x T for Ny, b1 =

dvv j=]

x = 3,2 or 1 with the last statement increasing as x decreases. The
argument follows as at (4.3.2). We apply Lemma 4.7.1, so an E-better

d must have Pav = "> Mgy bel - 1, or ny = 2 with p < (v-3)/2

v,b+1

and e > 2. e

Now we apply Theorem 2.1.1 to d* and all d that d* E-betéered to
prove the first part of the theorem.

For the second part df the theorem Ca is of the form given at
(4.3.3). The eigenvalues of Cy are 0, (VA]/k)+1 with multiplicity
v-3, and using Lemma 2.4.1,

VA
1o 1 1 r2ply-2) 2 , 4p (2p(v-2) v-2,3%
c tp g [ -0 e e B - o B

d is of full trace, as is d*. Furthermore for v > 3, p > 1,
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1 r/2p({v-2 2 , 4p ,2p{v-2 2z 1
0 <422 )2, 4 2o(2) _v4E ]

Therefore tre eigenvalues of a majorize those of d*, and are not a
permutation of them, making a 34—better and strictly A-, D- and E~

better than d*. T ”;',

Remark 4.3.1: a is J4-better than all d for which d* is 34—,

better. But d has not been proven 54-opt1ma1 in ﬁ(v,év+],g*) and its
eigenvalue sfkﬁcture is not that of Theorem 2.1.1.

For k = pvtv-1, p> 1, d® comprises e copies (e ii]) of the
unique BBD in 8 (v,v,pvtv-1). d* is d® union the b;bck'of size v-1
with treatments 1 through v-1. withouf Toss of genefa]ityrassume
the b-th block of d* contains p+1 copies of treatménts 1 through
v-2 and v, with p copies of v-1. To create d trade ;n application of
v from the b-th block with the application of v-1 from the (b+1)-st
block. Blocks 1 through b-1 of d remain identical to blocks 1

ev and d is of maximum trace in

through b-1 of d*. Here b

8 (v,ev+l,k*).

e

R

pvtv-1, p > 1, d* is J4-optima1 bver

Theorem 4.3.3: For k

all d € 8(v,ev+1,k*), (with v > 3 and (k*)' = ((pv+v-1)16,v—1))
except possibly those for which Fgy = 1> ndv,b+] =1, and ndvj-z 1,
1 <Jj<b. There exists a d with Py = 7 and nav,b+1 = T that is

$4-better and strict]y A-, D- and E-better than d*.

Proof: We apply Lemma 4.3.3.
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b Ngys  ay,be o
If Y‘dv i r"], e i ]9 rdV - jg] k - V:-I i B(rdv"t]; b,k)+
] - (V"'])—] i B(Y‘-Z; b,k) + -l - (V-.I)_.l = r\_(Ao/k) + (&%2_ - 'I - V.IT-I.

A2y - <o fork=pvtg, px1, v 3and 2 <q.<vel, so

Ty must equal r. ) nz n2
- _ dvj _ _dv,b+]
If rgy = s Ngy pey > 1 then vy jZ] K V1 <
x(2p+1) x2
r-(AO/k) + K - 3o for x = 1 or 2, the larger of which occurs
2 )
for x = 1. X(ZE+]) - vfl <0 forx>2,p>1,v> 3, but is in fact

<
greater than zero for x = 1. For v =3 x can not fe greater than 1.

We apply Lemma 4.1.1 to the precediﬁg paragraphé, éb"én E-
better d must have Tgy = 7 and hdv;b+1 = 1. )

We now apply Theorem 2.1.1 to d* and the d for which d* is
E-better to finish the first part of the proof.

%
(VA1/k)+] with multiplicity v-3, and from Lemma 2.4.1

is of the form given at (4.3.3), and has eigenvalues 0,

UL 11y L av(v=2)p(pr)y 3 .
k 2 -2 2
k“(v-1)

—d

Since 0 < %5 (1 - 4v(v-2)p(p+1))% < ], these eigenvalues majorize
=2 K2(v-1)

and are not a permutation of those of d*, making d 34—better and

noj

strictly A-, D- and E-better than d*. So ends the proof.
For k = pvtq, 2 < q < v-2, we can still construct a 8 which is
potentially 34—better'than d*. However for these q Ca is of the

form
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_ - .
i G2 Gz Oy
Coo Gz Cpy
(4.3.4)
C33 O34
- Caq | _7 -
A A A
= (p -0 T A A I _
where Cpq = (r - + ¢+ DIy -0 * 799q:1,6-17 C12
A A A
A I B A -2 R T N
3+ 9991, (v-2)-(g-1)> 13 = e T o Gp = (g

EE1-+ V%Tqu_], Cyp 1s of the form of .C;q but 1; vig—]_on a side,

A A : - A
= __]_ E. :..__]__B L . '='7 _V_O_
Cog =~ * )y g1 Cog = -+ 3o lygays Cy3=r - ¢+ 1-
A X -
2ptl | -0 20 1 d, wi
K C34 g and Cpp = v Tk v_T- 1o get d, without

loss of generality assume the b-th block of d* has treatments 1
through g-1 and v as the extra-replicated treatments, with the
(b+1)st block as usual. Then trade the application of v in the
b-th block with that of v-1 in the (b+1)st. The first g-1 rows of Ca
correspond to the treatments in the p—th block that were extra-
replicated with treatment v. | o

In this case we cannot apply Lemma 2.4.7 to Ca, and as was
mentioned in Section 2.4, the 4-by-4 blocked matrix equivalent to
Lemma 2.4.1 is unwieldy~

We shall be content here to give a theorem that shows d* is
c94-optima1 over many of the d € 8§ (v,b+1,k*), and then give some
examples indicating that d with rgy = ' nav,b+] =1 is at least

A-, D- and E-better than d*.



Theorem 4.3.4: For k = pv+q, 2 < q <v-2, p> 1, v 3 3, d*

is 34—optima1 over all d& 8 (v,b+1,k*) with (k*)' = ((pv+q)lé,v-1)

except possibly those for which Pgy = Vs >1.(1 <J <b) and

vdj
nvd,b+1 =1 or nvd,b+1 = 2 with p < (v-1-2q)/2.

Proof: We apply Lemma 4.3.3. _
The second paragraph in the proof of Theorem 4.3.3 holds for

2 < q <v-1, so d* E-betters d for which Ndv,b+1 > 1 and Pqy < 7
2 2

b nj . n
= : : dvj _ “dv,b+]
If rgy =7 and Rgy,b+1 > 1 then v - jgl K > T <
2 : ' o
B(r-x; b,k)+x 'V§T'f°r ndv,b+] > x =3,2,1 with the.1a§t_term

increasing as X decreases. For x = 3, e = 1] (two cases) and x = 3,

e
e > 2 we get Cayy = r-(xo/k)'+ QEEl-- V%T-or r-(xo/k) + 6p;3 - ng“

and the larger of which is less than'r-(AO/k) forp>1,v>3

(recall ndv,b+]‘3-3 only for v > 5). For x = 2 we have Cavy <

: +2 4p+2 4
r—(xo/k) + 4Ek - v?l' pk avey < 0 for p > (v-1-2g)/2. For

x =1 the bound on cd is never less than or equal to r-(AO/k).

vV
We apply Lemma 4.1.7, so an E-better.d must have ndQ b+]~=wTh9r

Ngv.pe] = 2 and p < (v-1-2q)/2.
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Now apply Theorem 2.1.1 to d* and the designs that it E-betters.

Remark 4.3.2: For—T = 2, d% is e copies (e > 1) of the unique

BBD in® (v,v(v-1)/2, pv+2), so we can get the general form for Ags
Ays Cyx and Ca. For 3 < q < v-2 this can not be accomplished in

general.



Example 4.3.1 q =2 o0r q = v-2. d, d* € 8(4,6+1,k*) with

k=6, and d is A-, D- and E-better.

k = 8, and

o

Example 4.3.2 g = 3 or q = v-2.

d*:

o2

1

1
2

1
2

2
4

d, d* € 8(5,10+1,k) with

B w B w

JR— |

3
4

™
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d is A-, D- and E-better than d*, which is not given here.

1

1

1

1

~ W

1
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In Chapter 8 the following efficiencies for cases from this
section will be presented: for k = pv the A- and D- efficiencies
of d* and the E-efficiencies of d* and a, and for k = pv+q > v the
A-, D- and E-efficiencies for d* (1 < q < v-1) and d (g=1 and

q = v-1). A

J
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CHAPTER 5
THE BBD MINUS ONE OBSERVATION -7

5.1 Preliminaries

Throughout Chapter 5 define d® and d* as follows. Let d° be a
A X by

. _ 0, "\, - M .
BBD in ®(v,b,k). Then CdO = (r - X +'—F)Iv - —?'QV,V wnth

L 3
roo=r,x . =xa (l<i<v)ad 2 =i (1Xi<j<v). d°
d%; a%ii O aij ! -

has all its blocks being binary and is of maximum trace'in.s(v,b,k).
Let d* be the design in 8(v,b,k*), (k*)' = (k-1, k1! ;)5

whose Tlast b-1 blocks are exactly those of d® but whose first block

is that of d° but with an appTication of treatment 1 removed.

Without Toss of genera]ity we will assume the first block of d° has

treatments 1 through k if k < v or has treatments 1 through q extra-

replicated if k = pvtq, p > 1. |

~e o

d* is of maximum trace in 8(v,b,k*) since n 0. © max (n o..)
' 11 <<y %1

and the blocks of d* are binary. Note that if k‘f_V, treatment 1

could only be removed from a block in which it-appeared, but if

k > v+1 we could remove an observation of 1 where it was not equi-
replicated. This case gives a design d that is E-worse (and J4—

worse) than d*, and will be considered later.



For d* the rqx; are as equal as possible with Pax1 = r-1,
rs: =0, 2<1<v. Foranyd € 8(v,b,k*) min (r,.) < r-1, so
d 1 - - = -I . d —_—
<iz<v
without Toss of generality assume rd1 equals this minimum for each

d, though it may not be unique. .

—

Note that we must have k > 3 by what was said in Sectioh 1.5.
For k = 2 loss of one observation in a block makes the other obser- .
vation useless.

The cases k < v and k > v will be discussed separately in

Sections 5.2 and 5.3 respectively. :

-

9.2 The Cases 3 < k < v-1

If the first block of d° contained treatments 1 through k, then

NS PR E
Con = o2 Co3
sym C33
where C;q = r -1 - X E s = (r-1)}(k-1)/k, C;, = -(31:121'
11 k 52 d*1j ' R V k -¢-k-1°
C = . i_-l_ IN C = ((l"-]) k_]) + 1 + A-I--I)]: _()\]—] +
13 k -v-k’> 722 k k k-1 k
A A
1 _ 1 _ (r(k-1) i
BTk-1,k-1° C23 7 = T dp-1,v-k ad €33 = (= + I -
M - |
x Jv—k,v—k' From Lemma 2.4.1 we can get the eigenvalues of Cd*'.
A VA _ }
They are 0, r(kE1) + —%-= —El-with multiplicity v-k-1, ir—-]-l—)(—(E—l—)-+
1 )wl VX-I » i
1 - rt " —F—-with multiplicity k-2, and (A + (B.I + 32)2)/2k
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where A = ZVA]-k, B] = k-2, and 82 = 4(k-1). B? + 82 = ké_so the

last two eigenvalues become (VA]/k)-] and (vA]/k). ThUs Cd* has eigen-
values 0 < (VA]/k)-l < (VA1/k) = ... = (vxi/k), in the form of

Theorem 2.1.1.

—

Theorem 5.2.1: d* is J4-better than all d € 8(v,b,k*),

>

(k*)' = (k-1,kly 1), except possibly a design with rgi 2

r-1 (1 < 1 <v), all blocks hinary, and if rgi = rdj = r-1,
Ad‘iji)‘]' (v >k>3).
Proof: Suppose d has 41 < r-2. By Theorem 572ﬁ1 ‘
2 2
n b nj..
Ve d1 dij
g 2T (Pg1 = e - L ) (5.2.1)
j=2
There is some "d]j = (0, since kj <v (1<j<b)and P4l <r-2. If
Na1p = 0, say, then we continue with (5.2.1)
2 2 2
(e o O Mgy v P Mg
v-1 V' dl k-1 L.k —v-1 Y dl Lok
j=2 Jj=1
_ Yo o
v _ dl v (r-2)(k-1)
<1 (rgy - ) 293 k
M avken) ML
= - < -1
k k(v-T) k

for k > 3, v > 3. If 411

and the rest follows identically.
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Suppose N411 > 2, rq1 = r-1. Again oo

2 2

- n b n%. r-1-n n
v 11 J v d11 d11
Hd1 5-ViT'(r'1 T k=TT ; k ) = V= (r-1 - K - k-1)
n n2

oy ((r—1)(k-1) L dil d11)
TS K K k=1 I

oy “ﬁ]] Nd11 . k-1
= k - v_.] ( k—] - k + k ). - (5.2-2)

Now (a2/(k-1)0aa/k is increasing in a > 1, k > 3. If gy = 2, then
(5.2.2) is less than (VA]/k)—], and so must be for 471 > 2.
Suppose hd]j > 2 for some j € {2,...,v} with Ea] = r-1. Without

loss of generality let j = b.

2 2 2
n n: b-1 n7..
v di1 "dib d1 )
NI s Gl By o s i
j=2
2 2
oy r-1 ., "a11 "a11 . "dib "dib
Siva) L e S v A S
2 : 2
VA n n n n,q;
d11
T T e e s ), (5.2.3)

<o

a(a-1)/k is increasing for a > 1. The proof that (5.2.3) is less
than ud*]is ané]ogous to that for (5.2.2), except that ng11 = 0, 1
are considered separately.

Suppose r4; = ry, = r-1, say, and Ad12 E_A]-l. We also know

nd]j’ nd2j are 0 or 1 for all j. Theorem 2.2.1 says

2 2 o | 2
b n3,. n; b n ..
] Nd11 dlj d21 k2j
b=z (T mer L et e L 0
n,,{N b ny -Ny,-
. ld]l_dlz R AP A (5.3.4)



If at least one of n411° nd21 is zero, (5.3.4) is .-

2 2
b n; . b n,- b
<r1- %( Z ﬁ]J ¥y d Z d]J dZJ
=1 =1 j=2
Aq-1 A VA
-1 M ke oM k1 a oM
srl-t T ot T TR o
If Ng11 = M1 ~ 1, then (5.3.4) is
' - Ay VA
r-2 1 . M8 1 r(k-1) VY
sl -ttt Mttt

Therefore we have shown d* is E-better than all d € 8(v,b,k*)
except possibly those with thecharacteristicsgngn 1h-the hypothe-
sis. Application of Theorem 2.1.1 to d* and the designs it

E-betters completes the proof.

Remark 5.2.1: The proof that d* E-betters any design with n i,

> 2 also shows d* is E-better than a design with n . = 1 1if

v < k(k-1)/(k-2). The right hand side equals 6 for k = 3 and 4,

and is increasing after that. So d* E-betters designs with rqr =

r-1, 11 = 1 for v=5andv =26, v=7with k = 6, but not

necessarily for v = 7 with k = 3, 4-or 5.

e

R
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A-, D- and E-efficiencies for d* will be presented in Chapter 8.

5.3 The Cases k > v

An application of-treatment 1 is removed from'block 1, where it

is extra-replicated. Since the forms of C o and Cd* are different
d .

for each k = pv¥q (0 < q < v-1, p > 1) we must consider the cases

separately.
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For k = v, by Theorem 4.1.1, d* is J4-opt1ma1 in 8(vysb,k*).

For k = pv, p > 2, Cd* is of the form

A 2 2 A 2
0 p (p-1) 21 opT  p(p=1) v+
L L il v i i e
e A A 7 -2
0 1
Sym (P -+ ~&)Iv-1_(—i'—‘2?'+ k?1)dv-1,v—1

Ay AP VA
From Lemma 1.4.1 the eigenvalues of Cd* are 0, r - —Ef+r—E e with

multiplicity v-2, and
V(ﬁ_ﬁ+ p(p-1)y - 1 _ V(E__JL(.E;l)) :
k k k-1 k k -1 .

VA 2 :
='—El .V (]'(EE" {p=1)"yy

<

>
——t

nNo

These are of the form of Theorem 2t1.1.

Theorem 5.3.1: d* is 34-opt1ma] over all d € 8(v,b,k*) where

(k*)' = (pv-1, pv}} ;). p> 1 and v > 3.

Proof: We assume p > 2, as the p = 1 case was proved in Theorem

4.1.1. Recall that d* has the most balanced ryi’ r-T,r,..s5r with
r= bp2. Let d € 8(v,b,k*) be arbitrary and recall rqp = min (rdi).
1<i<v '
Theorem 2.2.1 says that
2 2 >
n b n3.. b n7..
v __dil _ dljy - v _ _ dij
My ST P e L ) Tt Cartant L, e Y
j=2 j=2
2
n
- 1
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2 )
n
v : __dil
2 o1 (Blrgyngpys b=15K) + nypq - =27)
2
v ] Na11
<y Blr=Tongpqs b=T.k) +ngpq - =79)
2 2 .
b n5. n —
=V _13 _ di]
<3 -1 -l (5.3.1)

where the ﬁ1j >0 (2<j<b), are as equal as possible, and

b
jzz iy +ngpq = r-1. If the Ny (2 < j<b) and Ngpp are as equal
-

as possible, then they take on the values p-],pg..:}p:' In this case

b ﬁ?j "311 o
z —k——"' k-T (5.3.2)

j=2
is minimized if the p-1 is assigned to Nq11° Now wehmust show (5.3.1)
is maximized when the ﬁ1j and ng1p are as equal as possible with
Ngip = P-T-
There are two other cases for the values of the ﬁ]j and UER The

first is for Ng11 < p-1 and ﬁ]j >p (2 < j<b) with at least one

Ny > P The second is that ng;; > p-1 and N <P (2 <-j~< b) with at

least one n]j < p.

If the first case is true, let ﬁ]j = p+te, £ > 1, and Ng11 = p-1-m,
m > 1. Then -

~2

2
Mg, Man L er)?, (-1-md | (pre-1)2, (p-m)?
k k-1 k k k k-1
~ 2 2
(ny5D"  (ngpp*D)




for v > 3, p > 2. This means we can minimize (5.3.2) by busﬁing n
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dll
up to p-1 while making the remaining nd]j equal to p.
If the second case is true, let ﬁ]j = p~%2, & > 1 with Ng11 =
p~T1+m, m > 1. Then
k- k k-T
for v > 3, p> 2. Again we maximize (5.3.2) by making the M1 3
(1 <J <b) equal to p-1, Ps...,P, respectively.
Therefore (5.3.2) is
2 2 s
v (b-1)p (p-1)°y _ S
e E e e e 2 e A VR
the most balanced case, that of d*: d* is E-best in ﬁ(v,b,g*) S0
by Theorem 2.1.1, we are finished with the proof. -
For k = pv+1, p > 1, Cd* is of the form
A 2 2 A 2
"0 (p+1)° _ p° _rl _op(p+l) . poag,
A e o DA
A A A 2 2
0 0
Sym (r- x _%)Iv-l_(_i'- EE'+ FgTqusl,v-l

when we assume treatment 1 was extrareplicated in the first block.
Recall that r = e(p+1) + e(v-1)p, where b = ev, e > 1.

The eigenvalues of Cd* are derived via Lemma 1.4.1, and are
0, (vx]/k) with multiplicity v-2, and
2

2
1
o )]

VA 2
1 p(p+1) Py _
= - V- k=T) =

k V-

They are of the form of Theorem 2.1.1.



94

Theorem 5.3.2: d* is 34-opt1ma] over all d € 8(v,b, k*) where

(k)" = (pvs(pv+1)1! 1), p > T and v > 3.

Prodf' d* has the most balanced configuration of rd Let

d € 8(v,b,k*) be arbitrary. -

2 2
C Ve M E "dj)
M1 ST Y T Rt 7 L

je2 K
o ~ 2
' b n,. n _
<V (r1- L + - (5.3.3)
j=

where the argument and definition of the n] fo]]ow—that of (5.3.1).
The on]y d1fference is that the most equa] the n] (2 <Jx b) and
Ngp7 can be is for e- 1 of them to equal p+1 and e(v-1)+1 of them to
equal p. (In d° » for each treatment we had e blocks ‘with nd = p+l
and e(v-1) blocks with Ngij = p.). In this most balanced case,

(5.3.2) is minimized if a p is assigned to n Now we show

a1’
(5.3.3) is maximized by this case.

One other possibility is that N417] < P> e-1 of the n]. > p+1

e(v-1) of the n]J > p, and at least one inequality on the nw

str1ct Another possibility is that N411 > P»> €- 1 of the n]. < p+l,
e(v 1) of the n]j < P, and at least one inequality on the n]j is
strict.

For the first case,p

#2 n2

"5, Man (p+z)2 (p m)? . (p#a-1)? « (pm+1)?
k k=T~ 7K k=T K k=1

fori>7,m>1,v>3,p>1. Therefore we maximize (5.3.3) by

pushing Nq17 UP to p, keeping the other nd]j as equal as possible.
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For the second case,

-2 2 ‘ _ '
Mg, M (r1en)®, (em)? | (pr2-2)? , (pim-1)?
k k-1 k k-1 k k-1

for 2 >1,m>1,v>3,p>1. We maximize (5.3.3) by pushing
N1 down to p, keeping the other nd]j as equal as poss?ﬁ]é.[

_ Finally then, (5.3.3) is
2

2
f—V¥T'ff‘]‘ (e-1)(p+1)k+e(v-1)p

) kﬁf) T Mg
and by Theorem 2.1.1 the proof is complete.

If we thfnk of running an experiment with a BéQ, k-= pv+1 and
p > 1, then we have just shown that if an observation must-be thrown
out, and it occurred in a block where that treatment was extra-
replicated, the resulting design is J4-0pt1ma1. If the observation
was from a block where the treatment was not extra-replicated, how

much worse is the resulting design? If we call this design d and

assume treatment 1 was lost in block 1, then Ca is of the form

C

‘o G 13 |
Cpo Cog - -(5.3.4)
sym C33
where _
A 2 2 A
.0 p (p-1) = _ 1 pp+1) . (prD)(p-1)
Clp = - v - G = - - Sy )
a2 ~ A 2 .2
= 21 _p” L p(p-1) 4 - _ "0, (prD) (p+1)
Cr3 = (o - T+ e Cop = - o+ S -
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A - 2
= 21 _p(pr1) | op(pH1) 4., - 0, 1_p
% Bl e T O S i R LWL € =
2
FgT)JV_ZlV_Z, and without Toss of generality treatment 2

was extra-replicated in block 1. Using Lemma 2.4.1 we get as eigen-

values of C3: 0, (va;/k) with multiplicity v-2, and ~

VA vp 2

) (v-1) 2 M v
dl k k(k~

v _ < 1
k-T ~ k- k(k-1)

-1
1)

The eigenva]ues of Ca differ from those of Cd* only in that Hgp < Hyw

L

by exactly the amount that tr(Ca) < tr(Cd*). N

For k = pvtq, 2 < q < v-1, C g is of the form of“(5.3;4) except

that .
A 2 2 A
= 0 LD p = 21 ()" L p(ptl) g
Chp=r - 1+% =T C12 K-kt e g
A 2
C = _(__l_ p(B+]) +,_._B_)'l|
13 Kk T g
A A A 2 2
= 0,0 b (pr)° L (pr]) |
Coo = (- ¥ P - =+ S q01,001
A
= _(Z1 _ p(p+1) . p(p+1) -
Co3 = -l - S P Vg1 veg .
A A A 2 2
- 0,1 (L opm o, P
Ca3 = (2 L - T+ 257%-q,v-

and treatments 1 through q were assumed to be extra-replicated in
block 1. Using Lemma 2:4.1 we get the eigenvalues 0, (VA]/k) of
multiplicity g-2 + v-q-1 = v-3, and two from (A + (B$+BZ)%)/2. The
last two eigenvalues are

VA] VA]
I S (=
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so the eigenvalues of Cd* are still of the form 0-<a < b'=.."= b.

Theorem 5.3.3: d* € 8(v,b,k*) where (k*)' = (pv+q-1, (pv+q)l; ),
2 <q<v-l, is 34-opt1ma1 over all d except possibly those with
rq) = ]mjn (rdi) = r-1 and ngpp = P or p+1. (v >3). 7 . 3

<i<v

Proof: d* has the most balanced configuration of rd{. As in
the previous two theorems we will show an E-better design must have
rqr = r-1, but we can no 1ongér carry through the same arguments.
This is because Cd* is not a 2-by-2 blocked matrix;

Let d € 8(v,b,k*) be arbitrary. Theorem 2.2.1] says

2 2
\'4 n
M1 29T (rgp - z d ]}) |
2
v , Nd11
< vt Blrgy=ngyys b=1,k) + nyqq - —27)
| 2

n ~¥. nZ i
- (- 1S - i INCER)
J:
where the arguments and definition of the ﬁ]j follow as at (5.3.1).
If for d° we let n o = p+1 for bO b]ocks, and n o.. =P for b-b0
d’1j _ d'1j
blocks, then for d* n = p+1 for b,-1 blocks and p for b-b, blocks.
d*13 0 0
(5.3.2) s again minimized if a p is assigned to the n and the

d11 2
ﬁ]j (2 < j <b) equal p or p+1.



98

In the Theorems 5.3.1 and 5.3.2 we showed that any others
configuration made the equivalent of 5.3.5 Tess than that for the
most balanced case, which was bounded by (vAl/k)-]. O0f course less
balanced configurations of the 413 still give bounds Tower than
that for the balanced case, but the balanced case bound#fé;tOO large.

If n = p (5.3.5) is

dll

D) (1) Pe(bbg)p® 2

<y (r-1- K " T

v

but this is greater than (vk]/k)-] for all v, p and q('_

If g7 < p-1 (5.3.5) is S S -
b (p+1)%+(b-b.-1)p2 2
< V (Y‘-]— O . O - (p-]) ) <
=v-T1 K ‘ k=T —-“df'
If nyq > p*2 (5.3.5) is
(by=3) (p+1)%+(b-b,+2)p? 2
< \ (r_]_ 0 i 0 - (p+ ) )
ST VT k k=1 Ha¥

If Ng11 = p+1 (5.3.5) is

(bg-2) (p+1)%+(b-by+1)p? (A

\
<y (r-1- 15 ST ) v

if and only if q2-q(v+])+2v(p+1) > 0. This holds for q = 2 and
q = v-1 (any v and p) but not for all v, p and q.

Therefore d* is E-better than all d except possibly some for
which rq1 = r-1, and Ng11 = P or p+1. Theorem 2.1.1 is now applied

to the E-bettered (by d*) designs.
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Remark 5.3.1: For the cases of d = 2 and q = v-1 an-E-better

(than d*) d must have for any minimum replicated treatment'rdi = r-1
and Ngi1 = P- These are two cases where d* can be specified in
general but no E-better d has been found, nor has it been proven not

to exist. v — =
If we remove treatment 1 from a block in d° where 1 was not
extra-replicated, and call the design a, then Ca is of the form

(5.3.4). In this case

A 2 2 A 2
= - 20 gy P o (p-D)° - (1 plptl) 4 po-]
Cp=r - S P S S M

-

B1op? p(pnl)yg,

_ -1
Ci3 = -0 - % S Nege1e
A A A 2 2
- 0,1 21 (pr)" L (pr1)
Cop = (r g+ g (e = S+ iy gL
M plpt1) |, p(p*l)
Coz = -0 = = T 94, v-q-1
A A A 2 2
S U | i B I
C33 = (r 0+ g (0 - 1 ©519v-g-1,v-q-1

where treatments 2 through g+1 were extra-replicated in block 1.

Lemma 2.4.1 yields the eigenvalues O, b TR ud*i(z < i <v-1, and

VA
P vp(p+1) 2
LFT Bl il B ‘ETkiTj“ KT < Ha#-

In Chapter 8 A-,D- and E- efficiencies will be calcuated for

d when k = pv+1, and d* and d for k = pvtq, 2 < g < v=1.
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CHAPTER 6
THE BBD PLUS M BLOCKS -

6.1 Preliminaries

Throughdﬂt Chapter 6 define d° and d* as follows. Let
d® € 8(v,b,k) be a BBD with k = pv+q (1 < g < v-1). Add to d°
m binary blocks which are disjoint with respect td-their extra-
replicated treatments, with 1 <m g_v/q.' If we ca]]'%he»néw design

d*, then d* ¢ 8(v,b+m,k) and C C , + Cp where Cj is the C-

a* T

matrix for the blocks added.

Lemma 6.1.1: C0 is of the form

A B ... B B D

A ... B B D
A B D -

A D

| E
] (-1)p%+ (p+1)? _ _((m=2)p%+2p(p+1)
where A = (mp+1)Iq - | K )Jq,qf B = -( K )Jq’q,

D = -((m'])p2+P(p+]))J and E = mpl____ - m’ .
k q,v-mq v-mg kK “v-mq,v-mq
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Proof: The mg treatments extra-replicated in the added blocks

appear mp+l times in those blocks; the remaining treatments appear only

mp times. The extra-replicated treatments are paired (p+])2+(m—1)p2

times within added blocks, 2p(p+1)+(m-2)p2 times between added blocks,

2

and (m-1)p~+p(p+1) times with the remaining treatmentgA*'The1non-

extra-replicated treatments are paired mp2 times in the added blocks.

Lemma 6.1.2: Cd* has the eigenvalues 0,

VA
_El'+ mp with multiplicity v-mg-1 (unless mg > v-1),

L

-

2 ’ -
k] + vp(mE+1) with multiplicity 1 (unless'mq = v),
e +mp+1- %—with multiplicity m-1,
Viq
< Fmp + T with multiplicity m(q-1),
where A] =X, (i # j) and for each case of m and q all realized
d7ij

eigenvalues are distinct. The eigenvalue structure is 0 <a <b =...=b

form=2with q=v/2, m=1withq=v-1o0orm=v-Twith g-= 1. The

eigenvalue structure is 0 <a=...=a <b ifm=1with q = ]}and is
0<a=...=aifm=vandqg=1.
A A A
Proof: C 0= (r- :%-+ —%)IV- —% Jv v with =2, and r = r o
d ? d’ii d-i
(1<i<v). To Cd* = o™ CO we apply Lemma 6.7.1 and Lemma 1.4.2
d

to get the eigenvalues.

It is easy to show that
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2 VA VA
it} 1, vp(mp+1) 1 q
k+mp_<_k+ K <k+mp+]-k

with equality between the first pair of eigenvalues only when mq = v,
but in that case they are not realized.

To get the parameter values for which the varioui_efggnvaTue
structures occur consider mq = v, mq = v-1 and 1 < mgq < v-2 és
separate cases. If mq = v, at most the two largest npnzefb eigen-
values occur with m =2 and m = v yielding results. If mgq = v-1 at
most the three Targest eigenvalues occur with m = 1 and g = 1 giving
results. If mq < v-2 thenm = q =1 gives the eiggnvaTUe structure

of Cheng. This ends the proof.

Note that for q = 0 all valug§ of b > 2 allow a BBD in 8(v,b,pv)
which is JU-optfmal. Therefore we only consider 1 <~q < v-T1.

In Sections 6.2, 6.3 and 6.4 we will consider the cases mq = v,
mg = v-1 and 1 < mq < v-2, respectively. Throughout Ags M and r are

defined as above.

6.2 The Case mq = v

o a

For mq = v the eigenvalues of Ca* are 0, (VA]/k) +mp+1-- (q/k)
and (vx]/k) + mp + 1 with multiplicities 1, m=1 and m(q-1)
respectively.

A1l eigenvalues are equal if m = v and q = 1, in which case d°
comprises e copies (e > 1) of the unique BBD in 8(v,v,pv+1), and d*
will then be e+l copies of the same. Therefore d* is a BBD and we

can apply Corollary 1.4.4, making d* J,-optimal in @(v,ev+;,pv+1).
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v Note that if m =1 and q = v we get J4—opt1ma1ity of "d*,” but
this is really just the case of q = 0. — -
The eigenvalue structure 0 < a <b =...= b is achieved in one

case, that of m = 2 and q = v/2. The nonzero eigenvalues of d*

become -

V)\-I v V>\'|
'k—+mp+1-'2—k and —k—-+mp+1

with multiplicities 1 and v-2 respectively. Two examples will
show, however, that each m and q pair must be dealt with separately.

-

Lemma 6.2.1: If k = pvtq, p > 1, 1 <q < v-15d° is a BBD in
8(v,b,pv+q) and d* is d° plus m disjoint binary blocks with mq = v,

then d* is E-better than any d € 8{v,b+m,pv+tq) with min (rdi)-i
I<iz<v
2

r+mp, and any d for which Adij-i Ay +ompT 4 2p-(q-1) whenever

r1.=rj=r+'mp+1. v> 3.

Proof: Using Theorem 1.4.3, and assuming without loss of

generality that rqp = min (rdi) for an arbitrary d,

T<i<v e
) .
b+m n7. .
v - _dijy _ _v_ )
Mg < 0T (rgn by ) = Blrgs bk

v v A0+mp2
5_;:7-8(r+mp; b+m,k) = V=T (r+mp - X )

VA 2 2 VA
_ 1 . vmp vp 1 _q
"YWt e s tme -

2
If ford, ry; =rgp=r+m + 1 and Agip S A+ mp° +2p - (g-1),
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2 2 . -

b+m n%, . b+m n3,. A

1 di d2 di2

Hyp 2 r+mp+1 -5 (.Z] 7 J 4+ .Z 3 J) + 2
j= j=1
2 2
Agtmp +2p+1 Aytmp +2p-(g-1)
VA VA -7

23 .
Ifm=1, k] +mp + 1 is the smallest nonzero eigenvalue of d*.
VAH'
For m > 2 T tmp+ 1 - %—is the smallest nonzero eigenvalue of

L

-

d*. In either case Hal S Mgt

Lemma 6.2.2: If k = pv+2, p > 1, m = v/2, d° and d* are as in

Lemma 6.2.1, then d* is E-optimal in 8(v,b+m,pv+2). v > 3.

Proof: The nonzero eigenvalues of Cd* are (VA]/k)+mp+1-(2/k)
and (vkl/k)+mp+1 with multiplicities (v/2)-1 and (v/2), respectively.

We also have

- a -(b+1) -b -b ... -b -b 7]
a -b =b ... -b -b -t~
a -(b+1) -b -b
21 a -b ~-b
Cd* =% ] (6.2.1)
- a -(b+1)
L a

with a = (v—1)A]+k(mp+1)-(mp2+2p+1) and b = A]+mp2+2p-
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Lemma 6.2.7 says d* E-bests all d with min (rdi) 5fr+ﬁp. This
l<i<y - -

means all r,. must equal r +mp + 1 = rges (1 <1 < v) for an E-

better (than d*) d. Also Lemma 6.2.1 says d* E-betters any d with

di = rdj = r+mp+1 and Adij 5_A1+mp2+2p-1. Therefore ql]_;hat is left

are d with all replications equal to r+mp+1 and Xdij ETA1+mp2+2p.

r

However at most one of these can be equal to A]+mp2+2p+1 in each row.

Therefore an E-better d must have Cd of the form (6.2.1). So d* must

be E-optimal in 8(v,b+m,pv+2).

Remark 6.2.1: The d* in Lemma 6.2.2 is uniqué- up.to a permuta-

tion of the treatment labels.

Theorem 6.2.1: Let v = 4, k = 4p+2 (p > 1), d° be a BBD in

8(4,b,4p+2) and d* be d° plus m = 2 disjoint binary blocks. Then d*
is J,-optimal in 8(4,b+2,4p+2).

Proof: d* has maximum trace, eigenvalues of the form 0 < a < b=b
by the proof of Lemma 6.2.2 with (v/2) = 2, and d* is E-optimal by

Lemma 6.2.2. Therefore Theorem 2.1.1 gives us J4-opt1ma1ity.=

Example 6.2.1: d* € ©(4,8,6) given below is J4-optima].

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3
d*:

4 4 4 4 4 4 4 4

1 1 1 2 2 3 1 3

2 3 4 3 4 4 2 4
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Example 6.2.1 is the k > v extension of the 34-optima1 -
BIBD(4,6e,2,3e,e) (here e = 1) from Cheng (1979) that was mentioned
in Section 3.3. In that same section the example of the BIBD(8,14,4,
7,3) plus two disjoint binary blocks being A-, D- and E-bettered by an

RGD can also be extended to k > v. - -

Example 6.2.2: Let d© € 8(8,14,8p+4) be the BBDJconétructed'by

adding p copies of each treatment to each block of the BIBD(8,14,4,7,3).
Then d* € 8(8,16,8p+4) is d° plus two disjoint binary blocks. The
eigenvalues of Cd* are 0, (8x1/k) + (16p(p+1)/k) =, (8A+24)/k, and

-

(8r1/k) + 2p + 1 = (8A+28)/k where A, = 14p“+14p+3 and A = 16p(p+1).

Now let d be the RGD in £(8,I§,4) mentioned above with p copies
of each treatment added to each block. d € $(8,16,8p+4) and the
eigenvalues of Cy are 0, (8A+26)/k, (8A+28-v2)/k, (8A+28)/k, and
(8A+28+v2)/k with multiplicities 1, 2, 2, 1 and 2 respectively. d is
easily seen to be E-better than d* and with algebra is seen to be A-
and D-better.

The eigenvalue structure 0 < a =...= a < b is not fganzed for
mqg = V. }

A-, D- and E-efficiencies for the cases of m= 2 and q = v/2 will
be presented in Chapter 8, along with the A- and D-efficiencies for

q=2.

6.3 The Case mg = v-1

We begin with a Temma.
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Lemma 6.3.1: For k = pvtq, T <q<v-1,p>1, v>3, mg < v-1

and d* equal to d° plus m disjoint binary blocks (d° a BBD “in
VA 2
8(v,b,pv+q)), then for any d € S(v,b+m,pviq) uyy < k] + X (mp- T

VA
- 1. v _ng
ot (et o)

—

Proof: Since mq < v-1, min (rdi)-i r+mp for any d € 8(v,b+m,
T<i<v - .

pvtq). Using Theorem 1.4.3, and assuming 1 is the minimum replicated

treatment,
2
b+m n7 ;. :
Vv dlj v . .
g1 < w1 (P - jZ1 k) <t Blrgys bApk)
v v A +mp2
< vo1 B(r+mp; bm,k) = -=5 (r+mp- )
Algebra completes the proof. B
2
When mg = v-1 the eigenvalues of Cd* are 0, k] + !E(mi+]),
VA] VA]
. +mp + 1 - %3 and e + mp + 1 with multiplicities 1, 1, m~1 and
m(g-1), respectively.

EEN

Theorem 6.3.1: For k = pv+q, 1'§_q <v-1, p>1, v>3,-

mg = v-1, d* is E-optimal in 8&(v,b+m,pv+q).

Proof: By Lemma 6.3.1 for any d € 8(v,b+m,pv+q)

VA
Lo X2 (mp + 1) = 1+ X2 (mp1),

Hd1 =7k

the smallest nonzero eigenvalue of d*. This completes the proof.

Now from Lemma 6.1.2 we have m = 1 with g = v-1 and m = v-1 with

g = 1 as the only two cases giving d* with one of the three eigenvalue
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structrues from Theorems 1.4.1, 1.4.4 and 2.1.1. The structure of the
eigenvalues of Cd* is0 <a<b=...=b in both cases, with

VA
as= —Tél-+-!E (mp+1).

Theorem 6.3.2: For k =pvitg, p> 1, v> 3, m= T“Witﬁid = v-1 or

3
I

v-1 with q = 1, d* is J,-optimal in 8(v,b+m,pv+q). ..

Proof: Theorems 6.3.1 and 2.1.1 with the fact that Cd* is of
maximum trace gives the result.
A- and D-efficiencies for these E-optimal designs when mq = v-T1,

m# 1, g # 1 will be presented in Chapter 8.

6.4 The Cases 1 <mg < v-2

From Lemma 6.1.2 only one of -the cases 1 < mg < v-2 yields two
distinct eigenvalues, and that is m = q = 1. The eigenvalue structure

for d* with mg = 1 is that of Theorem 1.4.1 with Cd* having eigenvalues

VA
0, X%-+ p with multiplicity v-2, and k] + XP(E+])'

For this case d° is e copies (e > 1) of the unique BBD.in
8(v,v,pv+1), and d* is d° plus a binary block with, say;At}ea%ment 1
extra-replicated. There is a d in 8(v,ev+1,pv+1) with d* that is
E-better than d* when p > v-1, but can only be constructed when
p > v-2. We construct d by taking e-1 copies of that unique BBD in
8(v,v,pv+l), p1u§ v binary blocks with treatment 1 extra-replicated,
and one block with treatments 2 through v appearing p+1 ti@es and

treatment 1 appearing p-(v-2) times.
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3 CdO + CO where v
a - e)infawepprl)-(v=2)),,
P K K v-1
C =
0 2
] pl1
SYm (p FJIv-l--»-k Jv-1,v—l
(2%

and so d has the eigenvalues 0, ;El-+ D+ %—with multiplicity v-2,

. VA .
T, vp(p+1) _ v(v-2)
and K + K K .

We need p > v-1 for

4 vp(p+l) _ v(v=2)

with strict inequality if p > v-1 _and equality for p = v-1. Note
that for p > v-1 d is strictly E-better than d* but that
tr Cy < tr cyy by k'l(v-1)(v—2). We summarize what is known about d*

and d in this case of mq = 1 in the following theorem.

Theorem 6.4.1: d* is E-better than any d € &(v,ev+1,pv+1)

for which 1) min (ry) < r+p-T or 2) Ay 5_x]+p2 when r . =
T<i<v - ! -

i = r+p. For p > v-1 there exists a d (with ra r+p+1, T

rip for 2 < i < v and Ay, = APl for 2 < i < § < v) which is

strictly E-better than d*. Therefore d* is not gJ 1-optima1 for‘

p > v-1. -

Proof: That d* is E-better than the d satisfying 1) or 2)
follows from Lemma 6.4.1 at the end of the chapter; The results

for d follow from the previous discussion.
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Remark 6.4.1: From a few examples for this case of mq =1 d

appears to be A- and D-worse than d*. One such example follows.

Example 6.4.1: d*, d € 8(3,4,7). d is E-better but A- and

D-worse than d*. -

T 1 1 1 T 1 1
T 1 11 T 1 1 2
2. 2 2 2 2 2 2 2
a*: 2 2 2 2 d: 2 2 2 2
33 3 3 3 3 3, 3
3 3 3 3 3 3 3 -3
1 2 3

3 1 1 1 1

Sometimes, as for the following example, when mg = 1 with

p < v-1 we can prove d* is gd,-optimal using Theorem 1.4.1.
1

Example 6.4.2: d* ¢ 8(3,4.4) is g&l—optimal:

LI S R

2 2 2. 2
d*: T

3 3 3 3

1 2 3 1

In Chapter 8 the A-, D- and E-efficiencies of d* and the
E-efficiency of d (p 3_;;1) are presented for this case of mq = 1.
For 2 < mq < v-2 Cqx has three (m=1o0rq=1) or four

distinct eigenvalues. It turns out that some of the ideas

used to construct d for mq = 1, or other techniques, can be used



to construct an E-better (than d*) design.

generalized, but here are two such examples.

Example 6.4.3:

9(4,6,9). m=2,q=1,mg=2

1

[« T4

=~ B W W

Example 6.4.4:

Nothing has been -

a is E-better but A- and D-worse than d* in

1

= B_ W w

1
1

& B w

£, W ow

1
1

B W W

1
2

P bW W W

v-2 and only d is given here.

——

i?

a is E-better but A- and D-worse than

d* ¢ 3(5,1],7). Given here are only the last two plots of each

(binary) block to display the extra-replicated treatments.

m=1,qg=2andmg =2 = v-3.

1 1
d*:

2 3
. 1 1
d:

2 2
Remark 6.4.2:

for 8(4,6,5) is the p = 1 case corresponding to ExampTe 6.4.3, and

3 4
5 5
3 4
5 5

111

The d for 8(4,6,9) is not of full trace. The d*
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can be proven E-optimal. The d for 8(5,11,12) is of full "trace.

The d* for 8(5,11,7) is the p = 1 case corresponding to Exémp]e
6.4.4, and can be proven E-optimal.

We conclude this chapter with the following Temma which was
needed for Theorem 6.4.1 and mq = 1 but is also true fo;-éi};mq <

v-2.

Lemma 6.4.1: If k = pvtq, 1 <q<v-1,p>1,v>3,
1 <mq < v-2, then d* is E-better than any d € 8(v,b+m,pv+q) with

) . _ ) P
]T}SV(rdi) < r+mp-1 or with Agij < A7*mp° when rdis: S

Proof: Using Theorem 1.4.3 (i),
v . o\
—= B( min (r,.); b+m,k)
v-| I<i<y di

|A

Hd1

v .
5_V:T-B(r+mp-1, b+m,k)

v AO+(m+1)p2-(p+1)2
= V:T-(r+mp-1- K
VA 2 VA
= __-I... L -] - mp _Zp_] ] ~
ot v (mp-1- = K ) < . mp. ) -$
Using Theorem 1.4.3 (ii),
A +mp2 A +mp2
< r+mp- 0 s
g < 7R Ty K
W, -
St

This completes the proof.
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CHAPTER 7
THE BBD MINUS M BLOCKS -

7.1 Preliminaries

Throughout Chapter 7 define d® and d* as follows. Let
d° ¢ 8(v,b,k) be a BBD with k = pv+q (1 < g < v-1). Remove from
d® m blocks disjoint with respect to theirbextra-rég1icéted
treatments, with 1 <m < v/q. We will call this neW'aesign d*.

d* € 8(v,b-m,k) and C * = C - C, where C. is given in Lemma 6.1.1.
d 4 02 0

Lemma 7.1.1: ‘Cd* has the eigenvalues 0,

Vi
— - mp - 1 with multiplicity m(q-1),
VA]*
c— - mp - 1+ with mltiplicity m-1,
VA

k] - VP(EP+]) with multiplicity 1 (unless mq = v),

VA

—?l-- mp with multiplicity v-mg-1 (unless mq > v-1),
where A] = ) o (i # j) and for each case of m and q all realized

d’ij

eigenvalues are distinct. The eigenvalue structure is 0 <a < b =
.=bifm=qg=1,0<a=... =a<bifm=2with q=v/2,
m=1with qg=v-1o0orm=v-1withq=1, and the nonzero eigehva]ues

are all equal ifm=v and q = 1.
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Ay A A _ _
Proof: Cd0 = (r - -t —E)IV - _F'Jv,v with Ag = Adoii_and
r= rdoi (1 <i<v), and Cd* = CdO - CO' We apply Lemma 6.1.1

and Lemma 1.4.2 to get the eigenvalues.

VA VA | VA -
1 1  vp(mp+1) 1 q
I S S S

with equality between the lTargest two only when mq = v, in which
case those eigenvalues are not realized.

Looking at mq = v, mq = v-1 and 1 < mq < v-2 separately we
get the cases mentioned in the hypothesis for the éigen9a1ue

structures of Theorems 2.1.1, 1.4.1 and 1.4.4.

Remark 7.1.1: We must of course have m < b-2 in order for d* to
have at Teast two blocks. It may also not be possibfé to remove
two disjoint binary blocks. The BBD in ﬂ(6,10,6p+3) does not have
two disjoint binary blocks.

Note that for any b > 2 there is a BBD in 8(v,b,pv) which is

JU-optima], S0 we only consider 1 < g < v-1.

~e o

Y

Before going on we present the Fo]]owing lemma.

Lemma 7.1.2: d* is E-better than any d € 8(v,b-m,k) for which

1 : 2 = = - -
1) ]T}Ev (rdi) < r-mp-2, 2) Adij < Ay-mp~-2p when gi = gy = r-mp 1

— N — 2 — - = = - -
and g = 1, or .3) Adij < Ay-mp 2p-1 when P4 rdj r-mp~1 and

922 k=prigwithp>1,1<q<v-Tv>3and1 <mg < v-I.

Proof: From Theorem 1.4.3 part (i) and assuming without loss of

generality that rq1 = 1m1:n (rgi)s
<i<v
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2 -
b-m n
v_ - dljy . _v_ .
ud] < V=1 (rd] jz] K ) < Vo B(Y‘d], b m,k)
< o B(r-mp-2; b-m,k). (7.1.1)
For gq=1andb = v (7.1.1) equals .
. Ao~ (m=1)p%= (p+1)2-pP4(p-1)?
V:T-(r-mp—Z- Q
VA 2 VA
- Vv mp~+4p M 1
= 7 T (me2s TEE) < mmpeT4 g

the smallest nonzero eigenvalue of d* (since mq > 1). For q>2
L

-

or q =1 with b >2v (7.1.1) equals B

2 2, 2
v AO-(m-l)p.—Z(p+1) +p

v-T (r-mp-2- R

2} v 2 VA
- ooy (mpr2- TRRYE) L g o

the smallest nonzero eigenvalue of d*.
If ry; = rge = r-mp-1 and q = 1, by Theorem 1.4.3 part (ii) we

have

b-m n2

2
o d]j+nd2j) , Md12 -
i K K

r-mp-]--%

IA

M1

AO-(m-l)pz-(p+1)2 A]—mp2-2p
+

r-mp-1- K K

|A

VA VA
= - mp-1+ = -mp-1+

ka
the smallest nonzero eigenvalue of d*. If Fq1 = Tao = r-mp-1 and

q > 2,
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Ao-mp2-2p-] A]-mp2—2p-1
Mgy < romp-1- R ¥ K

VA VA
- 1 1 1 _ "
B R Sl il i S P

the smallest nonzero eigenvalue of d*. This completes £he _proof.
The cases of mq = v, mq = v-T and 1 < mgq < v-2 will be covered

in Sections 7.2, 7.3 and 7.4 respectively.

7.2 The Case mg = v

When mq = v Cd* is of the form

A B ... B T
A ... B
A
, ‘ v 2
AO A] A]-mp -2p-1
where A = (r- -t _F"mp'])Iq_("'___'WF_—"—)Jq,q and B =
A]—mp2-2p
-(————7z——0Jq ¢ d* is just a GD PBBD with m groups of size q where

in the notation of GD designs, Ay = A]+]. Then by-Theorgm*4iﬂ of
Cheng (1978), Cd* is the uniqué E-optimal matrix in C ='{Cd:
d € 8(v,b-m,pv+q)}. |
Form = v and q =1 (and b > 2v) d* is a BBD in 8(v,ev-v,pv+l)
for e > 2. Corollary 1.3.4 says d* is JU-optima1. This is the case
of 0 <a=...= a.
For m = 2 and q = v/2 d* has the eigenvalue structure .

0 <a=...=a<b. Then d* is a MB GD PBBD and by Corollary

3.1.1 of Cheng (1978) d* is gJ1-optima1.
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No other cases of mq = v considered here give one of'the three
eigenvalue structures of Lemma 7.1.1. m=1and q=v givés
0 <a=...=abut k = pvtv allows a BBD for any b > 2, so we have‘
required q to be less than v.

In Chapter 8 the A- and D-efficiencies of these Eeﬁbtfma1‘

designs will be presented.

7.3 The Case,mq = v-1

When mg = v-1 only two cases give d* with an eigenvalue

structure mentioned in Lemma 7.1.1. They are m = v-1 Wfth g =1
L

and m = 1 with q = v-1. Each d* has the eigenva]uélsjkucture

0<a=..=ac<b.

Form = v-1 with q = 1 we require d° € 8(v,ev,pv+l) with
e > 2. d* is then in 8(v,ev-(v-1),pv+1) = g(v,(e-1)v+1,pv+])
and equivalently could be constructed by adding one balanced block
to a BBD in 8(v,(e-1)v,pv+1). So this is just the case of mq = 1
of Section 6.4.

For m = 1 with q = v-1 Cd*'has eigenvalues 0, (vA]/k{:P—1
and (vay/k)-(vp(p+1)/k) with multiplicities 1, v-2 and T ~

respectively.

Theorem 7.3.1: d* is E-better than any d € 8(v,ev-1,pv+v-1)

for which 1) min (r
1<i<v

= r-p-1. For p > v-2 there exists a d (with rgy = P

d;) < r-p-2 or 2)'Adij f_A]—pz-Zp—1 when

Fdi = "dj

r-p-1 for 2 < i < v and Aaij = A]—pZ—Zp for 2 <i<J<v)

"di
which is strictly E-better than d*. Therefore d* is not g=9]-~

optimal for p > v-2.
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Proof: That d* E-betters the designs satisfying 1) and 2)
follows from Lemma 7.1.2. -

If d° is e copies (e > 1) of the unique BBD in 8(v,v,pv+v-1)
Tet d be e-1 copies of that BBD in v blocks plus v-2 blocks with p
applications of treatment 1 and p+1 applications of trégfménts 2
through v, and finally a block with p+v-1 applications of\treatment

1 and p applications of treatmehts 2 through v.

1 121y
Ca = :
Sy G ] T
5 o
- (v-lea v-1,2 - = 8A _ pTiptv-2
where C11 K M (p +ptv ?), C1p K K » and
C - (eVA:_ Vp2+(2V-])p+V-2)I _(_e_A - P2+29)J Here
22 k k v-1 k k v-1,v-1"°

A= vp2+2(v—])p+v-1 and is the Aij (i # j) for the unique BBD in

8(v,v,pv+l). Therefore ea = A of d°.

Therefore by Lemma 1.4.1 the eigenvalues of Ca are 0,

veA vp2+(2v—1)p+v—2 - v

R

M 1
k- S RS

with multiplicity v-2 from C22 and

2
eA _ p +ptv-2
vepp = Ve k)

A
XEl._ (p+1) + (V-1)(p+]z-v(v-2).

1]

To construct this design, we only need p > 1, but the single

nonzero eigenvalue is at least as big as the eigenvalue with
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multiplicity v-2 if p > v-2 with equality for p = v-2 and'strict
inequality for p > v-2.

Since X - (p+1)+ > T (p+1) = TP d is strictly E-better

than d* and d* cannot be g&l-optima1. -

—

Remark 7.3.1: For p < v-2 Theorem 1.4.1 can not be applied in

general. In trying to prove that the d* in the next example was

931-optima1, ‘the design d of that example had a strictly larger
V=1\k g o2 2 R

value of tr C; - ()2 [tr(Cy)-(tr C )%/ (v-1)FF than did d*. d* is

E-optimal in 8(4,3,7). o

Example 7.3.1: m=1, q =v=1, p < v-2. d*, d¢ 8(4,3,7).

See Remark 7.3.1.
1 1 1 1 ] 1

2 2 2 2 2 2
3 3 3 3 3 3

d*: 4 4 4 d: 4 4 4
1 1 1 1 1 3
2 2 3 2 2 3
3 4 4 3 4 4

It is also true that for mq = v-1 and m > 1 that d* is not

necessarily E-optimal, and hence not necessarily g&l- or 34-optima].

Example 7.3.2: m=2, q=2. d*¢ 8£(5,8,7) is E-worse than

d given below.
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2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3
d: 4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5
1 1 2 2 2 3 3 4

1 1 3 4 5 4 5 .5

The A-, D; and E-efficiencies for d* and the E-efficiency for

~

d (p > v-2) withm =1 (and q = v-1) will be presented in Chapter 8.

-

-

7.4 The Cases 1 < mgq < v-2

For all these m and q only m = g = 1 gives a d* with one of

the eigenvalue structures in Lemma 7.1.1. The eigenvalues are O,

VA VA
k] - VE(E+]) and k] - p with multiplicities 1, 1 and v-2 respective-
ly.

Theorem 7.4.1: d* € 8(v,ev-1, pv+l), the BBD in 8(v,ev,pv+l)

with one block removed, is 54-optima1 in 8(v,ev-1,pv+1). v > 3.

Y

Proof: d* is of maximum trace and has eigenvalue structure

0<a<b-=...2=b. Forany d € 8(v,ev-1,pv+l),
P Gt L BTl
by 2ot (repel- =) = - gy (el )
_ VM vp(pr1)
K k Ha*1°

Therefore by Theorem 2.1.1 we are done.
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The following examples illustrate that d* for 2 5_mqﬂ5 v-2 is

not necessarily E- and hence gd,- or 3,-optimal.

Example 7.4.1: d given below is strictly E-better than d* in

8(4,5,6). Herem=1and q = v-2 = 2. 2

1 1 1 1 1

2 2 ) 2 2
. 3 3 3 3 3

4 4 4 4 4

1 1 1 2 3. X

2 2 4 3 4

Example 7.4.2: d is strictly E-better than d* in 8(6,13,8),

where both designs have only the extra-replicated treatments of

their (binary) blocks displayed. Here m = 2 and q= (v-2)/2 = 2.

dr: ! 1 1 1 1 2 2 2 2 3 3 4 4
2 3 4 5 6 3 4 5 6 5 6 5 6

1 1 1 1 1 2 2 3 3 3 74 -4 5

Q>

2 2 2 3 4 5 6 4 5 6 5 6 6

Example 7.4.3: d is strictly E-better‘than d* in 8(7,6,10),

where both designs have-only the extra-replicated treatments of their

(binary) blocks displayed. Here m = 1 and q = v-4.

1 2 3 4 5 6
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CHAPTER 8

—

EFFICIENCIES FOR PREVIOUS CHAPTERS

8.1 Preliminaries

In this section we present two methods used to calculate most
of the A-, D- and E-efficiencies in this chapter, as well as four
Temmas used to prove the efficiencies are strict]yzincreasing as
a parameter related to the number of bToéks increases.

In general we take a possibly. nonexistent or nonconstructible
design dp whose eigenvalues ﬂi for 1 < i < v-1 will be used to
construct the Tower bound for @(Cd). Then the true efficiency
of a design d is greater than or equal to -

ey (d) = 3(c, )/0(Cy)

for any of @A, o and or- This eé(d) is really a lower bounﬂ since

the ¢-best d € 8 (v,b,k) may not be as good as dB' Sometimés dB will
be a dy-optimal d* so ﬁi = Ugx; fOor T <1 < v-1. Sometimes dB will

have ﬁ] = Uqxq for an E-optimal d* with 52 = ... = ﬁv—] =

-1
(v-2) “(tr Cd*-“d*l)'

In the numerical examples given the value of eQ(d) was calculated
to seven or more places but is truncated to four decima] places for
presentation. If e®(d) had nonzero terms in the fifth decimal place

and beyond we shall write eé(d) > .9876 (for example).
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The first method for finding the &i; of dy involves Theorem

2.2.1. The bound (i) for My is made as large as possible by taking
v-1

min (r..) = min (r..) and minimizing } (n%5, ./k.) if r, =

Jeiey 41T 0D, shq e’ ds

min (rdi)‘ If this maximum bound does not force the tr(cd) to be

T<i<v -7

less than tr(C,.) = max(tr C,), then we let y, equal this bound and
d des d 1

up = = Myl
dB is $4-optima1 and hence A-, D- and E-optimal. We call this

= (v-2)'](tr Cd*-ﬂ]). Then Theorem 2.:1.1 says this

Method 1. ,

Method 2 s just Tetting fiy = ... % _y = (v=19]1(tr Cy,). This
is used if pushfng bouﬁd (1) of Theorem 2.2.1 up t06~?arAdecreases
the trace of Cd. This can happen_jf there are blocks of different
sizes. See for example the case of Theorem 4.2.1 part c) and its
corresponding Theorem 8.3.2.

Now we present four lemmas used to prove that most of the
efficiencies are strictly increasing in e, Ays or r while the
remaining parémeters-v, p and q remain fixed. e was used as the
number of copies of the unique BIBD inﬁﬂ(v,v(v—l)/Z,Z),~$o“ﬁs e
increases we are increasing the number of blocks of d* in ;
8(v,ev(v-1)/2-1,2) 1in Section 8.2. As Ay and r increase for
fixed v, p and q we are increasing the number of pairs in d° used
to construct d*. But A; = r(k-1)/(v-1) = bk(k-1)/(v(v-1)) for d°

so both increase as b increases,for b the number of blocks in d°,

Lemma 8.1.1: For A(x) a differentiable function of x“> 0, bi a
constant with respect to x (for i = 0,1,2,3), 1 <M, N < v-2, and v>3

an integer we have
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] : v-2
A(X)-b A(x)
d > 0
dx M N

AG)B; * ATx)By

if all of the following hold: . —
(1) b3 3_b2 > by 3-b0 > 0 with at least one of the first three

inequalities being strict,
(i1) A'(x) > 0, A(x)-b3 > 0, and

(iii) M(b3-b2) + (v-2)M(b3—b]) z_N(bz—bO) + (VTZ)N(b]'bO)'

L

-

Proof: Suppose M(b3 b2) < N(b O) Then taking the derivative

we get

A" (x) T L 7 U
X
("(X b A(X)‘bo) [(A(x)-b3)2(/-\(x)-b2)2
X M(v—2)(b3-b]) ] N(b2 bO)
(A(x)-b5)*(A(x)=by)®  (A(x)-b,)2(A(x)-by)

N(V~2)(b]fb0) ]
| (,A(.X)Hb])Z(A(_x)-bO)Z -

' M N -2
= A (X)(A(x)-b3 ¥ A(x)-bo) X

(M(bg-b,) [(A(X)-bg) "#(A(x)-b,) - (A(x)-by) 2(A(x)-b,1"2
+ (N(by=bg)-M(b3-by) ) [ (A(x)-b3) "2 (A(x)-by) 2= (A(x)-

by) 2 (A(x)-by) %]
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#N(v=2) (b1-b )LA(X)-b3) "> (A(x)-b;) 2-(A(x)-b;) 2 (A(x)-b ) ]

(M(b -b +(V"2)(b3'b]))'N(bz'b0+(v'2)(b]'bo)))

L P37 Y
(A(x)-b,) "*(A(x)-by)

This is strictly greater than zero by conditions (i) gnﬁ'(ii). The

proof for M(b3—b2) > N(bz-bo) israna1ogoys.

Remark 8,1.]: Lemma 8.1.1 can actually be proved with a weak

majorization argument that would allow for a more general result

L

-

with a different condition (i).

Lemma 8.1.2: For A(x) a differentiable function of x > 0, b, a
constant with respect to x (for.i =0,1,2,3), T <M, N < v-2 and v> 3

an integer we have

[A(x)-b\M [A(x)-b-\ N
d_ 3 0 >0
dx | \A x)-b2 Ain—b1
if all of the following hold:
(1) by > b, > by > by > 0 with at Teast one of the first
three inequalities being strict, e

(ii) A'(x) > 0, A(x)-b3 > 0, and
(iii) M(b3-b2)_z n(b]-bo).

Proof: Taking the_derivative we get

(A(x)—b3>M-1 (A(x)-bO )N-] A'(x)
Aix;—bz Aix;-b.l (A(x)-bz)Z(A(x)-b])z

[M(b3-b,) (A(X)=bg) (A(x) by )-N(by -by) (A(x)-b) (A(x)-b5)]
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which is strictly greater than zero given conditions (1),(11) and
(iii).

Remark 8.1.2: A stronger result with the same proof is to

replace (i) and (iii) with KA

M(b3-b2)(A(x)-bo)(A(x)—b])-N(b]—bo)(A(x)—bz)(A(x)—b3) >0

and (i1) with A'(x) > 0, A(x)-bi >0 for i = 0,1,2,3."

Lemma 8.1.3: For A(x) a differentiable function of x > O,_ai a

constant with respect to x (for i = 0,1,2,3), and y > 3 an integer we

have d A(x)+a3 A(x)+a0 v-2 o
dx A(x)+a1 A(x)+a2

if all of the following hold: -
(1) A3 > 8 > a7 > 35 > 0 with at least one of the first and
third inequalities being strict,
(ii) A'(x) > 0, A(x)+a0 > 0, and
(ii1) (v-2)(a2—ao) 3_(a3-a]).

<o

Remark 8.1.3: The proof of Lemha 8.1.3 is analogous to the proof

of Lemma 8.1.2. Also (i) and (iii) could be replaced by
(v-2)(ay-ay) (A(x)+az) (A(x)+ay)-(ag-a;) (A(x)+a,) (A(x)+ay) > 0
and (ii) by A'(x) > 0, A(x)+ai >0 for i = 0,1,2,3 to give a stronger

result.

Lemma 8.1.4: For A(x) a differentiable function of x > 0,

A'(x) >0, by > b, > 0 we have
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q A(x)--b3

& (w7 O

Proof: The proof is straighforward.
In the following sections we present selected efficiéncies from

Chapters 3 through 7.

8.2 Efficiencies for Chapter 3

Recall that d° € 8(v,ev(v-1)/2,2) is e copies (e > 1) of the
BIBD in 8(v,v(v-1)/2,2), and d* was d° minus one (binahy) block. d*
L
has been proven J4—optima1 for e = 1 and all v by 6%hgfs and e > 2

for v = 3,4,5 and 6 by the author.

Theorem 8.2.1: The A-, D- and E-efficiencies for d* € 8(v,

fﬂﬁ%:ll-- 1,2) calculated with Method 1 are

1 + v-2
7 _ ])_]
-v(v=-T (v
epler) = Sl evfuel)T
ev-2 ey
ev-2 ey V-2 oo

H

d*) =
%l *) (ev-v(v-l)_] ev-(v-1)""

eE(d*) = —~ﬂ:.2__T’
ev-v(v-1)

with each strictly incredsing in e > 1 and converging to 1 as e goes

to infinity. v > 3.
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Proof: From Section 3.1 Hgey = (VA]/Z)-1 and Ugap = oov =

= (vA;/2). Method 1 gives < Y (p-1- I:l) = Xil -
Hax -1 1/¢7- g M1 = v 2 2

VA
?TV¥TT = M and My = 2] - Z(l-l)' We also have A = e and r = e(v-1).

Lemmas 8.1.1, 8.1.2 and 8.1.4 are used to get the efficiencies
increasing in e with bO =0, b1 = (v-1)'], b2 = V¥T’b3 = 2 and A(e) =

ev. The convergence to 1 is trivial.

Remark 8.2.1: Because d* is intuitively the best design for any

reasonable criteria the A-, D- and E-efficiencies werere9a1uated for
72v=<50and 1 <e<5. These were proved tolbe;?ncfeasjng in e for
fixed v, and appear to be increasing in v for fixed e. -iﬁ Table 8.2.1,
p. 130, are presented eA(d*),eD(d;)and eg(d*) for v =7, 8,9, 10, 15,
20, 30, 40, 50 and e = 1, 2, 3, 4, 5. They are truncated to four

decimal places unless more places prove illustrative. Fewer than four

places indicates equality with eE(d*).

8.3 Efficiencies for Chapter 4

e

For k < v-1 we have the four cases given in Theoren 4:2.1, some
of which will require different bounds than others. Recall that for

d* a BBD plus a binary block of size (v-1), the eigenvalues of Cd*

M -V (rQ-U

VA
s ~ _ _ 1 -
areé Hax1 T K T VAl k) and gy = ... = Mge,y-1 = Tt 1

k-1 -1
VY1 (r(k ) * Vv ).

Theorem 8.3.1: The A-, D- and E-efficiencies for d* ¢ §(v,b+1,k*),

=10, v > Twith v-1 5>k > Yl or 4 < v < 6 with

(k%) = (k1



Table 8.2.1:

= 1

10

15

20

30

40

50

A
D
E

.9878
.9668
. 8571

.9921
.9749
3 875

.9946
.9803
. 8888

.9962
.9841
.9

.9989
.9930
.9333

.9995
.9961
.95

.9998
.9983
. 9666

.99995
.9990
.975

.99997
.9993
.98

BIBD in 8(v,ev(v-1)/2,2) minus one block

e =2 e =3

A A

D D

E E
.9974 .9989
.9927 .9969
.9350 .9579
.9983 .9992
.9944 .9976
.9423 .9625
.9988 .9995
.9955 .9980
.9481 .9661
L9991 .9996
.9963 .9984
.9529 .9692
.9997 .9998
.9983 .9992
.9679 .9788
.99990 .99995
.9990 .9995
.9756 .9839
.99997 .99998
.9995 .9998
.9836 .9891
.99998 .999994
.9997 .9998
.9876 .9918
.999993 .999997
.9998 .99993
9901 .9934

= 4 e =5

A A

D D

E E
.9994 9996 - -
.9983 .9989
.9689 9753
.9996 .9997
.9986 .9991
.9722 9779
.9997 .9998
9989 . .9993
L9749 s .9800
.9998  .79998
.9997 .9994
.9771 .9818
.99994  -.99996
.9996 .9997
.9842 .9874
99997  .99998
.9997 .9998
.9880 .9904
.999992  .999995
19998 -9999
.9918 19935 -
.999997  .999998
.99994  .99996
.9938 .9951
.999998  .999999
99996  .99997
.9950 .9960

130
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v-1 > k > 2, are calculated by Method 1 and equal

I-k 1) -1-k -1
ey (d¥) = ™ e -2 gl - DICEI I
A v+ (v-2) (e K0T ’
r k )
(1) -2

ey (d*) = . =) v

D S V-TK KT TR s

k-T) (v-1 v(k—47_ (k-T) (v=T)(v=2)
ep (d%) = T
M T

b
with each strictly increasing in r and converging to 1 as r goes to

infinity.

Proof: Method ‘1 gives My f_ﬁ] = V¥T (r(t']) +‘k¥;1%%) and 52 =

v r(k-1) , v-1 _ v-1-k . .
V=T ( K + y k(v-])(v—ZT) since the cases of this theorem are

cases a) and d) of Theorem 4.2.1. Therefore the largest one can make

ﬁ] is by putting the treatment with min (rdi) = r in the block of
T<i<v

size v-1 exactly once. .

Y

Lemmas 8.1.1, 8.1.2 and 8.1.4 show the efficiencies‘are fncreasing

, _ . ) v-1-k (v-1) v-1-k
in r with b0 f 0,.b] (k-TY(v=-T)(v-2)" b (k )~ (k-T)(v=1)°

- k(v-1) k(v-1)
b3 m and A(r) r+ vik=1)"

Theorem 8.3.2: The A-, D- and E-efficiencies for d* € 8 (v,b+1,k*)

with k* as in Theorem 8.3.1, v > 7 with 2 < k<-/g+] are calculated by

Method 2 and equal
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%—+ (v=2)(r + %%{E%%Q ’
k(v-1) -2
(d*) _ r r+ V<\|:-]; ! -
“D » Kv=2) || T k(v=2) S
r v(k-1 r v(k—]S
e (d¥) =( V7]
" Vk=T)

with each strictly increasing in r and converging to 1 as r goes

to infinity. -

Proof: This is the case of Theorem 4.2.1 c) and so Method 2

is used giving ﬁ] T el = 1_l\,.] = QY1 (r(i~1) *

v-2

Lemmas 8.7.1, 8.1.2 and 8.1.4 show the efficiencies are

increasing in r with by = 0, by = b, = VT%?TY’ by = "Y%}%%‘a"d
- k(v-1)
Alr) = r + Sty
v-1 /_+L

Remark 8.3.1: For the case of v > 7 and 5>k > s

know a design E-better than d* needs min (rdi) = r but we can put
T<i<v

more than one allocation of a minimum treatment in the block of size

v-1 to get a bigger ﬂ].__Therefore,

22
JRERETEIIE J
’ 2
- v (k-] 1 o . (V'k))
S BT K v v(v-1)(v-2) (v=-2)
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for 2 < i < v-1 (where %o 1s the value of N4, b+] which maximizes u,
when rqi = r) should be used to calculate at least the E-efficiency.

Since ¢, > 1 does decrease the overall trace of C,, Methods 2 is

0
suggested for the A- and D-efficiencies.

d3

The following examples illustrate how good the effﬁéiéncies are

even for small values of v and r.

Example 8.3.1: Take d* € 8(4,7,k*) with k = 2. Here r = 3 and

it is a case from Theorem 8.3.1. eA(d*) > .9791, eD(d*) =

(.9)(27/26)%

> .9705 and e_(d*) = .9. To give some idea of how fast
L 3

E
these efficiencies are increasing, for d* € 8(4,13,k*) with k=2

(r = 6) eA(d*) > .9937, eD(d*) > .9909 and eE(d*) (18/19) > .9473.

Example 8.3.2: Take d* € 8(10,11,k*) with k = 2. Here r = 9

and this is actually the smallest value of v for which Theorem

8.3.2 can be used since for 7 < v < 9 we have /g}] < 2. Here

eA(d*) > .9967, eD(d*) > .9860 and eE(d*) > .8490.

For k = pv (p > 2) it was shown in Theorem 4.3.1 that d* was
sometimes E-worse than but always A- and D-better than aAagﬁiﬁere we
will calculate E-efficiencies for d* and d and A- and D-, efficiencies

for d* only.

Theorem 8.3.3: For d*, de¢ 8 (v,b+1,k*) with k = pv (p > 2,

v 3_3) the E-efficiencies calculated by Method 1 and the A- and
D-efficiencies calculated by Method 2 are
M

pv 2p-1 1
My Gov T T

eg(d*) =
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e R_o1op v2p2-4vp2+4 + A4(p+1) z .
@) 172 v 2 v2p2 vp(v-1)
e-(d) =
E T pv 2p-1 _ 1 ’
A1+ v-1 ( pv v-1)

(v-1) (v +k ()"
1

-1
m + (v-2)(vx]+k) .

< VA >< vA]+k )v—z
v-2 V-2 ?
V)\-I'l'k(-ﬁ) V>\]+k(ﬁ

. 3
with each strictly increasing in Ay and converging-to 1 and A]

(9]
I
—~
o
* .
o
1]

?

ep(d*)

increases to infinity.

Proof: Method 1 gives [ W e

v 2p-1 1 . -
. ( A V:]) with k = pv,

and we use this ﬁ] for eE(d*) and eE(d). Lemma 8.1.4 is applied to

~

eE(d*), and to eE(d) for p > v/(v-2) (which makesweE(a) i_eE(d*)).

VA
Method 2 gives u; = —k—1 + %{% (1 <1 <v-1) and we apply
Lemmas 8.1.1 and 8.1.2 to eA(d*) and eD(d*), respectively, with
by = 0> by = by = k(v-1)"", by = k and A(x}) = vay. - -

Remark 8.3.2: For k = pv, putting an application of a minimum

replicated treatment i with rgi = T in the block of size v-1
pushes up 51 with Method 1 but decreases the overall trace of Cd.
Therefore Method 2 is used for eA(d*) and eD(d*).

For k = pvtq (p > 1, 1T < g < v-1) we have the following

theorems.
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Theorem 8.3.4: The A=, D- and E-efficiencies for d*'€ 8{v,b+] k*)

with k = pv+q (p > 1, T < q < v-1) calculated with Method 1 are

e, (d*) =

L.k 2pt] k 2pt1 1 441
Ot 57 B - o) -2 0t § - iy GR - )
-I k .l n 2
A] + (v-2) (A] + B)
k
e (d%) = (=] My v-2
D At (2p+] 1 JATH k k (2p+] R ) )
1 v- ] v-17 v (v-1)(v-2) Yk v-T
() A e
e-(d*) = =
E K 2pFl 1, ° )
Movr G

with each strictly increasing in A and converging to 1 as Ay goes to

infinity. v > 3.

Proof: Analogous to that of Theorem 8.3.1 with 1, = _El'+
2p+1 1

v 2p+] 1 - _ M v _ i
v-1 ( k - V-])’ Mo ~ 'S +1 - (V-])(V-Z) ( K - V—])’ bo =0, b_l =
(v- ])(v 27'( alve ]) by =¥ 7 T (5= - yo7)» by = y and
_ _ k .

A(}\]) - )\'l + V.

Theorem 8.3.5: The A-, D- and E-efficiencies for'ae @(v,b+],§*)

calculated with Method 1 for k = pv+1 and k = pv+v-1, respectively,

are
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Ot o G- A -2 (agr & - (v—1%(v-2) - A
'I L)

(A* 5 (1-S()) 0 5 (#()) 7 +(v-3) (4 + 57

(D
m
—~—~
o
o
n
o~
——
N
=}
+
—
1
|
g
-

D=2 0 § - (v-1l)<(v-2)(iﬁ+1 - )]
- _

Hapk e (145(2))) 7+ (v=3) Oyt 57

1]

—
p ol

i

-}~

|~
—

—

1

w

Lol

N

~—

~—

~ |l
1
—}

A+ o (1-5(2))
5571 T where

K
MY T G- T

1
S(2) = (1- 4v(v-§)p(p;]))2 with the E-efficiencies known to be
k“(v-1

strictly increasing in A] and all converging to 1 as A1 goes to

infinity, p > 1 and v > 3.
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Proof: ﬁ] and ﬁz were given in Theorem 8.3.4, the eigenvalues
for a are found in the proofs of Theorems 4.3.2 and 4.3.3, and Lemma

8.1.4 is applied to the E-efficiencies.

~

Remark 8.3.3: Recall that for k = pv+q andg =2o0rq-=v-1 d

was shown to be strictly J4-better than d* in Theorems 4.3.2 and 4.3.3

respectively. Therefore even if we do not know how eA(a) and eD(a)

behave, we know they are bounded between the efficienéies for d* and

1. For 2 f_qvg_v-z Cy at (4.3.4) would not yield the eigenvalues for

d in general. It is for these reasons that Theorem 8.3}4 is necessary.
-

The following examples with g = 1, 2 and v-1 résgective]y, show

d* may be very good even for small v, p and q.

Example 8.3.3: d*, de 9(4,4+1,k*) with k = v+l = 5, eA(d*) >

.9937 and eA(&) > .9989. e.(d*) > .9908 and eD<a> > .9984. e

D
= 54/58 > .9310 and eE<a> > .9908.

Example 8.3.4: d*, d € 8(4,6+1,k*) with k = v+2 = 6. See

Exampie 4.3.1. eA(d*) > .9985 and eA(a) > .9996. e,(d*) >_.9978

D

and eD(&) > .9994., e_(d*) = 39/40 = .975 and eE<a*) > .9957."

£

Example 8.3.5: d*, d ¢ 8(4,4+1,k*) with k = viv-1 = 7. ep(d*) >

.9985 and eA(a) > .9999. eD(d*) > .9978 and eD(a) > .9998, eE(d*)

~

= 54/55 = .9818 and eD(d) > .9996.
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8.4 Efficiencies for Chapter 5 .

For 3 < k < v-1 recall that d*, a BIBD with one observation

2
removed, had Cd* with eigenvalues 0O, "El" 1= VY] (r(t DA v;l)’
2
and k] = VY] (r(t'])) with multiplicity v-2.

—

Theorem 8.4.1: The A-, D- and E-efficiencies for d* ¢ &(v,b,g*)

with (k*)' = (k]é_],k—1), 3 <k < v-1, as calculated with Method 1 are

et e
eA(d ) = ( - k(V-]))-] R _V-_2 >
VZk-'I r -2

[0
[
—
o
x_
~
|
TN

-

1
Si<|=
} L~
_|7<'$

L
~—
/\
-~
-
\—/
<

}

N
“

- v=-k
T vv=-2)(k-T)
. k(v-1)
eplar) = —H,

with each strictly increasing in r and converging to 1 as r goes to

infinity. v > 3.

i o

(F(k-]) k-]) _

k k

. . v r-1y _ v
Proof: Method 1 gives 4y < = (r-1- c ) = T

- - _ v r(k-1) v-k . - .
My and Ko = To7 ( X ) - k(=TT (v=2) since uy is made largest by not

putting the minimum replicated treatment in the smaller (b-th) block.

Lemmas 8.1.1, 8.1.2 and 8.1.4 are applied with b0 =0, b] =

vk , b,=1andb, = k(v-1) with A(r) = r.
v(iv-2)(k-T) 2 3 v(k-T1)
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Example 8.4.1: d* € 8(5,10,k*) with k = v-2 = 3: eA(d*) > .9961,

eD(d*) > .9927 and e_(d*) = 24/25 = .96.

£

Example 8.4.2: d* € 8(5,5,k*) with k = v-1 = 4: eA(d*) > .9968,
eD(d*) > .9942 and eE(d*) = 44/45 = ,9777. -
Example 8.4.3: d* € 8(4,4,k*) with k = v-1 = 3: eA(d*) > .9840,

eD(d*) > .9778 and eE(d*) = 15/16 = .9375. d* ¢ S(4,é,5*) with k = 3:

eA(d*) > .9969, e (d*) > .9956 and e (d*) = 39/40 = .975.

o e
For k = pv, p > 1 d* was proved 34-opt1ma1 1n,Thédrém 5.3.1. For
k=pvtqg, p>1, 1 <q < v-T d* was proved J4-opt1%é1“0n1y for the
case q = 1. However for all 1 < q 5_v;1.thé design B (Whéfe the
observation was removed from a block where it was not equireplicated)
was always shown to be J4—worse than d*. Now we sha?] give the A-,

D- and E-efficiencies for d* (2 < q < v-1) and d (1<q<v-1).

Theorem 8.4.2: The A-, D- and E-efficiencies for d € 9(v,ev,k*)

with e > 1 and k = pv+1 are

-1, v-2 - .
(VK1'p(V-1)) + VX?

€ (d) - - )
A 2K -1, V-2
(gmpOv-1)- §29) g

. . y§1-p(v-1)-2k/(k-1)

ep(d) = I R

D
(e
—
(=8
~
1]

with each strictly increasing in A] and converging to 1 as A] goes to

infinity. v > 3.
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Proof: Since Theorem 5.3.1 showed d* to be 34-optima1, we use

. - VA p(v- 1)
its eigenvalues for u, (1 <1 < v-1). wge = - T and
VA
) B _ VA 1 _plv-1) _ 2
Mg T oo T Mgwy1 T ke Whereas gy = - S - g7y and
Ui = Hy*q for 2 f.i f_V-]. -7

Lemmas 8.1.1 and 8.1.4 are applied to prove the increasing

property.

Example 8.4.4: d € 8(5,5,k%) with k = v+1 = 6: e,(d) > .9775
and e (d) = 143/155 > .9225. .

L

-

Theorem 8.4.3: The A-, D-, and E-efficiencies for d* ¢ 8(v,b,k*)

with (k*)' = (k16 ],k 1), k = pvtq, 2 < q < v-1, as calculated by

Method 1 are

(p+1) . (v-q)(g-1)4-1 (v-g)(g-1) -1
o (4 - (vaq-k+ Vpk?] + (z_?)(a_])) +(v-2) (vA;- (v—2¥(341?(k-1))
A .
(vAq-k+ Xﬂég%ll)'] + z;$
_k+ M . VA e V_2
e (d*) = ] k ] 1 --
D VA k+ VP(p'”) (V q)(q-]) ( )( ']) ?
1 k-1 (v-2)(k-1) - (v- 2)(V-1)(k 1)

(o) Vig-k XEég;ll
egld* oy, (v-a)(g=1) °
VA -k ka?1 + ($-1)( 7

with each strictly increasing in A and converging to 1 as Ay goes to

infinity. v > 3.
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Proof: By Method 1 M1 5_ﬂ] = —E—--]+ VE%

(v-q)(g-1) - _ -q)(q-1
e N (VE¥)?v—g)kzk—1)' We apply

{ i = = q )
Lemmas 8.1.1, 8.1.2 and 8.1.4 with by = 0, by V-2 (V-1 (k=17 b,

Theorem 8.4.4: The A-, D- and E-efficiencies of ‘d € 8(v,b,k*) of

Theorem 8.4.3 as calculated by Method 1 are

A B el %‘“%%%ﬁ'}%)_]+<v‘2)(vxl; (- éYE 2§§Zl21))']

e,(d) =
: o R Ty T
vp(p+1) 2k
N P Ek?}) CENCR) e —]
vp(p+ V- - v-g){9- >
e (v-?)(ﬁ-1) VAg- (v-2)(v-?)(k-1)
N i weierl) -
egld) = 1) - (v-q)(q-1) °
D SR e =)

with each strictly increasing in M and converging to 1 as -xy goes to

S -

infinity. v > 3.
Proof: The 51 are those from Theorem 8.4.3. The ugm: = gy for
2 <1i<v-1and WY1 T Mgs] T k?1‘ Lemmas 8.1.1, 8.1.2 and 8.1.4 are

~

applied to e,(d) e (d) and e (d) with b , b, and A(x,) as in the
A 1 2 1

K - vp(p+1) . 2k

proof of Theorem 8.4.3. Here bj = -7 kT
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Example 8.4.5: d*, d € 8(4,6,k*) with k = v+2 = 6. e,(d*) >

.9998 and eA(a) > .9814. e.(d*) > .9997 and e.(d) > .9493. eE(d*) =

o
357/358 > .9972 and eE(a) = 339/358 > .9469.

D

8.5 Efficiencies for Chapter 6 .

—

In Chapter 6 k=pvtg with p>1and 1 <q 5_v—1.- For the case
mq = v considered there, m = 2 with q = v/2 had d* with the eigenvalue
structure 0 <a<b=... =D of Theorem 2.1.1. Exémp]es 6.2.1 and
6.2.2 showed that each case must be looked at separately. Since d* is

the logical first guess at an optimal design, we presenf the following
-

-

theorem.

Theorem 8.5.1: The A-, D- and E-efficiencies for d* € 8(v,b+2,

pv+(v/2)) as calculated by Method 1 are -

v -1
e,(d*) = (v-1) (va;+k(2p1)- 22v-15) ,
A (VA1+k(2p+1)—-%)_1+(v-2)(VA]+k(2p+1)_]
VA]+k(2p+1) =2
ep(d*) = eg(d®) — , o
V>\1+k(2p+-|)~ m
VA +k(2p+1)- —
_ 1 2

eE(d*) - v H

VA1+k(2p+])Z 2(v-1

with each strictly increasing in A and converging to 1 as Ay goes to

infinity. v > 4.

2
Proof: In general for mq = v, Method 1 gives Mg S M7 T —El'+

mp + 1 - 13%5%7'and ﬁz = 51. Substitute m = 2, q = v/2.
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VA v T
- 1 I = = = —
Bgxy = O 2pt1 - s and wyuy = --o Bk y-1 it 2ptl. Now
we apply Lemmas 8.1.1, 8.1.2 and 8.1.4 with b0_= 0, by = by = 57y

b3 = v/2 and A(A]) = VA]+k(2p+]) and calculus to get the strictly

increasing and convergence properties.

Example 8.5.1: d*, de 8(8,14+2,12) with k = v+(v/2)-= 12.

Recall that d was the RGD shown td be A-, D- and E-better than d*.
e, (d*) > 19999753 and e,(d) > .9999756, e;(d*) > .9999140 and
eD(a) > .9999147, eE(d*) = 245/248 > .9879 and eE(a) = 987/992
> .9949. S n

It was also shown that for mq = v and q = 2 d* was ‘E- opt1ma1

and this was used to prove J4-optfma11ty for d* when v = 4, m= 2

and ¢ = 2. For g = 2 in general we present the A- aBd D-efficiencies.

Theorem 8.5.2: The A- and D-efficiencies of d* € & (v,b+(v/2),

+2
> )(:: - (vag+k(mp+1)-2) T +(v=2) (VA #k(mp#1) - -z(i}g-)-)”
°A (m-1)(VA]+k(mp+1)-2)_]+(v—m)(VA]+k(mp+1))"1 ’
() VA]+k(mp+1)—2 m=-2 VA]+k(mp+]) o V-
d*) = - .
“ (yx]+k mp+1) - —jﬂlj;;> VA]+k(mp+])— 21%5%1

with both strictly increasing in M and converging to 1 as Ay goes

to infinity. v > 4.

Proof: Since by Lemma 6.2.2 d* ié E-optimal, we use

VA VA
2 - _ 2(m-2
= —El'+ (mp+1) - E'and Mo = —El-+mp+]- VTZ i. Now calculus

By = g
and Lemmas 8.1.1 and 8.1.2 are applied to complete the proof.
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For mq = v-1 we saw that d* is always E-optimal in Theorem 6.3.1
and for m =1 or m = v-1 d* is 34-optima1 in Theorem 6.3.2. For

2 <m < v-2 we have the following theorem.

Theorem 8.5.3: The A- and D-efficiencies for d* egﬁ(v;b+m,pv+q)

—

where 2 <m < v-2 and mq = v-1 are

(vay+vp(mp+1)) T+ (v-2) (vap+k(mp+1) - L7y

e,(d*) = 1 V-2
A (Vaatvp(mpt1)) T (m1) (va +k (mp+1 ) -q) T ’
R 1 P q VA1+kZmp+]5
Vip+k(mp+1)-q m-1 ,VA]*k(mb+1) - v-m-1
)\ e - LD k(i) AT ’
M P v-2 ! Prlm TN

with both strictly 1hcfeasing in A and converging to 1 as Ay goes

to infinity. v > 3.

Proof: Since by Theorem 6.3.1 d* is E-optimal, uy = ugsy =

VA VA VA
1 . vp(mp+1) - _ 1 _ q(m-1 = 1 .9
-t e and wy = e mpEl- e Wgwg = T TRl - g
VA
for 2 < i <mand ujy; = —Fl-+mp+1 for m+1 < i < v-1. The limit

properties are trivial, Lemma 8.1.2 is applied to eD(d*),wﬁdi eA(d*)
is shown to be strict1y increasing in M directly. That: completes

the proof.

For 1 <mg < v-2 enly m = q = 1 gave Cd* an eigehva]ue structure
of interest, that of Theorem 1.4.1. However if p > v-1 we saw d*

was E-worse than the design d of Theorem 6.4.1.
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Theorem 8.5.4: 8(v,ev+l,pv+l) with v >3, e> 1, p >1.- The

A- and D-efficiencies for d* and the E-efficiency for d* and a (for-

p > v-1) as calculated by Method 1 are

() (vayrvp® 2B) "l (v-2) (va +kpe -—11) .
e d* = . —
A (v-2) (vaq*vp 24p)” +(VA]+kp+(v—1)p)
N +k 2
(6%) VA HVpTHVP VA tkp V-
e =f
D 2, vpJ\. _vp ’
VAPRVPTE TOY VA ket 9
() VA]+vp2+p N
e-(d*) = ‘ -
2
n vA1+vp +p+1
eg(d) = v for p > v-1,

V)\_]'i'Vp + V-1

with each strictly increasing in A and converging to 1 as Ay goes

to infinity.

_ . : ]
Proof; By Method 1 Hgp S M T _E_' k (p+ ]) a?dwﬂﬁﬂ=

VA-I
K

_ 1
i

vp VA .
ety Maei C ko P for T i s vezand ug g

XE%Eill. Recall k = pv+l. Lemma 8.1.1 is applied to eA(d*) with
- - (v-D)p- 2 b = (v- CP 02 b= (vl
by = 05 by = (v=1)p= g by = (v=1)ptkp- oy = vp%, by = (v-1)p

and A(A]) = vx]+kp+(v—1)p. Lemma 8.1.4 is applied to eE(d*) and

eE(a). Lemma 8.1.3 is applied to eD(d*).with 3y = kp = vp?+p,

e oune YD o sk VP i+ YR o = ypl -
ap = VPTH s @y = kP Ty T VPR Ty, g = VPEVP and A(x])

V)\-l.
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Example 8.5.2: See Example 6.4.1. eA(d*) = eD(d*) = 1364/1365 >

.9992 since v = 3.and eE(d*) = 62/63 > .9841 while eE(a) = 1 since

p+1 = vp/(v-1).

8.6 Efficiencies for Chapter 7 .

—

In Chapter 7 k=pv+q withp >T1and 1 <q <v-1. It was noted
that for the first case considered, mq = v, that all such designs-
were E-optimal. The following theorem gives with the A- and D-

efficiencies of such designs not already proved A- and D-optimal.

Theorem 8.6.1: The A- and D-efficiencies for*d* ¢ 8 (v,b-m,pv+q)

with v >3, b-m> 2, p>1, mg=vand 3 <m < v-] are

(vk1‘k(mp+1))-1+(V;2)(Vll'k(mp+])+ gige%l)"]

epld®) = 3 T
(v-m) (vaq-k(mp+1))~ "+ (m=1) (va;-k(mp+1)+q)
Vi, -k(mp+1) v-m-1 Vi, ~k{mp+1)+q m-1
eD(d*) ) ] q(m-1) ! (m-1) ?
VA]-k(mp+1)+ Ty vA]—k(mp+1)+ S—V:T—

with both strictly increasing in M and converging to 1 as Ay goes

to infinity. ' - -

: 12
Proof; Since d* is E-optimal we use ﬁ] = éEl-- (mp+1).
12 VA ' '
- -1 .
Mo = —El-=(mp+])+ %%%:ﬁ%n Hgwi = _El'- (mp+1) for 1 < i < v-m and
VA
Hgeq = —Fl - (mp+1)+ %-for v-m+1l < i < v-1. Lemmas 8.1.1 and 8.1.2

are applied to eA(d*) and eD(d*), respectively, with b0 =0, b] =

q(1- —%), b, = q or by (respectively), b; = g and A(A]) = VA]-k(mp+1)
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The proof is complete after calculus is applied to get the Timit

properties.

For mqg = v-1 only m =1 and m = v-1 gave eigenvalue structures
from Lemma 7.1.1, both structures being 0 < a =... =a <b. For
m=v-1(q =1) see the case of m = g = 1 in Section “6?4 and its
corresponding Theorem 8.5.4. .

When m = 1 and q = v-1 d* has nonzero eigenvalues X%l--(p+])

- C VA R
with multiplicity v-2 and k] - Vp(ﬁ+]). There is also a d that is

E-better than d* for p > v-2, and is given in Theorem 7.3.1.
L

-

Theorem 8.6.2: 8(v,ev-1,pvtv-1) with v > 3, e 3?1,_p—3_1.

The A- and D-efficiencies of d* and the E-efficiency of d* and d (for

p > v-2) as calculated by Method 1 are

F(Vl]- k(p+1)+ 5;%9_]+(vf2)(v11-k(p+1)+ Yi%;%lg']

eA(d*) = 27 ” 7] s
(v-2) (vay-k(p+1))" "+(va;-k(p+1)+(v-1) (p+1))
(¢#) VA]—k(p+])+(V-])(p+1) vA]-k(p+1) v-2
e d* = e s
D vaq-k(p+1)+ i%;%l- vaq-k(p+1)+ Yi%é%l
(@) VA]-k(p+1)
e-(d*) = - s
E vxj-k(p+1)+ %;%
(A) VA]-k(p+])+1
e.(d) = , for p > v-2,
E vay-k(p+1)+ B

with each strictly increasing in M and converging to 1 as.Aq goes

to infinity.



148

Proof: Method 1 gives ﬂ] = vp($p+1) - VY1 6mp+]?a?(pf]))

VA
in general for 1 < q < v-1. Substitutingm=1, q = v-1, ﬁ] = _El"
v (

| VA VA
VE££+1) ) v(vL%3£?;1) = k] -(p+1)+ Ez%;%jn iy = —El-‘ (P+1)'*ET%§%%'

The eigenvalues of d* and d come from Section 7.3. Lemmé'811,4 is

applied to the E-efficiencies while Lemma 8.1.1 is applied to eA(d*)

o= 0, by = (v-1)(p1)- WL b = (v-1) (pe1)- B2 by -

(v-1)(p+1) and'A(A]) = VA1—k(p+1). Lemma 8.1.3 is applied to eD(d*)

with b

with a, = 0, ay = %;%3 a, = !ieé%l3 ag = (v-])(p+1) andiA(A1) =

L]

vx]-k(p+1). . o

Example 8.6.1: For d*, d e,®j3,3-],5)'presented below,

eA(d*) = eD(d*) = 84/85 > .9882 and eE(d*) = 14/15 =a.933§-Wh11e

eE(d) = 1 since p+1 = v-1.

1 1 1 1

2 2 2 2
d&*: 3 3 d: 3 3
1 ] 1 2
2 3 1 3

For 1 < mq < v-2 the only case giving an eigenvalue structure
of Theorems 1.4.1, 1.4.4 or 2.1.1 was m = g = 1 and that was proven

J4—opt1ma1. Therefore no efficiencies are presented for 2 < mq < v-2.
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CHAPTER 9
TREND-FREE BLOCK DESIGNS -

9.1 Preliminaries

Bradley and Yeh (1980) introduced the theory of trend-free block
designs. In this setting an experimenter is interested in applying v
treatments to the plots of b blocks of size k < v, but fhere is
thought to be a common polynomial trend over thé k;;]efs of each
block. N

The additive model for a block design with polynomial trends

taken into consideration is

v . E
- i
Yjg =0t 121 Sgjt™i T8y * L 0,6 (t) + €5t (9.1.1)

where u is the overall mean, t; is the treatment effect (1 <1i<v),
B is the block effect (1 < j < b), Y3t is the observation for plot t
in block j (1 <t < k), 8, is the regression coefficient for &a(t),
¢a(t) is the value of the orthogonal polynomial of degree o at t
v(1 < a < p) and the €54 are assumed to be i.i.d. zero-mean random
errors. -

If we label the bk plots with ordered pairs (j,t) then G;jt =1

and not 0 only if treatment i is applied to plot (j,t).
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§ ea¢a(t) is the overall trend effect for plot t.

a=1
k
For the orthogonal polynomials we have ) ¢a(t) = 0 and
t=1
kK, k .
¢a(t) =1 forl <a<pand ) ¢a(t)¢&(t) =0 for 1 <a<a <p.
t=1 t=1 T

Bradley and Yeh (1980) derived the appropriate C:ﬁétri;-and gave
a condition for a design to be trend-free (TF) of degree p. The
details of the derivations can be found there. '

The C—ma%fix will be designated as Cd as before, but it has a

new form:

i J

_ § -] 1 "] ¥ . t
Ca=rd™ K Mgy =B Lig 2p 2p Lear

. . . S 1 . .
is the k by v matrix with Fait jz]adjt in row t and column i,

844

where r ..
in the design. Of course the column sums of A, are r,. = ) it
t=1

is the number of times treatment i is applied to plot t
k

v
and the row sums are b = 121 gt

9p is the k by p matrix with ¢a(t) in row t and colum a. If

we define ¢! = (¢.(1)s..0s0 (k)) for- 1 < a < p, then

o

e

2, = [91’92""’9p]' The reader should not confuse 8, with the symbols

3 or Qp for optimality criteria.

Lemma 9.1.1: (Bradley and Yeh (1980)) Under the model at (9.1.1)
a design d is a trend-free block design for degree p (TFBD(p)) if and

only if



b
Z z 6 ¢ ( =0, o
351 g5 Wthe
or equivalently

p b k

o1 - $3508, ()

a=1 i=1 j=1 t=1
or equivalently

8+d &p T Cv,pe

Remark 9.1.1: If d is a TFBD(p) then &, ¢ =0

1,..

=0

«sPs i= -I,...

s V3

v, 1
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(9.].2)

(9.1.3)

(9.1.4)

for 1 < a < p.

Yeh and Bradley (1983) presented results for the existence and

construction of trend-free block designs (TFBD's).

“"For situations

where v, b, k, p and r do not allow a TFBD(p) to exist, Yeh and

Bradley (1984) introduced two measures of closeness to the trend-free

property. They are paraphrased here as definitions.

Definition 9.1.1: (their Definition 1)

A block design under

model (9.1.1) is said to be a nearly trend-free block design of

Type A for incidence matrix % and degree p (NTFBD(A,p; 7)) if (9.1.3)

is minimized among all designs with the same 7.

Definition 9.1.2: (their Definition 2)

A block design under

model (9.1.1) is said to be a nearly trend-free block design of

Type B for incidence matrix % and degree p (NTFBD(B,p; %)) if among

all designs with the same 77 the following holds:

p-1 v b kK

() 5 LOL T ohspee(t))’

o=1 i=1 j=1 t=1

is minimum, and



152

v b
(i1) { 6 o ( t)}2 is minimum among all d satisfying
i=1 351 ¢ WP

().

Remark 9.1.2: If d is a NTFBD(A, p; %) then it is a NTFBD(B,p; 7),

but the converse does not necessarily hold. (9.1.3) is.just the trace

—

Of Aty &, 85 B,q 1 (9.1.3) equals zero then d is a TFBD(p). If the

minimum of (i) in Definition 9.1.2 is 0 then d is a TEBD(pl1) and a
NTFBD(B,ps 7). .
Yeh and Bradiey (1984) also proved the following theorem which is

improved upon in Section 9.2. .

-

Theorem 9.1.1: (their Theorem 1) If d° is a BIBD or CBD for

model (9.1.1) under a polynomial trend of degree p having incidence
matrix 70, and ¢ is a TFBD(p-1) and a NTFBD(B,p; n) then d is A-
and D-optimal among all d with 74 = 7y and that are a TFBD(p-1).

Note that in Definitions 9.1.1 and 9.1.2 we restricted ourselves
to d with the same . In Theorem 9.1.1 the class of designs over

which d° is optimal is a subclass of the class in the definitions.

e

R

9.2 Extended Results

We introduce some notation first. Since we are keeping v, b and
k fixed for all discussions we shall use § instead of 8(v,b,k) for the
class of all connected designs with each block containing at least
two treatments. Now let ﬂ(ﬁo) = {d: 74 =Ny} and @(Ao,ro) = {d:
hy = Ay and ry = ry} where Ay =74 Ny and was defined in Chapter 1.

Also let TF(p) stand for "trend-free for degree p".
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We shall now extend the scope of Definitions 9.1.1 and 9.1.2

and Theorem 9.1.1.

Definition 9.2.1: A block design d0 with Ado = AO and rdo =1

under model (9.1.1) is said to be a nearly trend-free block design of

Type A for the pair (AO, ro) and degree p (NTFBD(A, p;-AO,rO)) if

(9.1.3) is minimized over Q(Ao,ro).

Definition 9.2.2: A block design d0 with Ado = AO and rdo =T

under model (9.1.1) is said to be a nearly trend—ffee bibck design of

Type B for the pair (Ao,ro) and degree p (NTFBD(B,;B;“AO,rO)) if the

following holds: o
p-1 v b Kk

i K T 6 (1))
4 121 jz1 tZ15th¢“( )

2 is a minimum over Q(Ao,ro) and

v b k .
(i) iz]{jzl tz163jt¢p(t)}2 is minimum among all d € Q(Ao,ro)

satisfying (i).

Remark 9.2.1: As in Section 9.1, if d is a NTFBD(A, 95~Aosfo)

then it is a NTFBD(B, p; Ayro). The d° and dg in Example 9.2.1
illustrate that the converse is not necessarily true; d° is a
NTFBD(B, 2, Ag> ro) but d3 is "more free" than d° in the sense of
Definition 9.2.1. If the minimum of (i) of definition 9.2.2 is O,
then d® is a TFBD(p-1) as well as a NTFBD(B, p; Ag»ry). The d° in
each of Examples 9.2.1 and 9.2.2 is such a d®. Finally (9:1.3) is

still the trace of A, 2 @5 A,y and Lemma 9.1.1 still holds.
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The scope of Definitions 9.1.1 and 9.1.2 were widened because the
optimality and trend-free properties of a design d depend on %d onty
through Ay and Ty Therefore taking a specific AO and o allows us to

include any N4 with Ay = Do and rq = Yor This is particularly useful

—

when we consider AO and o for a BIBD.

Theorem 9.2.1: If d° is a BIBD (or CBD) in 8(Ay,r,) for model

(9.1.1) under:a polynomial trend of degree p, and d® is a TFBD(p-1)

0

and a NTFBD(B, p; Ao,ro) then d” is J,-optimal over all TF(p-1) designs

d -in S(Aogro)- - 1‘

Proof: This is essentially the proof of Theorem 9.1.#. For all

TF(p-1) designs d € S(Ao,ro) we know Atd 8h-1 7 0son,2

p:
) § -1, _ . 6_-1 . .
A Qp' We also know rd-k Ay = Yo k AO is completely symmetric, the

matrix b']

éld 9p 96 Avd has exact]y»one nonzero eigenvalue Y42 and

. _ 8 -1 -1, '
the eigenvatues of C, = fo'k AO-b Atd gp Qp Apq are

VA VA, VA
T Y ke KOS pointed out by Yeh and Bradley (1984).

0 <

Since d° is one of these designs and is also a NTFBD(B,-p;,AO;rO), then
v b k .
1 : i 2
' N S s t)}1°.
Brg ?p ¢p —+d) 121{jz1 tz1 th¢p( )}

Y o <vy=tr(d This makes
do d

the eigenvalue structure of C o that of Theorem 2.1.1,’d0 E-optimal
d

over the TF(p~1) designs in S(Ao,ro), and C o of maximum trace for
d

the TF(p-1) designs in Q(Ao,ro). So applying Theorem 2.1.1 we

conclude the proof.
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This optimality of d® of Theorem 9.2.1 is still over a very small
subclass of 8. Three questions naturally arise. Is such a d° £447
optimal over all designs in 8? Is it optimal over all designs that are
trend-free for at least degree p-1? Is it optimal over all designs
in @(Ao,fo) but which do not even have to be TF(p-])?.."-'

As the following two examples illustrate, in the BIBD case the
answers to the last two questions, and therefore the first; can bé
no. The orthégona] polynomials used for the examples are those in

Appendix 11 of Anderson and McLean (1974).

L3

Example 9.2.1: 8 = 8(6,10,3) and p = 2. Belaw are d° of

Theorem 9.2.1, an E-better non-BIBD d] which is TF(]),'a"ﬁ-better

non-BIBD d, which is TF(1) and a 3,-better BIBD dg with A4
N 3

AO and r

= r., but which is not even TF(1).
-d3 "0

L 2 5 3 4 1 3 4 6 4 3
3 2 1 1 6 4 6 2 5 5
1 3 6 5 4 2 2 5 1. .6
dp: 2 5 3 4 1 3 4 6 4 3
3 7 1 1 6 4 6 2 5 5
1 2 3 4 5 6 6 2 5 4
dy: 2 3 4 5 6 1 ] 3 3 6
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Example 9.2.2: 8 = 8(6,15,4) and p = 3. Below we have

d® of Theorem 9.2.1, a J-better non-BIBD dy which is TF(2), and
an A- and D-better non-BIBD d2 which is TF(3).

1T 1 3.2 2 5 46 6 55 3 6 4 4
2 211113 3 3 42¢6 3 25
352466 1 456 44556,

id

4 36 54251113226 3

~
(&)
(&) ]
(0]
w
w P~ O
—
(&3]
~nN

2
2 15 4 3 2 6 15 S
6 1 4 2 55 4 3 46 16 5 3 2

There are three easy to follow principles that worked for
finding the counterexamples to the 34-optimality of d° over all
or part of 8 beyond that of Theorem 9.2.1.

The first was used to get d] in each of Examples 9.2.1 and 9.2.2.
After finding d® we knew the "smallest" Bd for equirep]ica%ed designs

that are TF(p-1), and this was fixed. Using Bd as a guide, without
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changing the fact that the treatments are equireplicated, adjust the

way the treatments are paired to make Ad less smooth so that the

sum k']Ad + Bd is more smooth than it was for dO’ therefore making

C, more smooth. For Example 9.2.2 we present k—]A » B =B, and
d & 0 d1
k']Ad , respectively. 7
1
30 18 18 18 18 18 7]
30 18 18 18 18
1 ] 30 18 18 18
k A 0 = 1
d 30 18 18
30 18
[ sym 30
" 4 4 4 -4 -4 -4
4 4 -4 -4 -4
1 4 -4 -4 -4
B = ——
4 12 4 4 1
4 4
| Sym . 4 J ““
30 15 15 21 21 18 7]
30 15 21 18 21
-1 1 - 30 18 21 21
kK Ag =12
30 15 15
30 15
L Sym 30 -
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The second principle was used to get d2 in each of Examples 9.2.1
and 9.2.2. Here one finds different replications for some treatments
that do not affect the TF(p-1) property but make a design nearer to
TF(p). ra equals (4, 5, 5, 5, 5, 6) and (8, 8, 8, 12, 12, 12) in-

2
stead of-5]é and 10]é in Examples 9.2.1 and 9.2.2, regpéétiwe]y.

The third principle was used to get d3 in Example 9.2.1.

Keeping the % of the BIBD generated do, just change the Ydit?

1 <t <k, for each i 50 that (ry.is...sry; )¢, is made small for

each i and all 1 < a < p.

9
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CHAPTER 10
SUMMARY v

10.1 Optimality of Designs

In Table:10.1.1 are Tisted the classes 8(v,b,k) for which a
design d* was proved optimal in Chapters 3 through 7. _The number
of treatments (v), the number of blocks (b), and bigck size or
sizes (k) for which optimality was proved appeaf 1;~thé-first three
columns, respectively. Then the optimality criteria for which d*
was proved optimal are listed. “gJ]" stands for the_generalized
type 1 criteria of Cheng (1978) (see Theorem 1.4.1), "d," stands
for the criteria of Theorem 2.1.1, and "E" stands for the E-
optimality criterion. Finally the theorem or lemma where the
result was proved is given.

Note that b, is the number of blocks allowing a BBD of-Kiefer

R

0
(Definition 1.2.1) to be constructed.

10.2 Efficiencies

In Table 10.2.1 are presented the classes 8(v,b,k) where
efficiencies were obtained for some designs of interest. The
table is set up just as Table 10.1.1 with one minor exception:
The design for which the efficiency was obtained appears with the

number of the respective theorem.



Table 10.1.1:

Classes with optimalities
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Theorem

Values Number Optimality
of v of Blocks .Block Sizes Criteria or Lemma
>3 edwl) (2,...,2) 99, 13.2.1
> 3 ev-1 (v-1,...,v-1) 93, -7 13.2.2
>3 ev+] (v=T4...5v-1) 34 T3.3.1
3,4,5,6 bl (2,...,2) 3 13.3.2
>3 byl (VyuunsVsv-1) 3 o TAL
> 3 by (pv=1,pV,...spV) J;L 75.3.1
>3 ev (pv,pv+1”..,pv+1, I, o f5.3.2
> 3 bytv/2 (pv+2,;..;pv+2) E L6.2.2
4 6e+2 (4p+2,...,4p+2) I T6.2.1
>3 bgHm (pv+ XL, pwr E T6.3.1
and 1 <m < v-1
>3 evt] (pvtv-T1,...,pv+v-1) I T§:3.2
> 3 ev+v-1 (pv+1,...,p§+1) I  T76.3.2
>3 ev-1 (pv+1,...,pv+1) J T7.4.1
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Table 10.2.1: Efficiencies obtained

Values Number Optimality Theorem

of v of Blocks Block Sizes Criteria and Design

>3 el g (2,2 ADE  8.2.1,d%

>7 byl (Kyennok,v-1) AD,E . 8:3.1,d*
and (v-1)/3 < k < v-1 - T

4,5,6 b0+1 (Kyoouskyv=1) A,D,E 8.3.1,d*
and 2 < k < v-1 _ '

> 7 b0+1 o (kyoowskov=1) A,D,E 8.3.2,d*
and 2 < k < (/v+1)/2

>3 by*1 (PVs...spv,v-1) A,D,E - 8.3.3,d*
and p > 2 B« 8.3.3,d

> 3 b0+1 (pv+g,...,pvtq,v-1) - A,D,E."  8.3.4,d*
and 1 < q < v-1

>3 ev+l (pv+1,...,pviTsv-1) A,D,E 8.3.5,d

> 3 ev+] (pv+v-1,...,pv+v-1,v-1) A,D,Eﬂ 8.3.5,&

> 3 b0 (Kyouowsksk=T1) A,D,E 8.4.1,d*
and 3 < k < v-1

> 3 ev (pv+1,...,pv+1,pv) A,D,E 8.4.2,d

>3 by (pv+q,...,pv+q,pvtq-1) A,D,E 8.4.3,d*
and 2 < q < v-1 A,D,E 8.4.4,d

> 4 by *2 (pv+V/2,...,pv+v/2) A,D,E  8.5.1,d*

> 4 bgtv/2 (pv+2,...,pv+2) A,D 8.5.2,d*

v-1 v-1

> 3 by*m (pvt —=5...,pV# —ﬁrd A,D 8.5.3,d*
and-2 < m < v-2

> 3 ev+l (pvil,...,pv+1) A,D,E 8.5.4,d*

E(p > v-1) 8.5.4,d

> 3 bo—m > 2 (pv+v/m,...,pv+v/m) A,D 8.6.1,d*
and 3 < m < v-1

>3 ev-1 (pv#v-T1,...,pviv-1) A,D,E 8.6.2,d*

E(p > v-2) 8.6.2,3
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